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Probabilistic controllability approach to metabolic
fluxes in normal and cancer tissues
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Recent research has shown that many types of cancers take control of specific metabolic

processes. We compiled metabolic networks corresponding to four healthy and cancer tis-

sues, and analysed the healthy–cancer transition from the metabolic flux change perspective.

We used a Probabilistic Minimum Dominating Set (PMDS) model, which identifies a mini-

mum set of nodes that act as driver nodes and control the entire network. The combination of

control theory with flux correlation analysis shows that flux correlations substantially

increase in cancer states of breast, kidney and urothelial tissues, but not in lung. No change in

the network topology between healthy and cancer networks was observed, but PMDS ana-

lysis shows that cancer states require fewer controllers than their corresponding healthy

states. These results indicate that cancer metabolism is characterised by more streamlined

flux distributions, which may be focused towards a reduced set of objectives and controlled

by fewer regulatory elements.
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Metabolic pathways are essential chemical processes that
catalyse complex reactions indispensable for develop-
ment and life. Recent research has shown that many

types of cancers take control of specific metabolic processes1. In
particular, cancer pathogenesis has recently been closely asso-
ciated to serine, glycine and one-carbon metabolism2. Preclinical
analyses have shown that by adopting a specific diet that limits
the amount of serine and glycine, tumour growth was severely
inhibited.

Understanding how metabolic networks are controlled is a
challenging question though. Metabolic control analysis was
originally developed to evaluate how metabolic fluxes depend on
kinetic parameters of enzymatic reactions or metabolite con-
centrations. The level of control is quantified by calculating
control or elasticity coefficients3,4. However, these approaches are
not easily applicable to large systems since they rely on a kinetic
model of the metabolic pathways. More recently, an approach
was developed that uses flux couplings between metabolic reac-
tions5. Flux couplings identify constrained relations between
fluxes of different reactions, which arise from the network
topology and mass conservation6. Five types of couplings were
identified, namely directional, partial, full, anti and inhibitive
couplings. The networks were analysed using a minimum dom-
inating set (MDS) approach to identify potential driver nodes
reactions5. The MDS approach was proposed by Nacher and
Akutsu7 and has been used to analyse many biological systems
and identify proteins associated to cancer8–12. However, the flux
coupling approach uses a discrete definition of coupling between
reactions and does not take into account the full range of possible
flux distributions that the metabolic system is able to support. For
example, two reactions are defined as anti-coupled if when one of
them is inactive then the other carries a non-zero flux (in a non-
zero steady state), but this definition does not take into account
the relation between both fluxes in situations where both reac-
tions are active.

Here, we argue that in order to investigate the distributed
control of metabolic flux in large-scale metabolic networks, a

different approach is needed. Coupling should be measured by a
continuous value characterising the relations between reaction
fluxes over all feasible steady states, instead of a set of binary
values that represent particular subsets of steady states. In order
to distinguish this continuous measure from previously used
definitions of coupling, we hereon use the term correlation. Such
a measure already exists: as demonstrated by Poolman et al.13, it
can be obtained from the angles between the vectors forming an
orthonormal basis of the null-space (or kernel) of the stoichio-
metric matrix defining the metabolic network. The cosine of this
angle precisely represents Pearson’s correlation coefficient
between the fluxes carried by a pair of reactions over all possible
steady states of the system, and was therefore named reaction
correlation coefficient. Hence, the reaction correlation coefficient
ϕij of a pair of reactions i and j is a continuous value comprised
between –1 and 1, where ϕij= 0 indicates that the fluxes of both
reactions are completely independent, ϕij= 1 indicates that they
are perfectly correlated and ϕij=−1 indicates that they are per-
fectly anti-correlated.

In this work, we compiled metabolic networks corresponding
to four healthy and cancer tissues, namely breast, lung, kidney
and urothelial cancer. This data allows us to analyse the
transition from healthy to cancer states from the metabolic flux
perspective (Fig. 1). We first assembled a metabolic flux corre-
lation network obtained from biochemical metabolic pathways in
healthy and cancer tissues. Indeed, the above-mentioned flux
correlation coefficient can be interpreted as a failure probability,
which suggests that a probabilistic model can be suitable to
address flux control. For example, a positive correlation inter-
action with value 1 could be understood as an interaction with
failure probability of zero. Similarly, an absence of correlation
with value zero would suggest a failure probability of 1. These
concepts pave the way to the applicability of a probabilistic
control theory for complex metabolic networks. Here, we used a
Probabilistic Minimum Dominating Set (PMDS) model that can
identify a minimum set of nodes that act as driver nodes and
control the entire network in a context of probabilistic
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Fig. 1 Method for the application of probabilistic control theory to metabolic flux analysis. The stoichiometric matrix of the metabolic network is
constructed and used to compute the orthonormal kernel matrix. The reaction correlation coefficient ϕij is the cosine of the angle between the reaction
rows in the kernel and represents the strength of control between both reactions. The failure probability ρij is defined as 1−|ϕij|, which is used to determine
the probabilistic minimum dominating set. We require that each node (reaction) is covered by multiple nodes in PMDS so that the probability that at least
one edge (incoming flux) is active is greater than the threshold Θ
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interaction failures14. In this network representation, the nodes
are interpreted as metabolic reactions and the weighted edges
correspond to the probabilistic flux exchanged among reactions.
The application of PMDS in the context of metabolic fluxes
makes it possible to connect controllability theory with flux
correlations.

Results
Cancer metabolic reaction fluxes show higher correlations.
Frequency distributions of all correlations in models of healthy
and cancer cells corresponding to four different tissues were
computed and the results are shown in Fig. 2. In general, we
observed that the correlations are stronger in the cancer state
than the healthy state for breast, kidney and urothelial tissues.
However, for lung cancer the results show an opposite tendency
with a weaker correlation distribution for the cancer state.

Statistical analysis of genome-scale metabolic flux networks.
The clustering degree in all networks shows, however, a similar
local structure (Table 1). This indicates that the differences
observed in cancer states are not due to changes in the network
structure, but to changes in the relations between fluxes.

We also determined the degree distributions in all these
networks and found that they are similar and adhere to the
classical scale-free distribution observed in most biological
networks, including metabolic networks (Fig. 3). It is interesting
that in spite of large metabolic flux changes, the global statistical
pattern of the network remains conserved.

However, the specificity of lung cancer appears in the fraction
of nodes connected to the giant connected component (Table 2
and Fig. 4). Breast, urothelial and renal cancers show larger giant
components than the corresponding healthy states. In contrast,
healthy lung tissue shows a larger giant component than the

cancer state. This may imply a higher correlation between fluxes
in the cancer state for 3 out of 4 cancer types.

Cancer states require fewer controllers except in lung cancer.
Based on the PMDS model described in the Methods section, we
computed the number of reactions necessary to achieve full
control of each network in a probabilistic context of flux corre-
lations. We calculated the PMDS for each network using different
values of Θ (threshold probability). The results (Fig. 5) show that
the fraction of driver nodes is smaller in all cancer tissues com-
pared to their corresponding healthy states, suggesting that it may
be theoretically easier to control these cancer states. This change
is consistent with an increase in flux correlations observed in
three out of four cancer states. In lung the PMDS fraction is still
smaller in the cancer state, even though the healthy state shows
higher flux correlations than the cancer state. The size of the
largest component is higher in the healthy state for lung, which
may explain the observed higher correlations.

To account for possible inaccuracies in the original models, we
verified that these results are stable with respect to small
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Fig. 2 Probability distribution of reaction correlations. Probability distribution of reaction correlations in healthy (blue) and cancer (purple) states of four
human tissues

Table 1 Topological properties of the complete metabolic
networks

Network Clustering coefficient Connected components

Breast healthy 0.780 4
Breast cancer 0.766 7
Lung healthy 0.772 5
Lung cancer 0.771 8
Kidney healthy 0.770 6
Renal cancer 0.764 5
Urothelial healthy 0.780 6
Urothelial cancer 0.769 8
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alterations in the topologies of the four healthy and
cancer networks. For each tissue type and for each value of Θ,
we constructed 10 randomised networks by rewiring 1%, 5%
and 10% of the edges, respectively. In order to conserve the
topological properties of the networks during randomisation,
we applied an edge rewiring algorithm that preserves the
degree distribution (see Methods). Even with a moderate
perturbation of 10%, the average PMDS fraction only marginally
increased and the PMDS fraction in the healthy state always
remained larger than in the corresponding cancer state
(Supplementary Figs 1, 2 and 3).

Distribution of controllers in metabolic pathways. In order to
compare the controller and non-controller nodes from a per-
spective of biological significance, we analysed the distribution of
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Fig. 3 Topology of healthy and cancer networks. a Cumulative degree distributions of healthy and cancer high flux correlation networks. b Visual
representation of high flux correlation networks; the edge colour represents the flux correlation ranging from 0.5 (red) to 1.0 (green)

Table 2 Properties of high flux correlation networks in
healthy and cancer states of human tissues

Network Total
network size

Size of giant
component

Fraction of
giant
component

Breast healthy 3729 611 0.164
Breast cancer 3741 1103 0.295
Lung healthy 3510 1091 0.311
Lung cancer 3350 598 0.179
Kidney healthy 3986 711 0.178
Renal cancer 3444 677 0.197
Urothelial healthy 3890 660 0.170
Urothelial cancer 3618 1078 0.298
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PMDS and non-PMDS nodes among metabolic pathways from
the KEGG database. Since we are using metabolic models, a
comparison to metabolic pathways is more appropriate than for
example the Gene Ontology, which contains other types of bio-
logical functions not included in the data. We found that some
central metabolic pathways are enriched in PMDS nodes across
cancer and non-cancer networks: these pathways include glyco-
lysis (p-values from 0.009 to 0.06; all p-values derived from two-
tailed Fisher exact tests) and pyruvate metabolism (p-values from
0.003 to 0.06, except renal cancer p= 0.12). The citrate cycle is
significantly enriched in PMDS nodes in breast and renal
tissues (p-values from 0.01 to 0.05) but not in urothelial and lung;
inositol phosphate metabolism was enriched in healthy breast
(p= 0.03). Conversely, aminoacyl-tRNA biosynthesis was sig-
nificantly depleted in PMDS nodes in all cancer and non-cancer
networks (p-values from 3e−5 to 0.05), as well as N-glycan bio-
synthesis (p-values from 3e−5 to 0.03). Overall, the fact that a
higher proportion of controller nodes are found in central

metabolic pathways is consistent with expectations, since these
pathways distribute fluxes towards other parts of the metabolic
network, and this property is maintained between healthy and
cancer cells. Additionally, these results confirm that each cancer
type has distinctive characteristics in terms of pathways enriched
in PMDS nodes, with lung cancer being more distinct than the
three other types.

Folate cycle subnetwork. There is growing evidence of relations
between metabolic perturbations and cancer. In particular,
serine and glycine pathways were found to be associated with
oncogenesis2. These amino acids feed into the folate cycle,
whose outputs feed into the synthesis of nucleotides and
phospholipids. To illustrate how control analysis can shed light
on changes occurring in metabolic pathways, we show the
results obtained on a subnetwork centred on the folate cycle
(Fig. 6).
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In the healthy states, we observe that SHMT and TS are
strongly coupled (Fig. 6b, d, f, h) indicating that the production of
THF is strongly coupled to its methylation into MeTHF. In
addition, there is a strong positive correlation between TS and
DHFR, which means that THF production from folic acid is also
coupled to the THF cycle. In the cancer states though, these
correlations become weaker (Fig. 6c, e, g, i) and several new
connections appear. In breast and lung cancer, MTHFR becomes
strongly coupled to SHMT and MS, suggesting that the folate
cycle uses mTHF as an intermediate rather than direct
transformation of MeTHF to THF. Overall, the cancer states
induce more flux interactions between reactions of the THF

system. This increases the complexity of the relations and at the
same time opens more possibilities to control the fluxes in the
system.

Discussion
Links between metabolism and cancer have been known for a
long time, as sustained aerobic glycolysis is well known to occur
in cancer cells15. How these changes are connected to cell pro-
liferation and accumulation is not well understood though. It was
also widely observed that obesity increases cancer risk, which
raises questions about the existence of causal links between
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increased metabolic activity and tumour progression. Conversely,
large animals with low metabolic rate are generally found to have
lower incidence of cancer than smaller animals with faster
metabolic rate, which strengthens the view that metabolic activity
could be a factor favouring cancer, at least as important as
mutations16. Several oncogenes are known to stimulate metabolic
pathways, in particular glucose and glutamine metabolism17.
Alternative carbon sources such as acetate were found to be better
utilised by tumour cells than normal tissue18. Metabolic flux
distributions in tumour cells were observed to correlate with
increased lactate production19 and to maintain levels of NADPH,
allowing cells to better resist to oxidative stress20,21.

Our results show that, in the four tissue types for which
comparative models of healthy and cancer metabolic networks
are available, namely breast, lung, kidney and urothelial, con-
trollability in cancer metabolism is easier than that in healthy
metabolism. A generic interpretation of this result can be found
by combining knowledge from Fig. 3. The network visualization
shows significant flux correlation changes. However, the cumu-
lative degree distribution shows that, in spite that many reactions
change flux correlations, the global statistical degree pattern of
the network does not change and still follows a power-law for the
degree of nodes. This is important technically because in general
the PMDS can be computed faster in networks that have a power-
law distribution, i.e. scale-free networks. However, the new flux
distribution in cancer state seems to be more highly correlated
(lower failure probabilities) as shown in Fig. 2, which makes
cancer states easier to control from a PMDS view point since key
flux routes have lower probability of failure. Indeed, these results
are based on comparative analyses of metabolic reconstructions of
cancer and healthy tissues and remain dependent on the quality
of the models used. Nevertheless, we verified that these results are
preserved under moderate alterations of the networks, and as the
quality of metabolic models increases and new models become
available for other tissue types, these properties can be further
tested in the future. It is worth mentioning that other types of
analyses not related to controllability may be able to identify
differences between cancer and healthy metabolism. For example
null-space analysis can characterise properties of genome-scale
metabolic networks based on stoichiometry alone13 and other
types of constraints such as thermodynamics may be taken into
consideration.

Nevertheless, specific differences in metabolic flux correlations
were observed in lung cancer. These differences were also
reflected in the number of reactions assembled in the main
connected component of the network. Heterogeneity in metabolic
pathway activity has been reported before, not only between
different types of cancers22 but also between different types of
lung tumours23,24. In spite of the heterogeneous metabolic flux
response observed in cancers and in particular a large fluctuation
of active correlations (i.e. number of links) among reactions in
lung cancer, the number of necessary reactions to be controlled in
cancer does not largely change. More importantly, the metabolic
flux space in cancer remains easier to control than that in
healthy state.

The number of active correlations in lung cancer is twice as
large as that number in breast cancer. Counterintuitively, the
PMDS size of both lung and breast cancer is lower than that in
the corresponding healthy state. This indicates that the size of the
reaction control backbone of both lung and breast cancer is very
similar. The increase in correlations observed in lung cancer,
consistent with the already reported variability on cancer meta-
bolism, might only perform peripheral metabolic functions
without critical control roles. Glutamine metabolism is altered in
many types of cancer cells, but the consumption of glutamine
by lung cancer cells is higher than in other cancer types25.

The glutamine metabolic pathway is tightly interconnected with
the mTOR signalling pathway, which promotes cell survival and
is activated by glutamine efflux; this particular feature is being
investigated for potential therapeutic applications26. The tyrosine
kinase epidermal growth factor receptor (EGFR) is frequently
mutated in non-small cell lung cancer and has strong interrela-
tions to several metabolic pathways. It was shown that EGFR
signalling promotes not only glucose consumption and lactate
production, but also de novo pyrimidine synthesis, therefore it
plays a major regulatory role on global metabolism27. Different
KRAS mutations are also found in lung cancer, which do not have
the same cellular activity. It was shown that they affect different
metabolic pathways, with distinguishing effects in particular in
the glutaminolysis and glutathione pathways28. These examples
show that, in addition to strong metabolic effects shared with
other types cancers such as aerobic glycolysis, lung cancers can
also be characterised by original relations with metabolic path-
ways. The full extent of these relations is still poorly understood
but is an active area of research towards new therapies25.

Methods
Computation of reaction correlation coefficients. The computation starts by
constructing the stoichiometric matrix of the network, S, whose elements are the
stoichiometric coefficients of each metabolite in each reaction. The kernel matrix K
is defined by vectors constituting a basis of the null-space of S, such that S KT= 0.

In most cases, K is not unique. However, if the vectors of K form an
orthonormal basis, which means K KT= I, then the angles θij between the row
vectors of K are invariant. The reaction correlation coefficient ϕij is defined as the
cosine of ϑij:

ϕij ¼
kik

T
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kik
T
i

� �

kjk
T
j

� �

r ¼ cosðϑijÞ ð1Þ

where ki and kj are the row vectors of K corresponding to reactions i and j
respectively. As demonstrated in Poolman et al.13, ϕij represents the Pearson
correlation coefficient between the fluxes carried by reactions i and j over all
possible steady states of the system. The mathematical demonstration is based on
introducing a random matrix R that contains all possible steady states, s being the
number of steady states which can be arbitrarily large. Then the Pearson
correlation r of this distribution is defined, and when s tends towards infinite it is
shown that r tends towards a product of k vectors, which represents the cosine of
the angle.

We calculated K using the null function in Matlab and verified that it meets the
orthonormality condition for each metabolic network. After obtaining ϕij for each
pair of reactions, the probability of failure between reactions i and j was defined as
ρij= 1− abs(ϕij).

Probabilistic control model. Natural and engineered complex networks are
composed of thousands of nodes and tens of thousands of links. These links
representing regulatory interactions or transmission lines suffer from probabilistic
failures. The flux correlation coefficient allows us to define the probability of failure
between reactions i and j (ρij) and integrate it into a probabilistic control model.
We want each node (reaction) to be covered by multiple nodes in MDS so the
probability that at least one edge (incoming flux) is active is at least Θ. This
problem can be formulated as a probabilistic minimum dominated (PMDS) as
follows. Let S be a dominating set, then we require S to satisfy:

1�
Y

i2S
ρij

 !

� Θ; 8j 2 V ð2Þ

which can be rewritten as:
X

i2S
�ln ρij

� �

� �ln 1� Θð Þ ð3Þ

where ρij indicates the probability of failure between reactions (i, j).
The standard MDS problem is formalized by the following integer linear

programming (ILP) problem:
Minimise

P

i2V
xi

subject to:

xi þ
X

ðj;iÞ2E
xj � 1; ð4Þ

xi 2 0; 1f g; 8i 2 V;
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where an MDS is obtained by the set xjxi ¼ 1f g; V indicates the set of reaction
nodes in the network and E denotes the set of undirected edges between reaction
nodes. Then, inserting the probabilistic condition shown in Eqs 2 into 3 leads to the
PMDS formalized as the following ILP:

Minimise
P

i2V
xi;

subject to: xj � 1; 8j 2 V such that deg jð Þ ¼ 0;

� ln 1� Θð Þxj þ
X

ði;jÞ2E
�lnðρijÞxi
� �

� �ln 1� Θð Þ; 8j 2 V such that deg jð Þ>0;

ð5Þ

xi 2 0; 1f g; 8v 2 V

where deg(j) denotes the degree of reaction node j. In the above expression, the
first term � ln 1� Θð Þxj is added because if node j is included in the PMDS, the
inequality needs to be hold. In the implementation of the ILP-based method, a
small number (10−6) is added to ρij to avoid infinity occurrence at ρij ¼ 0. The ILP
problem was solved using the IBM ILOG CPLEX Optimiser package version 12.0.

Construction of cancer networks. Genome-scale models representing human
metabolic pathways in healthy and cancer states were compiled from Basler et al.5

and Gatto et al.29 Supplementary data. Then, flux correlation networks were
constructed by computing the reaction correlation coefficients. To create healthy
and cancer networks a threshold of 0.5 was used, which means that absolute
correlations smaller than 0.5 were deleted, or conversely that failure probabilities
higher than 0.5 were deleted; in the resulting networks, nodes represent reactions
and two reactions are connected if their correlation is higher than 0.5. This means
that we are considering the high flux correlation networks in our analysis.

Construction of randomised networks. For each tissue type and for each value of
Θ, we constructed 10 randomised networks by rewiring 1%, 5% and 10% of the
edges, respectively. We used the rewire function from the R igraph package,
together with the keeping_degseq function that preserves the original network’s
degree distribution, in order to conserve the topological properties of the networks.

Pathway enrichment analysis. We analysed the distribution of PMDS and non-
PMDS nodes across all metabolic pathways of the KEGG database in order to
determine whether some pathways are significantly enriched or depleted in con-
troller nodes. Enzyme Commission numbers associated to reactions were extracted
from the raw metabolic models, then were mapped to PMDS and non-PMDS node
lists in the same conditions as described above. These node lists were searched
against KEGG pathways using the KEGG Mapper tool30 in order to obtain the
number of PMDS and non-PMDS nodes in each pathway, then two-tailed Fisher
exact tests were conducted using R in order to determine significant enrichment or
depletion.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The models used in this study are available from https://doi.org/10.1101/gr.202648.115,
Supplemental Material section. Data that support the tables and figures of this study are
available from the corresponding authors upon request.

Code availability
Custom code used in this study is available from the corresponding authors upon
request.
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