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1  | INTRODUC TION

The economic and nutritional contributions of palm oil to the 
World’s oils and fats industries are highly significant; exceeding 
soya oil by a wide margin (Mancini et al., 2015). Its global popular-
ity is as a result of a number of competitive advantages over other 
vegetable oils. These include low cost of production,  modifiable 
chemical composition, and suitability in various food applications 
(Mba, Dumont, & Ngadi, 2015). Nutritionally, palm oil is relatively 

high in saturated fatty acid counterbalanced with monounsatu-
rated and polyunsaturated in addition to other important minor 
bioactive phytonutrients (Odia, Ofori, & Maduka, 2015). These 
minor compounds include the following: carotenoids, tocopherols, 
chlorophyll, sterols, squalene, phospholipids, and about 1% poly-
phenols (Mba, Adewale, Dumont, & Ngadi, 2014). These chemi-
cal parameters vary with geographical origins of palm fruits from 
which the oil is obtained. Free fatty acids (FFAs), oil content, and 
maturation index of palm fruits are the three major parameters 
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Abstract
This preliminary study demonstrated the possibility of discriminating geographical 
origin of palm oils using conventional quality characteristics and UV- visible spectros-
copy. A total of 60 samples, 20 from each region (North (N), South (S), and Central (C)) 
of Ondo State Nigeria, were analyzed for their quality characteristics and UV- visible 
spectra. Principal component analysis (PCA) and orthogonal projection to latent 
structure discriminant analysis (OPLS- DA) were applied to elaborate the data. Models 
were built on the most informative portion of the spectra (250–550 nm) as: untreated 
(without pretreatment) and standard normal variate—second- derivative- treated 
(SNV+2der) data matrices. OPLS- DA classification models were validated by inde-
pendent prediction sets and cross- validation. PCA score plots of both chemical and 
spectral data matrices revealed geographical distinction between the palm oil sam-
ples. Significantly high carotene content, free fatty acids, acid value, and peroxide 
value distinguished Central palm oils. K extinction values, color density, and chloro-
phyll content were the most important quality parameters separating North oil sam-
ples. In the discriminant models, over 95% and 85% percent correct classification 
were recorded for spectral and chemical data, respectively. These results cannot be 
considered exhaustive because of the limited sample size used. However, the study 
suggested a potential analytical technique suitable for geographical origin authenti-
cation of palm oils with additional advantages that include the following: speed, low 
cost, and minimal waste.
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commonly used to predict palm oil quality (Makky, 2016). These 
parameters are not comprehensive enough to sufficiently describe 
all the intrinsic differences between palm oils produced from dif-
ferent regions. It is a well- known fact that combination of analyti-
cal fingerprinting and multivariate data evaluation could facilitate 
nontargeted class differentiation between food products (Alewijn, 
van der Voet, & van Ruth, 2016). These methods create specific 
patterns that might be based on chemical compositions, geograph-
ical origin, and other distinctive variables peculiar to the product 
(Tres & Van Ruth, 2011). Spectral or chromatograms obtained as 
response of certain analytical equipment can provide useful infor-
mation about food product, that would be unnoticed by the use 
of conventional approaches (Bosque- Sendra, Cuadros- Rodríguez, 
Ruiz- Samblás, & de la Mata, 2012).

Like every other agricultural produce, variables influencing the 
chemical characteristics of palm oils include the following: geo-
graphical location, cultivar, agronomic practice, and production 
method. The meaning of origin is not only limited to provenance, 
it involves prevailing natural factors, cultural practices, and other 
historical attributes contributing to the relationship between food 
and	place	(William	&	Jen,	2017).	This	relationship	links	the	quality	
attributes of the product with its geographical location. For exam-
ple, the quality characteristics of some vegetable oils have been 
vastly linked with their regions of production (Karabagias et al., 
2013; Tres, Ruiz- samblas, van der Veer, & van Ruth, 2013; Uncu & 
Ozen, 2016). Generally, products obtained from regions known for 
higher desirable quality attributes have better market reputation. 
Information on these specific attributes peculiar to palm oils ob-
tained from such regions could influence consumers’ preference 
and perception. Consumers are gradually becoming keen in their 
willingness to pay slightly higher price for better quality when prop-
erly informed (García- González & Aparicio, 2010). Therefore, re-
gions reputed for better quality palm oils are likely to attract higher 
market share both locally and abroad. In addition, the subject of 
“sustainable palm oil production” is becoming a global issue. The ini-
tiative is targeted toward protecting palm oil- producing areas from 
negative environmental impacts. Products from geographical areas 
certified for sustainable palm oil production automatically enjoy 
premium market (Fitzherbert et al., 2008). Presently, only inspec-
tion and administrative controls are used to identify sustainable 
palm oils (Tres et al., 2013). In order to be more objective in identi-
fying sustainable palm oil, a more rapid analytical method would be 
an added advantage.

Spectroscopy is one of the most popular and highly adapt-
able techniques in conventional food analysis. UV- visible region 
of electromagnetic radiation offers important advantages such 
as: direct measurement with little or no prior sample preparation, 
low cost of equipment, time- saving, low manual intervention, and 
small sample required. So far, information on geographical origin 
authentication of palm oils is relatively low (Osorio, Haughey, 
Elliott, & Koidis, 2014). There are a few studies focusing on the 
application of one or more regions of electromagnetic spectrum 
in palm oil characterization. Mba et al. (2014) characterized the 

binary blends of palm and canola oils using NIR. Similarly, the po-
tentials of near- infrared spectroscopy in adulterants detection 
and quality authentication of palm oils were evaluated with sat-
isfactory results (Basri et al., 2017; Mba et al., 2014). Moreover, 
there are a few other studies on chromatographic and spectro-
scopic determination of either minor or major components of palm 
oil in the literature with remarkable results (Azeman et al., 2015; 
Che Man, Aye, Tan, & Abdukarim, 2009; Moh et al., 1999). Apart 
from a recent study that predicted geographical origin of palm 
oil	 using	 HPLC	 (Obisesan,	 Jiménez-	Carvelo,	 Cuadros-	Rodriguez,	
Ruisánchez, & Callao, 2017), there is no study in the literature 
where geographical origin of palm oil is discriminated using UV- 
visible spectroscopy. Therefore, the objective of this study was to 
show the possibility of differentiating palm oils produced within 
the same state into regions using their quality characteristics, 
UV- visible spectral in conjunction with classical multivariate data 
elaboration.

2  | MATERIAL S AND METHODS

2.1 | Palm oil samples

Sixty crude palm oil samples obtained from three regions of Ondo 
State Nigeria (North, Central, and South) were evaluated. Twenty 
samples from each region and the samples were collected from four 
different production mills under semimechanized production pro-
cesses. Samples obtained from Ile- Oluji/Okeigbo area constitute the 
South (S), and those from Akungba as North (N), and that of Akure 
as Central (C). These geographical locations are comparatively small 
compared to the entire production regions in the country, but con-
stitute the main production sites for the entire south- western part of 
the country. The samples were collected immediately after produc-
tion, kept in dark glass bottles, and stored in a cool dry place prior 
to analysis.

2.2 | Chemical analysis

2.2.1 | Free fatty acids, acid value, peroxide 
value, and K- specific extinction coefficients 
determinations

According to official methods of American Oil Chemist’ Society 
(AOCS, 1990), FFA, acid value (AV), peroxide value (PV), and K 
values were measured as average of three analyses per sam-
ple. Free acidity (0.503AV) indicative of the fatty acid content, 
expressed as oleic acid (%), was determined by titrating the oil 
solution (ethanol:ethyl ether, 1:1) with 0.1 N KOH, and phenol-
phthalein was used as indicator. PV expressed as equivalents of 
active oxygen per kg of oil (meqO2/kg) was determined by the 
reaction of oil mixture (chloroform, acetic acid, and palm oil) with 
potassium iodide in the absence of light. The iodine liberated was 
titrated with 0.1 N sodium thiosulfate solution using 1% starch 
solution as an indicator. Spectrophotometric indices, also known 
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as specific extinction coefficients, K270 and K232 and ΔK were 
measured as the absorption values of oil solution (cyclohexane 
and palm oil) at 232 and 270 nm wavelengths, respectively, using 
UV-	vis	 spectrophotometer	 (Shimadzu	 UV-	1800	 Kyoto,	 Japan)	
with 1- cm path length.

2.2.2 | Chlorophyll and carotenoid determination

Modified method of Harborne (1980) was used for the determina-
tion of chlorophyll and carotenoid contents of the samples. Palm oil 
sample (100 mg) was mixed with 10 ml of 80% acetone, and the mix-
ture was centrifuged at 1107 × g for 10 min. The supernatant was 
made up to 10 ml using 80% ethanol. The optical intensity (absorb-
ance) was taken at 480 nm for carotenoids, at 645 nm, and 652 nm 
for chlorophyll in UV- vis spectrophotometer (Shimadzu UV- 1800, 
Kyoto,	Japan).	Total	chlorophyll	and	carotenoid	contents	were	esti-
mated using the equations below:

where A: absorbance of specific wavelength, V: final volume of chlo-
rophyll extract in 80% acetone, W: weight of the oil sample.

2.2.3 | Color density

Spectroscopic method described by Wroistad (1993) was used in 
the color determination. Palm oil sample (1 ml) was diluted with 
25 ml methanol in a beaker and stirred for 30 min using magnetic 
stirrer to enable proper color extraction. The mixture was allowed 
to stand for 10 min and centrifuged. Optical density or absorb-
ance of the supernatant was taken at 420 and 520 nm wavelength 
using UV- vis spectrophotometer (Shimadzu UV- 1800, Kyoto, 
Japan).	The	analyses	were	performed	 in	 triplicate.	Color	density	
was recorded as the sum of the absorbances of the two wave-
lengths thus:

2.3 | UV- visible spectra acquisition

UV-	visible	spectrophotometer	(Shimadzu	UV-	1800,	Kyoto,	Japan)	
equipped with deuterium- discharge lamp as ultraviolet range 
source and a tungsten lamp for the visible with 2.0 nm resolution 
was used for the UV- vis spectrum of the oil samples. There were 
two rectangular cells, one for sample (1 ml palm oil dissolved in 
3 ml hexane) and the other for blank (pure n- hexane). Quartz cu-
vette of 10- mm path length was used for sample and blank holder 
as both soda and pyrex glass absorbed below 365 and 320 nm, re-
spectively. The UV- vis spectra of the samples taken between 200 
and 800 nm with 2.0 nm equally spaced wavelength constitute the 
spectral data matrix.

2.4 | Data processing and analysis

The significance of geographical differences between the oil samples 
with respect to their chemical parameters was determined by one- 
way analysis of variance (ANOVA) at 95% confidence level (Minitab 
16.0, Minitab Inc., State College, USA). In the multivariate analysis, 
calibration and validation models were prepared in two categories:

1. Chemical data matrix (60 × 11) consisted of 60 palm oil samples 
(n observations) and 11 measured variables (K variables). The 
variables involved are as follows: FFAs, chlorophyll and carotene, 
peroxide and acid values, K extinction (K232 and K270), and 
R-value (K232/K270)

2. Spectral data matrix composed of reduced spectral range (250–
550 nm) measured with two wavelength interval. The spectra 
segments with low signal-to-noise ratio (200–250 and 550–
800 nm) were excluded from the matrix.

Noise and large variabilities usually common to spectroscopic data 
were removed by preliminary filtering techniques. Combination of 
standard normal variate (SNV) and second- order derivatives (2der) was 
applied on the averaged spectra before calibration and validation mod-
els were developed. Ability of these pretreatments to separate scat-
tered	light	from	absorbed	light	has	been	previously	verified	(Jolayemi,	
Tokatli, Buratti, & Alamprese, 2017). SNV algorithm is a row- oriented 
spectra pretreatment method that corrects baseline and removes 
noise using mean centering (Zeng, Huang, Xu, Ma, & Wu, 2016). First-  
and second- derivatives with 15 points smoothing gap (Savitzky- Golay 
polynomial) distance correct spectral perturbation, noise, and increase 
signal- to- noise ratio (Xu et al., 2008). The most widely applied linear 
chemometric techniques are the unsupervised principal component 
analysis (PCA). It is a trend, pattern, and outlier recognition method 
that linearly transform data matrix. The transformation leads to the 
maximum preservation of as many variance in the original data as pos-
sible in lower dimensionality space called principal components (PC) 
(Worley & Powers, 2013). This linear data decomposition facilitates 
simpler and unbiased interpretation of the datasets.

Calibration and validation models were built using OPLS- DA (or-
thogonal projection to latent structure discriminant analysis). The 
technique depends on previously defined membership class infor-
mation (Y) of each observation (palm oil) relative to the chemical and 
spectral data X matrices. The class memberships were coded in the 
matrix form of Y as thus: class 1 (Central), class 2 (North), and class 
3 (South) based on the oil regional differences. It is worthy of note 
to state that the same class specification was used for both spec-
tral and chemical data matrices prior to class prediction. However, 
OPLS- DA modifies the classical PLS- DA with the incorporation of an 
inbuilt orthogonal signal correction filter that enables effective sep-
aration of X variations into Y- predictive (related to class information) 
and Y- uncorrelated (orthogonal or unrelated to class information) 
(Worley & Powers, 2013).

The same randomly selected external validation sets consisting 
of 15 oil samples (5 C, 5 N, and 5 S) were used to verify the model’s 

Total carotenoid content (mg/kg)=
[4∗A480nm ∗V∗1,000]

Sample weight

Total chlorophyll content (mg/kg)=
[20.2∗(A645nm)+8.02∗(A663nm)∗V]

1,000∗W

Color density=A420nm+A520nm.
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predictiveness in both chemical and spectral data. In addition to 
this, inbuilt cross- validation method with seven cancellation groups 
(7 CV) was performed to further verify the robustness of the mod-
els. SIMCA software (v. 13 Umerics, Umea, Sweden) was used for 
all the multivariate statistical analyses, and the output parameters 
were recorded. These parameters include the number of signifi-
cant PCs used (PC_p + PC_o where p and o represent predictive 
and orthogonal components, respectively) in the case of OPLS- DA, 
determination coefficient for calibration (R2

cal
), cross- validation (R2

cv
), 

and confusion matrices (percentage correctly classified sample) for 
calibration and validation in OPLS regional discrimination of the oil 
samples.

3  | RESULTS AND DISCUSSION

3.1 | Chemical parameters

Table 1 shows the results of the chemical and quality characteris-
tics of the oil samples. The acidity of the oils from the three regions 
considered varied between 6.71% and 9.52%, which is slightly out-
side	 the	 expected	 value	 (≤5.00%)	 for	 crude	 palm	 oil	 according	 to	
PORAM (2013) and CODEX 210 (2011) quality assessment criteria. 
Oxidation of unsaturated fatty acids is the main reaction respon-
sible for the degradation of lipids and this forms the basis for the 
analytical quality assessment of palm oils. PV measures the extent 
of accumulation of primary oxidative product called “hydroperox-
ides” which has not actually been converted to secondary products 
responsible for actual deterioration of the oils and fats. Therefore, 
palm oils samples of higher PV (>4.60 meqO2/kg) may not necessary 
be of low quality, but suggest low oxidative stability of the C palm 
oils. High PV of C oils may be an evidence of prolonged time lag 
between harvesting and processing of palm fruits. However, all the 
palm oil samples were within acceptable minimum level (15 meq O2/
kg) by CODEX 210 (2011). Oils are mixture of triacylglycerols that 
can be hydrolyzed enzymatically or chemically to generate a mixture 
of FFA, glycerol, mono, and diacylglycerols. The factors that mostly 

influence the rate of these reactions are related to environmental 
and processing conditions such as high temperature, moisture and 
oxygen availability, and exposed surface area (Choe & Min, 2007). 
These rate- determining factors cannot be completely controlled in 
semimechanized palm oil extraction process. Therefore, the com-
paratively high FFA values and AV of the samples may be a reflection 
of the difference between industrial and semi- intensive processing 
environments as earlier observed by De Almeida et al. (2013).

The specific absorptions at 232 nm (K232) and 270 nm (K270) are 
related to the content of conjugated dienes and trienes compounds 
present in oils, respectively. K values are useful tool in providing a 
quick readout for oils quality comparison, but it does not provide 
information on the actual polyunsaturated fatty acids responsible 
for the diene and triene compounds. Therefore, apart from FFA and 
AV, there was no significant correlation between any pair of PV, 
FFA, and K values in establishing for facts, the impact of regional 
differences on the quality characteristics of the palm oil samples. 
However, free acidity values (FFA and AV) and PV of Central oil sam-
ples were significantly higher compared to other regions (Table 1). 
On the contrary, there was no significant regional influence on K232 
while, K270, ΔK, and R- value were the same for North and Central 
oil samples. Low R- value and high K270 indicate the presence of 
more secondary oxidation products in the oils than primary (Multon, 
1997). Therefore, oils from the North and Central regions are more 
susceptible to oxidative rancidity. The most widely distributed pig-
ments present in palm oil are carotene with over 60% of it being 
beta- carotene with potential vitamin A precursor and high radical 
scavenging capacity (Rufino et al., 2010). Apart from the nutritional 
importance of this pigment, it contributes to the visual appeal of palm 
oil and may influence the degree of consumer acceptability (Moyano, 
Heredia, & Melendez- Martinez, 2010). Significantly, higher carotene 
content was obtained for palm oils from the Central region and 
followed by North. However, all the samples were within the mini-
mum amount of carotene required for high- quality unbleached palm 
oils (500–2,000 mg/kg) (CODEX 210, 2011). The variation in these 
values may be due to agronomical factors such as fruit cultivars, 

Quality parameters

Regions

Central North South

Free fatty acid (%) 8.98 ± 0.54a 8.17 ± 0.20b 7.12 ± 0.41c

Acid value (%) 17.96 ± 1.08a 16.34 ± 0.40b 14.24 ± 0.82c

Peroxide value  
(meqO2/kg)

3.97 ± 0.71a 2.23 ± 0.38b 0.99 ± 0.15c

K232 nm 0.27 ± 0.04a 0.27 ± 0.05a 0.25 ± 0.04a

K270 nm 0.16 ± 0.07a 0.18 ± 0.03a 0.09 ± 0.02b

ΔK 0.12 ± 0.06a 0.14 ± 0.03a 0.05 ± 0.02b

R- value 1.95 ± 0.75b 1.53 ± 0.22b 2.85 ± 0.80a

Carotene (mg/kg) 737.83 ± 53.49a 608.80 ± 42.42b 501.70 ± 17.56c

Chlorophyll (mg/kg) 0.08 ± 0.02b 0.20 ± 0.07a 0.03 ± 0.01c

Color density 2.04 ± 0.58b 2.44 ± 0.54a 2.03 ± 0.39b

Means that do not share a letter (superscript) are significantly different at p	≤	.05.

TABLE  1 Quality variation in palm oils 
based on regional differences
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climatic conditions, and extraction procedures. Chlorophyll contents 
of the oil samples were relatively low with North samples having the 
highest chlorophyll content (0.20–0.34 mg/kg). The same trend was 
observed for color density as well.

3.2 | UV- visible spectra interpretation

The most significantly strong absorbance as shown in the raw spec-
tra of the oil samples (Figure 1a) is between 260–320, 320–380, 
and 400–500 nm. These are all due to π electronic transitions that 
commonly provide information on the presence of conjugated un-
saturations, conjugated nonbonding electron system, and aromatic 
compounds (Spatari, De Luca, Ioele, & Ragno, 2017). A single absorp-
tion band represented between 230 and 260 nm could be an indica-
tion of the presence of a number of compounds such as: cholesterol 
and some acyclic dienes, methylene- interrupted and- conjugate 

dienes and trienes, simple phenols, an aromatic amino acid and the 
likes (Pomeranz & Meloan, 1994) owing to the lipid nature of the sam-
ples. However, the little absorptions at 260–320 and 320–380 nm 
preceding the broadband of 400–500 nm showed unequivocally 
that the broadband is a member of carotenoid; the most chromog-
enic pigments present in palm oil (Ngomo, Mbah, Kamga, & Dinica, 
2016). Beta- carotene is the predominant form of the pigment in palm 
oil with major influence on its regional differences as shown in the 
chemical data. Furthermore, other probable compounds with certain 
degree of absorption properties include unsaturated compounds 
(particularly the polyacetylenes, those of aromatic origin, and ke-
tones. Although there are no significant absorption bands between 
500 and 800 nm (not shown), this region may provide some useful 
information on possible chemical reactions or changes in the palm 
oil. For instance, a meaningful absorption at this region has been 
shown to correspond to an equivalent decrease in carotene band, 

F IGURE  1  Illustration of UV- vis 
spectra of palm oils: (a) Untreated and (b) 
SNV+2der- treated spectra of palm oils 
of different regions (Central, North, and 
South)
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especially when acidity of the matrix is high (Boon, McClements, 
Weiss, & Decker, 2010). Dissolution of palm oil in organic solvent 
before taking the spectra may have deprived the spectra from re-
vealing some saturated lipid fractions and organic acids especially 
between 500 and 800 nm. The plots of filtered spectra showed 
some variations along regions of informative bands (Figure 1b). The 
removal of noise and baseline tilting using SNV and 2der improved 
the spectra differential quality.

3.3 | Multivariate data evaluation

3.3.1 | Principal component analysis (PCA)

Separate PCA models were built for quality parameters, untreated, 
and SNV+2der- treated spectral data matrices in an attempt to de-
termine possible trend among the oil samples (Figure 2). PCA model 
of quality parameters data with 3 PC and 79% total explained vari-
ance produced three clusters based on regional differences between 
the palm oil samples with S oils completely distinguished from oth-
ers, forming a distinct cluster on the left side of control eclipse 
(Figure 2a). The variable most responsible for the separations of S 
oils as revealed in the loading plot is R- value indicative of how dis-
tinctive the region is compared to N and C (Figure 2b). Even though 
maximum class separation is not the explicit objective of PCA, a close 

to perfect class separation was obtained from the score plots of both 
chemical and spectral data matrices. A slight overlap was observed 
between N and C at the positive axis of the PC 2 in both chemi-
cal and spectral data probably indicating some chemical similarities. 
High values of K values, chlorophyll, and color density helped to 
describe the projections of N palm oils while; carotene, acidity, and 
PVs were responsible for the clustering of C oils. However, untreated 
spectral data of the oil samples generated a PCA model with more 
descriptive explained variance of 99% with 6 PC. The first two PCs 
explained 93% total variance significantly higher than that of chemi-
cal data. The score plots output of the two data matrices looked 
visually similar (Figure 2a,c) with S palm oils clearly separated. The 
information embedded in the spectra regions influencing separate 
clusters cannot be strongly ascertained, but indicate nonspecific 
regional variations among the oil samples. As regards the spectral 
data, the most significant wavelengths responsible for the projec-
tion of observations on the score plane were shown (Figure 2d). 
These wavelengths are located on the positive axis of the first PC. 
High absorbance values of 250–510 nm range were responsible for 
the separation of N palm oils. Similarly, 510–550 nm spectra range 
was the most defining band separating C palm oils. However, S palm 
oils have comparatively lower absorbances in both spectral ranges. 
The slight similarity between some Central and North palm oil sam-
ples was evident within 500–510 nm spectral range. Similar patterns 

F IGURE  2 PCA model results: (a) score plot of quality parameters (b) loading plot of quality parameters (c) score plot of untreated 
spectral data, and (d) Loading plot of untreated spectral data of palm oils of different regions (Central C, North N, and South S)
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with slight difference were obtained for the PCA score plots of 
SNV+2der- treated data (not shown). The information conveyed by 
PCA creates the basis by which the secondary discriminant analysis 
OPLS is validated as will be shown later.

3.3.2 | OPLS discriminant analysis

Being a natural exploratory analysis, PCA shows a good distinction, 
but cannot be used for classification of samples into their geographi-
cal regions. Thus, class- modeling technique that allows initial alloca-
tion of samples into classes prior to modeling is required. Therefore, 
in order to predict correct regional classes of palm oils using chemi-
cal, untreated spectra and SNV+2der- treated spectral data matrices, 
OPLS discriminant method was adopted. The performance of the 
method in the data matrices was compared in terms of percentage 
of correct classification (Table 2) and coefficients of determination 
(Table 3). Both chemical and spectra models were fitted for train-
ing (calibration) and prediction (validation), and their calibrations 
score plots were presented in Figure 3. The differences in OPLS- DA 
performances of the chemical and spectral data were significantly 
apparent in both the score plots and confusion tables especially 
when chemical data were compared to treated spectra (Figure 3b,c). 
There was a complete resolution of palm oils regional class overlap-
ping especially in the predictive direction, as a result of separation 
of orthogonal variation to improve the discriminatory capacity of 
OPLS- DA. This inbuilt error- filtering advantage improves class- 
modeling ability of OPLS- DA (Bylesjo et al., 2006). The calibration 
and validation models of each class of palm oils indicated an aver-
age of over 90% correct regional prediction in spectral data which is 
slightly higher than that of chemical parameters. As observed in all 
of the data matrices, there was no misclassified S oil sample in both 
calibration and validation models of the spectral data. Conversely, in 
the chemical data, three N samples were misclassified into C class; 
two in calibration and one in validation sets, thereby producing cor-
rect classifications of 96% and 87% in each case. The most appealing 
results of the three datasets were that of SNV+2der- treated spectra 
where 100% correct classification were obtained for calibration and 
prediction models. The positive impacts of these spectra- filtering 
methods were apparent when comparing the discriminative ca-
pacities of untreated and treated spectral data as earlier supported 
(Hernández- Martínez et al., 2013). However, the few misclassified 
samples (7%) in N and C classes did not significantly lower the coef-
ficients of calibration and cross- validation of the untreated spectral 
data. Similar results were obtained for untreated and treated spec-
tra matrices with improved R2

cal
 and R2

cv
, when compared to model of 

chemical data (Table 3). It is noteworthy to state that both chemical 
and spectral data showed the same overall discriminative outcome 
for C palm oil samples (100%). Therefore, palm oils obtained from 
the North could only be completely separated when modeled using 
SNV+2der- treated spectral data. Earlier observations showed better 
model outputs when SNV and second- derivative spectra correction 
were	applied	simultaneously	to	spectroscopic	data	(Jolayemi	et	al.,	
2017).

TABLE  2 OPLS- DA calibration and validation results: correct 
regional classification rates of the oils samples using quality 
parameters and spectral data

Data matrix Member

OPLS- DA Model

C N S % CC

Quality parameters

Calibration

C 15 15 0 0 100

N 15 2 13 0 87

S 15 0 0 15 100

Total 45 16 14 15 96

Validation

C 5 5 0 0 100

N 5 1 4 0 80

S 5 0 1 4 80

Total 15 6 5 4 87

UV- vis_untreated

Calibration

C 15 15 0 0 100

N 15 1 14 0 93

S 15 0 0 15 100

Total 45 16 14 15 98

Validation

C 5 5 0 0 100

N 5 1 4 0 80

S 5 0 0 5 100

Total 15 6 4 5 93

UV- vis_SNV+2der

Calibration

C 15 15 0 0 100

N 15 0 15 0 100

S 15 0 0 15 100

Total 45 15 15 15 100

Validation

C 5 5 0 0 100

N 5 0 5 0 100

S 5 0 0 5 100

Total 15 5 5 5 100

%CC: percentage of correct classification; C, central; N, North; S, South.

TABLE  3 OPLS- DA calibration model performance parameters 
for chemical and spectral data matrices

Data matrix PC_p + PC_o R
2

cal
R2
cv

Quality parameters 2 + 2 .86 .83

UV- vis_Untreated 2 + 3 .94 .90

UV- vis_SNV+2der 2 + 3 .95 .92

PC_p + PC_o: number of principal components (predictive+orthogonal); 
R
2

cal
: determination coefficient of calibration model; R2

cv
: determination 

coefficient of leave- one- out cross- validation model.
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4  | CONCLUSIONS

For the first time, application of UV- visible spectroscopy and quality 
characteristics in geographical differentiation of palm oil was demon-
strated. The models showed high potentials for regional recognition of 
palm oil when quality parameters, untreated and SNV+2der- treated 
spectral data of the oils were elaborated using PCA and OPLS discrimi-
nant analysis. The performance of the models in terms of calibration and 
external prediction, percentage of correct classification, and coefficients 
of determinations (calibration and cross- validation) was reasonably 
satisfactory in both spectral and chemical data. Application of spectra- 
filtering algorithms significantly improved the discriminative capacity of 
the spectroscopic data. Models built on spectral data had higher coef-
ficients of calibrations and cross- validations with an average of 95%. The 
same inference was true when comparing the projection of observations 
in the score ellipses, between chemical and spectral data. However, both 
data were valuable discriminating tools effective in correctly classifying 
palm oils into their separate production regions with little intersection 
among class members. Finally, this analytical approach could represent a 
valid tool for the prevention of palm oil quality misrepresentation; a form 
of food fraud that may be prevalent in the country of high production. 
Speeds, straightforwardness, little to no sample alteration or treatment 
and less complicated equipment are few out of many advantages offer 
by spectroscopic method over usually expensive classical methods.
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