
RESEARCH ARTICLE

Single Nucleotide Variations in CLCN6
Identified in Patients with Benign Partial
Epilepsies in Infancy and/or Febrile Seizures
Toshiyuki Yamamoto1*, Keiko Shimojima1, Noriko Sangu1, Yuta Komoike2, Atsushi Ishii3,
Shinpei Abe4, Shintaro Yamashita5, Katsumi Imai6, Tetsuo Kubota7, Tatsuya Fukasawa7,
Tohru Okanishi8, Hideo Enoki8, Takuya Tanabe9, Akira Saito10, Toru Furukawa1,
Toshiaki Shimizu4, Carol J. Milligan11, Steven Petrou11, Sarah E. Heron12, Leanne
M. Dibbens12, Shinichi Hirose3, Akihisa Okumura4

1 TokyoWomen’s Medical University Institute for Integrated Medical Sciences, Tokyo, Japan, 2 Department
of Hygiene and Public Health I, TokyoWomen’s Medical University, Tokyo, Japan, 3 Department of
Pediatrics, Fukuoka University Faculty of Medicine, Fukuoka, Japan, 4 Department of Pediatrics, Juntendo
University Faculty of Medicine, Tokyo, Japan, 5 Department of Pediatrics, Juntendo Nerima Hospital, Tokyo,
Japan, 6 National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka,
Japan, 7 Department of Pediatrics, Anjo Kosei Hospital, Anjo, Japan, 8 Department of Child Neurology,
Seirei Hamamatsu General Hospital, Hamamatsu, Japan, 9 Tanabe Monbayashi Child Clinic, Hirakata,
Japan, 10 StaGen Co., Ltd., Tokyo, Japan, 11 Florey Neuroscience Institute, Melbourne Brain Centre, The
University of Melbourne, Melbourne, Victoria, Australia, 12 Epilepsy Research Program, School of
Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia

* yamamoto.toshiyuki@twmu.ac.jp

Abstract
Nucleotide alterations in the gene encoding proline-rich transmembrane protein 2 (PRRT2)
have been identified in most patients with benign partial epilepsies in infancy (BPEI)/benign

familial infantile epilepsy (BFIE). However, not all patients harbor these PRRT2mutations,

indicating the involvement of genes other than PRRT2. In this study, we performed whole

exome sequencing analysis for a large family affected with PRRT2-unrelated BPEI. We

identified a non-synonymous single nucleotide variation (SNV) in the voltage-sensitive chlo-

ride channel 6 gene (CLCN6). A cohort study of 48 BPEI patients without PRRT2mutations

revealed a different CLCN6 SNV in a patient, his sibling and his father who had a history of

febrile seizures (FS) but not BPEI. Another study of 48 patients with FS identified an addi-

tional SNV in CLCN6. Chloride channels (CLCs) are involved in a multitude of physiologic

processes and some members of the CLC family have been linked to inherited diseases.

However, a phenotypic correlation has not been confirmed for CLCN6. Although we could

not detect significant biological effects linked to the identified CLCN6 SNVs, further studies

should investigate potential CLCN6 variants that may underlie the genetic susceptibility to

convulsive disorders.
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Introduction
Benign partial epilepsy in infancy (BPEI) is an epileptic syndrome described by Watanabe and
Okumura [1]. BPEI is analogous to benign familial infantile epilepsy (BFIE) according to the
revised terminology for organization of seizures and epilepsies [2]. The clinical features of
BPEI include the onset of epilepsy during 3 to 10 months of age, clustering seizures, absence of
abnormalities in electroencephalogram (EEG) or neuroimaging, favorable outcome of seizure
control, and normal neurodevelopment [3]. Additionally, about 40% affected children have a
family history of BPEI [3]. Some BPEI patients demonstrate paroxysmal kinesigenic dyskinesia
(PKD), suggesting an overlap between BPEI and infantile convulsions and choreoathetosis syn-
drome (ICCA). We have also shown that approximately 10% children with BPEI experience
convulsions associated with mild gastroenteritis [3].

Recently, Chen et al. (2011) identified mutations in the gene encoding proline-rich trans-
membrane protein 2 (PRRT2) by whole exome sequencing analysis of eight Chinese families af-
fected by autosomal-dominant PKD [4]. Subsequently, Heron et al. (2012) detected five
different PRRT2mutations in 14 of 17 families affected by BPEI and in five of six families af-
fected by ICCA [5]. These findings indicate that PRRT2 is one of the major genes related to
BPEI/BFIE and ICCA. However, not all BPEI patients harbor PRRT2mutations. In our study,
mutated PRRT2 was detected in about half of the Japanese BPEI patients, indicating the exis-
tence of other BPEI genes in the Japanese population.

In this study, we performed genomic analyses to identify additional genes involved in
BPEI development.

Materials and Methods
This study was approved by the ethical committee of TokyoWomen’s Medical University (regis-
tration #206). Written informed consent was obtained from all patients or their legal guardians.

Subjects
Blood samples and clinical information were collected on patients afflicted with BPEI, convul-
sions with mild gastroenteritis, and febrile seizures (FS). We defined BPEI as epilepsy meeting
all of the following conditions: (A) clinical diagnosis of focal seizures and/or secondary general-
ized seizures; (B) normal psychomotor development and neurological findings prior to seizure
onset; (C) normal interictal EEG; (D) normal neuroimaging findings; and (E) seizure onset at
3–12 months of age [3,6]. All samples from patients with BPEI have been previously analyzed
by nucleotide sequencing of PRRT2 coding regions [7]. Patients’ clinical histories, with regard
to seizure/convulsion episodes, were based on interviews of family members. FS definition was
based on at least one seizure incident associated with pyrexia over 38°C.

Whole exome sequencing
Whole exome sequencing was performed for a Japanese family covering three generations
(Family 1) using the Agilent SureSelect Human All Exon Capture kit (Agilent Technologies,
Santa Clara, CA) and pair-end sequencing on a SOLiD3 system (Life Technologies, Foster
City, CA), as previously described [8]. Genomic DNA was isolated from blood samples of Fam-
ily 1 members. Extracted results of the affected members of Family 1 (I-1, II-2, II-3, and III-1)
were compared with that of the BPEI-unaffected member (II-4), used as a negative control
(Fig. 1).

For prioritization, we focused only on non-synonymous variants, splice acceptor and donor
site mutations, and frameshift insertion/deletions (indel) (S1 Fig.). We excluded the candidate
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variants that were located in segmental duplication regions and listed in the 1000 Genomes
Project (http://www.1000genomes.org/) and dbSNP 132 (http://www.ncbi.nlm.nih.gov/
projects/SNP/). Because we assumed an autosomal dominant trait in Family 1, the variants
shared by all the affected family members but not detected in the unaffected member were se-
lected. Then, select non-synonymous variants were tested for mutational effects using amino
acid substitution prediction tools, PolyPhen-2 [9] (http://genetics.bwh.harvard.edu/pph2/) and
SIFT [10] (http://sift.jcvi.org/). Extracted variants were finally evaluated by Sanger sequencing
as described elsewhere [11] to determine whether they segregated with the disease in
this family.

Candidate gene validation
After selecting the candidate gene with a possible relationship to BPEI, we performed a cohort
study to identify nucleotide alterations in the gene. Cohort 1 included 48 BPEI patients nega-
tive for PRRT2mutations and six children with a history of convulsions associated with mild
gastroenteritis. Cohort 2 consisted of 48 unrelated patients with FS. All coding exons of CLCN6
were analyzed by standard Sanger sequencing. Primer information is available in S1 Table.
One hundred samples from healthy Japanese individuals were also used. Statistical analysis was
performed using Fisher’s exact test.

Cell biological analysis
To confirm the pathological significance of the non-synonymous single nucleotide variants
(SNVs) identified in this study, we compared the expression patterns and biological functions
of the identified SNV-containing CLCN6 with those of wild type CLCN6 in COS-1 cells trans-
fected with the respective expression plasmids. For this purpose, we constructed a plasmid en-
coding human wild type CLCN6 complementary DNA (cDNA) and introduced two different
SNVs (G250S and R319Q) into it.

Human Brain Total RNA purchased from Clontech (#636530; Mountain View, CA) was
reverse-transcribed to cDNA using the SuperScript VILO cDNA Synthesis Kit (Life Technolo-
gies) according to the manufacturer’s instruction. Then, CLCN6 transcripts were amplified by
PCR using the specific primers 5’-GGATCCGCCACCATGGCGGGGTGCAGGGGGTC-3’
and 5’-GGATCCTTAAACTCGCCAAAGTTCAG-3’, and the amplicons were cloned into the
pGEM-T vector (Promega, Madison, WI). Twenty clones were established and genotyped by
Sanger sequencing using T7 and Sp6 primers. Transcript variant 1–3 was selected and its full-
length cDNA was subcloned into the pFLAG-CMVTM-2 expression vector containing the

Fig 1. Family trees of three families harboringCLCN6 variants. CLCN6 variant-positive members are
presented as (m+), andCLCN6 variant-negative members are presented as (m-). Arrows indicate the
proband in the family.

doi:10.1371/journal.pone.0118946.g001
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promoter-regulatory region of human cytomegalovirus upstream of the FLAG epitope (E7398;
Sigma-Aldrich, St. Louis, MO, USA). Because R319Q is located at the CLCN6 3’-terminus, we
used a 5’-UTR fusion of FLAG. Finally, the CLCN6 transcript variant 1–3 mutants carrying
G250S and R319Q were created using the KOD-Plus-Mutagenesis Kit (SMK-101; TOYOBO,
Osaka, Japan). The expression plasmids encoding either wild type CLCN6 or CLCN6 transcript
variant 1–3 containing the two SNVs were introduced into COS-1 cells using Lipofectamine
2000 Reagent (Life Technologies). The subcellular localization of the recombinant proteins was
analyzed by immunofluorescence using antibodies against FLAG (F7425, Sigma-Aldrich), pro-
tein disulfide isomerase (PDI) as an ER marker (RL90; Abcam, Cambridge, UK), and DAPI
(P36931; Life Technologies). Cell lysates were analyzed by western blot using anti-FLAG anti-
body as previously described [11].

A patch clamp assay was performed to evaluate the physiological effects of the recombinant
proteins (Supplemental Information).

Results

Molecular analyses
Whole exome sequencing produced an average of 1.76×108 sequence reads aligned to the refer-
ence genome (85.6% of which was properly mapped) with a mean coverage of 68.7 (S2 Table).
The variants were filtered according to the flow chart shown in S1 Fig.; five SNVs and one in-
sertion in six genes were selected as the candidate genes (Table 1). Among them, an SNV in the
CLCN6 coding region, chr1:11,887,176G>A was of particular interest because of its functional
relevance and previously published linkage data [12]. Seven transcript variants are listed in the
UCSC genome browser database (https://genome.ucsc.edu/), and the selected SNV has been
identified in one of these transcript variants (transcript variant 1–3 [uc009vnf.2]: c.748G>A
[p.G250S]) (Fig. 2B, Table 2). Sanger sequencing identified this SNV (Fig. 3) in all affected
members of Family 1 members but not in the unaffected member (Fig. 1; II-4), confirming its
segregation with the disease. None of the Family 1 members had mutations in PRRT2. The
identified SNV was absent in 100 normal Japanese individuals.

Next, we performed a cohort study for CLCN6 in 48 BPEI patients without PRRT2muta-
tions and six patients who had convulsions associated with mild gastroenteritis. The Cohort 1
study identified a non-synonymous SNV in exon 10, c.956G>A (p.R319Q) in the members of
Family 2 (Figs. 1 and 3). This SNV affected all four coding transcript variants by non-synony-
mous alteration R>Q or E>K (Fig. 2B, Table 2). Among the 100 normal Japanese controls,
this SNV was identified in one individual. Although this SNV was not detected in the mother
with a history of unconfirmed infantile seizures (Fig. 1; II-5), it was found in the father who

Table 1. Candidate genes selected by filtering.

Chromosome Position* Region Gene name Function Reference Alteration PolyPhen2 SIFT

chr1 11,887,176 exon CLCN6 non-synonymous SNV G A 0.619445 0.02

chr9 140,069,578 exon ANAPC2 non-synonymous SNV A G 0.999 0

chr11 102,738,797 exon MMP12 frameshift insertion - T NA NA

chr12 6,952,360 exon GNB3 non-synonymous SNV G T 0.999 0

chr17 74,276,523 exon QRICH2 non-synonymous SNV T C 0.98 0

chr22 50,927,689 exon MIOX non-synonymous SNV G A 1 0

*, genomic positions are referred to build19; SNV, single nucleotide variation; NA, not applicable

doi:10.1371/journal.pone.0118946.t001
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had FS, suggesting a possible linkage between CLCN6 and FS. The Cohort 2 study of 48 unre-
lated FS patients identified another non-synonymous SNV, c.1159G>A (p.V387M) in exon 3
among Family 3 members. Although this SNV was not identified in 100 normal Japanese indi-
viduals, it is included in dbSNP build 138 as rs201349073, with an allele frequency of 0.092%
(2/2179).

Thus, the incidence of CLCN6 SNVs was 3% (3/102) in patients with BPEI and/or FS, which
was higher than that in normal controls (1/100). However, statistical analysis by Fisher’s exact
test showed a p-value of 0.25, which did not suggest a significant difference.

Mutagenesis assay
Among the 20 clones produced by subcloning of the reverse transcription-PCR amplicons, one
had sequence corresponding to that of transcript variant 1–3. The expression of FLAG-tagged
CLCN6 was successfully confirmed in the transfected cells (Fig. 4A), where it was predomi-
nantly co-localized with PDI in the endoplasmic reticulum (ER). However, no differences in
subcellular localization were detected between the wild type and mutants (Fig. 4A), and no dif-
ferences in expression levels were observed by western blot (Fig. 4B). Patch-clamp analysis too

Fig 2. Exon usage and location ofCLCN6 transcript variants. (A) Exon usage of four coding transcript
variants. (B) Schematic representation of the locations of the SNVs identified in this study for eachCLCN6
transcript variant. Two exon-intron boundaries are highlighted to clarify the complicated exon usage in
the region.

doi:10.1371/journal.pone.0118946.g002
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did not reveal any significant functional difference between the wild type and mutant variants
(S2 Fig.).

Clinical information
In Family 1 (Fig. 1), the proband (III-1) was a girl who was first presented with unprovoked sei-
zures at the age of 8 months and was subsequently diagnosed with BPEI. Her mother (II-2),

Table 2. CLCN6 transcript variants and identified variants in this study.

Transcript
variants

RefSeq
annotation
number

UCSC
annotation
number

Genome position Length
of
amino
acid

Coding
exon
counts

Type
of
RNA

SNVs identified in this study

1st SNV 2nd SNV 3rd SNV

Transcript
variant 1–1

NM_001286 uc001ate.5 chr1:11,866,153–11,903,201 870 23 mRNA c.738G>A
(p.A246A)

c.946G>A
(p.E316K)

c.1159G>A
(p.V387M)

Transcript
variant 1–2

NM_001286 uc009vnh.2 chr1:11,866,153–11,889,379 354 12 mRNA c.738G>A
(p.A246A)

c.946G>A
(p.E316K)

NA

Transcript
variant 1–3

NM_001286 uc009vnf.2 chr1:11,866,153–11,888,276 321 11 mRNA c.748G>A
(p.G250S)

c.956G>A
(p.R319Q)

NA

Transcript
variant 2

NM_001256959 uc010oau.3 chr1:11,866,153–11,903,201 848 22 mRNA c.672G>A
(p.A224A)

c.880G>A
(p.E294K)

NA

Transcript
variant 3–1

NR_046428 uc010oat.3 chr1:11,866,153–11,903,201 260 23 non-
coding

NI NI NI

Transcript
variant 3–2

NR_046428 uc009vng.2 chr1:11,866,153–11,888,276 309 11 non-
coding

NI NI NI

Transcript
variant 3–3

NR_046428 uc009vne.2 chr1:11,866,153–11,876,844 85 3 non-
coding

NI NI NI

SNV, single nucleotide variant; NA, not affected; NI, not indicated

doi:10.1371/journal.pone.0118946.t002

Fig 3. Electropherograms of the identifiedCLCN6 variants confirmed by Sanger sequencing. Identified
variants are shown in red.

doi:10.1371/journal.pone.0118946.g003
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maternal aunt (II-3), and maternal grandfather (I-1) had a history of infantile seizures, but the
other aunt (II-4) had no seizure history. The proband (III-2) of Family 2 was a girl diagnosed
with BPEI (Fig. 1). Her elder brother (III-1) also had BPEI, while her father (II-2) had experi-
enced one simple FS. The detailed case histories are available in the S1 Supporting Information.

Discussion
In this study, whole exome sequencing for a three-generation family with PRRT2mutation-
negative BPEI showed six SNVs: five non-synonymous alterations and one frameshift change
in six genes (Table 1). Among them, CLCN6 located on 1p36.22 was considered the most
promising candidate based on previous findings suggesting a linkage between BFIE and the
1p36.12-p35.1 locus [12]. CLCN6 belongs to a family of chloride channels (CLCs) involved in a
multitude of physiologic processes ranging from basal cellular functions such as cell volume
control and acidification of intracellular vesicles to more specialized mechanisms [13], includ-
ing regulation of electrical excitability, transepithelial transport, electroneutrality, and ionic ho-
meostasis [14]. In mammals, the CLC family comprises nine members that differ in
biophysical properties, cellular compartmentalization, and tissue distribution [15]. Among

Fig 4. In vitro functional evaluation of SNVs effects. (A) Immunofluorescence staining of COS1 cells
transfected with SNV-harboring CLCN6 variants. Protein disulfide isomerase (PDI) is used as marker of the
endoplasmic reticulum (ER). FLAG-tagged CLCN6 is merged with PDI, indicating CLCN6 localization in the
ER. (B) Western blotting analysis of cell lysates shows no difference in CLCN6 expression.

doi:10.1371/journal.pone.0118946.g004
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them, four members have been associated with inherited disorders. The mutations in the volt-
age-sensitive chloride channel genes CNCNKB, CLCN1, CLCN5, and CLCN7 have been linked
to Bartter syndrome, myotonia congenita, Dent disease, and osteopetrosis, respectively
[16,17,18,19]. Furthermore, variations in CLCN1, CLCN2, and CLCN4 have been reported in
patients with idiopathic epilepsy and epileptic encephalopathy [20,21,22,23]; however, the as-
sociation of some variants with disease pathogenesis is still controversial [24].

Although CLCN6 and CLCN7 form a distinct branch of the CLC gene family, sharing 45%
sequence homology with each other [15], CLCN6 is the least well-characterized mammalian
CLC protein [25]. CLCN6mRNA is expressed in many tissues, including the brain and kidney
[15], and CLCN6 has been reported to co-localize with the markers of ER or endosomes
[26,27]. Knock-out of CLCN6 in mice did not result in increased lethality or produce a strong
phenotype [25], but moderate neuronal pathology, resembling that in mild forms of human
neuronal ceroid lipofuscinosis (NCL), has been observed [28]. However, genetic analysis of 75
NCL patients identified only two heterozygous mutations in CLCN6 [25].

On the other hand, a genome-wide association study (GWAS), conducted to identify poten-
tial genetic modifiers of cardiac hormonal response, showed a link between the N-terminal sig-
nal peptide of pro-B-type natriuretic peptide (NT-proBNP) and CLCN6 variants. However, it
did not exclude the possibility that the identified CLCN6 variants may simply be a marker for
unobserved causal variants in the neighboring gene locus [29]. Thus, phenotypic correlation of
CLCN6 with human diseases has not been confirmed.

In this study, we tested the hypothesis that CLCN6 is another gene responsible for BPEI
onset by analyzing samples from BPEI patients without PRRT2mutations by whole-exome se-
quencing. Because both CLCN6 SNVs identified in Families 1 and 2 commonly affected tran-
script variant 1–3, the functional relevance of these SNVs was analyzed in vitro; however, no
definite difference was observed between the cells expressing wild type and mutant variants.
Therefore, we do not have sufficient evidence to suggest that these CLCN6 SNVs have a signifi-
cant pathological impact.

The SNV identified in Family 2 was shared with the parent who had FS, but not with the
other parent who had infantile seizures. There is no contradiction in this finding, given that
15% of BPEI patients have FS [30]. The SNV identified in Family 2 was also detected in one of
the 100 control samples (1%; 1/100). We subsequently examined a relationship between
CLCN6 SNVs and FS in a cohort of FS patients and identified the third SNV in a patient who
had a single FS attack. The third SNV identified in Family 3 was listed in the SNV database but
with a very low incidence of 0.1%. Overall, the data indicate that the incidence of CLCN6 SNVs
in patients with BPEI and/or FS was 3% (3/102), which was not significantly higher than in the
general population (1%). Because FS is a relatively common condition, occurring in 2–5% of
infants in Europe and North America and in 6–9% of infants in Japan [31], the existence of the
same CLCN6 SNVs in the general population should not be a reason of discounting the rela-
tionship between CLCN6 SNVs and BPEI and/or FS.

There are many mutations in the ion-channel genes that show low penetrance in segrega-
tion [32]. Indeed, PRRT2mutations are often shared with non-phenotypic carriers in families
with a history of BPEI [7], suggesting that SNV-related clinical effects would not be significant
in episodic disorders. Given that, in this study, CLCN6 SNVs have been identified in patients
with BPEI or FS, such SNVs may not be BPEI-specific but could have a milder association with
convulsive disorders including BPEI and FS. The second SNV identified in Family 2 members
with or without BPEI/FS produces a non-synonymous substitution in all CLCN6 transcript
variants; however, the first SNV identified in Family 1 members with BPEI results in a non-
synonymous substitution only for transcript variant 1–3. Meanwhile, the third SNV identified
in Family 3 members with FS produces a non-synonymous substitution only for the other

CLCN6 Variations in Convulsive Disorders

PLOS ONE | DOI:10.1371/journal.pone.0118946 March 20, 2015 8 / 11



transcript variants. These results suggest that SNVs in different CLCN6 transcript variants may
be related to distinct phenotypes (i.e., BPEI and/or FS). Alternatively, it may be possible that
the observed variants generally shift genetic predisposition toward seizures.

This study was aimed at identifying another gene responsible for BPEI, but SNVs in CLCN6
were found in only a small proportion of BPEI patients. Thus, the data are inconclusive. Recent
massive parallel sequencing for patients with sporadic epilepsy of unknown etiology identified
SNVs in the chloride channel genes, CLCN1 and CLCN2 [33], suggesting an association of
CLCs with epilepsy. In that study, CLCN6 variants made up a small proportion of the patients
but were not present in the controls (detailed results unavailable). Therefore, there is still a pos-
sibility that CLCN6 variants are related to genetic susceptibility for convulsive disorders such
as BPEI and FS. Further investigation is required to test this possibility.

Supporting Information
S1 Fig. Filtering steps in the selection of the variants extracted by whole exome sequencing.
(PDF)

S2 Fig. Wild-type and mutant hCLCN6 currents recorded in Xenopus oocytes. (A) Averaged
current-voltage relationships for the oocytes injected with wild-type (WT, solid line; n = 10),
G250S (dotted line; n = 8), or R318Q (dashed line; n = 6) CLCN6 cDNA or water (H2O dot-
dash line; n = 8). Oocytes were held at-20mV and stepped from-100mV to 100 mV for 800
msec every 10 sec in 20 mV increments. (B) Average peak currents at 100 mV for WT (n = 10),
G250S (n = 8), R319Q (n = 6), and H2O (n = 8).
(PDF)

S1 Supporting Information. Supplemental information. Supplemental methods and results
are included.
(PDF)

S1 Table. Primers used for CLCN6 Sanger sequencing.
(PDF)

S2 Table. The result of the mapping of whole-exome sequencing data for family 1.
(PDF)
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