
METHODOLOGY ARTICLE Open Access

A machine learning model to determine
the accuracy of variant calls in capture-
based next generation sequencing
Jeroen van den Akker†, Gilad Mishne†, Anjali D. Zimmer and Alicia Y. Zhou*

Abstract

Background: Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The
quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth,
and mapping accuracy. With recent advances in NGS technology and software tools, the majority of variants called
using NGS alone are in fact accurate and reliable. However, a small subset of difficult-to-call variants that still do
require orthogonal confirmation exist. For this reason, many clinical laboratories confirm NGS results using orthogonal
technologies such as Sanger sequencing. Here, we report the development of a deterministic machine-learning-based
model to differentiate between these two types of variant calls: those that do not require confirmation using an
orthogonal technology (high confidence), and those that require additional quality testing (low confidence). This
approach allows reliable NGS-based calling in a clinical setting by identifying the few important variant calls that
require orthogonal confirmation.

Results: We developed and tested the model using a set of 7179 variants identified by a targeted NGS panel and
re-tested by Sanger sequencing. The model incorporated several signals of sequence characteristics and call quality
to determine if a variant was identified at high or low confidence. The model was tuned to eliminate false positives,
defined as variants that were called by NGS but not confirmed by Sanger sequencing. The model achieved very high
accuracy: 99.4% (95% confidence interval: +/− 0.03%). It categorized 92.2% (6622/7179) of the variants as high
confidence, and 100% of these were confirmed to be present by Sanger sequencing. Among the variants that were
categorized as low confidence, defined as NGS calls of low quality that are likely to be artifacts, 92.1% (513/557) were
found to be not present by Sanger sequencing.

Conclusions: This work shows that NGS data contains sufficient characteristics for a machine-learning-based model to
differentiate low from high confidence variants. Additionally, it reveals the importance of incorporating site-specific
features as well as variant call features in such a model.

Keywords: Next generation sequencing, Variant calling, Variant quality, Variant confidence, Secondary confirmation,
Orthogonal confirmation, Machine learning, Sanger sequencing

Background
Recent advances in next generation sequencing (NGS)
have led to a rapid increase in the development and
utilization of NGS-based clinical tests. Previously, clin-
ical genetic tests used capillary-based Sanger sequencing,
and this technology has been considered the gold-
standard for decades. Therefore, as clinical labs

transitioned to NGS assays, it became standard to con-
firm variants identified by NGS with a secondary, or-
thogonal method such as Sanger sequencing [1, 2].
However, the field does not currently agree on the ac-
curacy and reliability of NGS assays and the necessity of
orthogonal confirmation [3], with some studies advocat-
ing that orthogonal confirmation is unnecessary and po-
tentially detrimental [4, 5], some advocating that
confirmation is always necessary [6, 7], and others sug-
gesting that confirmation is required for some but not
all variants [8, 9].
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The data generated by a capture enrichment NGS
assay can vary greatly across parameters such as read
depth, sequencing quality, and mapping accuracy. Subse-
quently, the confidence at which variants can be identi-
fied varies widely. For most variants the evidence
supporting a call is very strong, and it is therefore highly
unlikely that an orthogonal technology would contradict
the NGS call [9]. However, some variants in low quality
or difficult to sequence regions are more uncertain and
should require confirmation. Developing a robust and
reliable method for differentiating between these high
and low confidence variant calls is essential to create an
NGS assay with the highest possible accuracy for clinical
testing. Such a method could pinpoint the variants
which require orthogonal confirmation, ensuring that
those variants are reported correctly. However, recent
work has shown that the use of a single value to estimate
the quality of a call cannot reliably eliminate the need
for confirmation [8]. Other multi-parameter algorithms,
such as Variant Quality Score Recalibration, have been
developed to assay the quality of NGS variant calls but
are designed for whole exome sequencing and whole
genome sequencing-sized data sets, and have not been
optimized for smaller targeted panels [10].
Here, we present how a machine learning model can

reliably identify variants that require additional quality
testing. This model analyzes variants called in a capture
enrichment-based NGS assay and differentiates between
high confidence variants that do not require further or-
thogonal confirmation and low confidence variants that
do. The model uses machine learning to combine mul-
tiple features including reference sequence characteris-
tics and variant call quality signals to reliably identify
variant calls of high confidence, which are therefore ex-
pected to be confirmed as present using an orthogonal
technology such as Sanger sequencing. This model was
tuned to eliminate false positives, defined as variants er-
roneously identified as high quality variants that are
found to be not present during orthogonal confirmation,
a highly undesirable outcome that could result in falsely
reporting an incorrect clinical result. The model was
used to analyze a set of 7179 variants identified by NGS
and re-tested by Sanger sequencing. It categorized 92.2%
of the variants as high confidence, and 100% of these
were confirmed to be present by Sanger sequencing.
Together these results show that while most NGS calls
do not require orthogonal confirmation, there still exists
a small subset that do, and a machine learning model
can reliably identify those important variants.

Methods
NGS variant calling
Here, we analyze a set of 7179 variant calls identified by
a targeted NGS assay across 6074 samples. The variants

include single nucleotide variants (SNVs) and insertions/
deletions (indels) ≤ 25 base pairs identified in a 30-gene
panel test for hereditary cancer risk adapted from [11].
The 30 genes in this assay were selected for their associ-
ation with an elevated risk for breast, ovarian, colorectal,
melanoma, pancreatic, prostate, uterine, and stomach
cancer. The genes included are listed in (Additional file 1:
Table S1). The majority of these genes are assessed for
variants within all coding exons (+/− 20 bp flanking each
exon); exceptions are noted in the table. Additionally,
non-canonical splice regions are included. Target regions
were enriched by Agilent SureSelect (v1.7), and sequen-
cing was performed by Illumina NextSeq 500 (paired-
end 150 bp, High Output kit). The bioinformatics
analysis pipeline aligned reads against GRCh37.p12 with
the Burrows-Wheeler Aligner (BWA-MEM) [12] and
called variants using the GATK3 HaplotypeCaller mod-
ule [10, 13, 14]. Coverage requirements were a minimum
of 20 unique reads (20X) for each base of the reportable
range, and at least 50X for 99% for the reportable range.
Median coverage was in the 200-300X range. All vari-
ants included in this analysis were classified according to
ACMG guidelines [15] as variant of uncertain signifi-
cance (VUS), likely pathogenic, or pathogenic. The vari-
ants were identified in 6074 non-consecutive clinical
samples from individuals that underwent genetic testing
at Color Genomics (Burlingame, CA, USA). DNA was
extracted from blood or saliva samples collected using
the Oragene DX 510 saliva collection device (DNA
Genotek, Ottawa, ON, Canada). Library preparation was
performed using Kapa Biosystems HyperPlus reagents
(Wilmington, MA, USA). Orthogonal confirmation of
variants identified by NGS was performed by Sanger
sequencing. Variants identified as present by NGS but
not present by Sanger sequencing were tested by Sanger
sequencing on at least two distinct amplicons.

Model development
For each variant (listed in Additional file 2: Table S2),
homopolymer length and GC content were calculated
based on the reference sequence. Next, for each carrier
of a variant, multiple NGS quality signals were collected.
All features are summarized in Table 1, including some
features used in published variant callers (e.g. [16]). The
features belong to one of two broad categories: those
providing information about the genomic position in
which the call was made (such as GC content and pres-
ence of nearby homopolymers), and those directly
reporting the expected quality of the call (such as the
quality scores estimated by the caller). A subset of the
data (70%) was then used to train a logistic regression
model against a binary target as to whether the given
variant called by NGS had subsequently been confirmed
as present using Sanger sequencing. The outcome is a
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probabilistic estimation of the likelihood of orthogonal
confirmation of the NGS call. The model is deterministic
in that for the same input it will always produce the same
prediction. Subsequently, 15% of the dataset was used for
development, and 15% was used for testing the model.
In this context, a false positive prediction is a variant

detected by NGS that was predicted to be high-quality
but was not detected by Sanger sequencing. A false
negative prediction is an NGS call that was identified as
low confidence, but for which the Sanger sequencing
identified the variant as present. With the task at hand,
false positive predictions are significantly more costly
than false negative predictions: while a false negative,
which is a truly high confidence call being incorrectly
identified as low confidence, introduces some delay to
completing the analysis due to potentially unnecessary
Sanger sequencing, a false positive, which is a low confi-
dence call being incorrectly identified as high confi-
dence, can lead to an incorrect result reported if Sanger
sequencing were not used to test and remove the low
confidence NGS variant. We implemented this model in
a clinical laboratory setting, and therefore biased the
model to prefer the consequence of a false negative
(performing more Sanger sequencing than is potentially
necessary) to the consequence of a false positive
(clinically reporting a variant that does not exist). As
such, the model was tuned to eliminate false positive
predictions. Further details about the implementation of
this machine learning model in a clinical laboratory are
included in Additional file 3, including a discussion of
concept drift and investigation of discordant cases by
trained experts.

Results
Model performance
We developed and trained a machine learning model to
differentiate between high confidence NGS calls that do
not require orthogonal confirmation and low confidence
NGS calls that do require confirmation. Due to the
strong correlation between the features used for the
model and the quality of an NGS call, the model
achieves very high accuracy: 99.4% (95% confidence
interval: +/− 0.03%). The sensitivity and specificity of the
model plotted in Fig. 1 show an area under the curve
(AUC) of 0.999. As with any model that outputs a prob-
abilistic score, a threshold can be set on the model’s pre-
diction to trade-off between true positive prediction rate
and false positive prediction rate: a high threshold in-
creases sensitivity at the cost of specificity, and vice
versa. Due to the high cost of false positive predictions,
we set a strict threshold to achieve a 100% true positive
prediction rate: any NGS call that the model predicts as
high confidence is indeed confirmed, but some of the
NGS calls that the model indicates as low confidence
(requiring orthogonal confirmation) are confirmed
present too. The data presented in Fig. 1 represents the
model performance on the 15% of the data held-out for
model testing.
The results of a 10-fold cross-validation of the model

on all data are shown in Table 2. We performed orthog-
onal confirmation by Sanger sequencing for all variants
in the data set, and compared the outcome of Sanger se-
quencing to the model’s prediction. Of all 7179 variants
we analyzed, the model predicted 6622 (92.2%) to be of
high confidence, and 100% of those were confirmed to

Table 1 Features used in the logistic regression model

Feature Description Value range: 5th–95th percentile (median)

DP NGS read depth at the variant position. 78–433 (222)

AD Number of reads that support the variant call. 25–393 (110)

AF Fraction of reads that support the variant call, i.e. AD / DP. 0.13–0.56 (0.49)

GC @ 5, 20, 50 Fraction of GC content in the 5, 20, and 50 bases
around the variant position.

0.18–0.73 (0.45)
0.29–0.69 (0.44)
0.30–0.68 (0.42)

MQ Root Mean Square of the mapping quality of the call. 59.3–60 (60)

GQ Genotype Quality of the call. 50–99 (99)

WHR Weighted Homopolymer Rate in a window of 20 bases around
the variant position: the sum of squares of the homopolymer lengths,
divided by the number of homopolymers.

1.6–4.3 (2.4)

HPL-D Distance to the longest homopolymer within 20 bases from the call position. 0–15 (5)

HPL-L Length of the longest homopolymer within 20 bases from the call position. 2–6 (4)

QUAL Quality score assigned by the GATK HaplotypeCaller to the call. 142–5448 (2564)

QD QUAL, normalized by DP. 1.6–16.9 (11.3)

FS Phred-scaled p-value using Fisher’s exact test, to detect strand bias. 0–9.2 (1.7)

Names and descriptions of features incorporated into the model. For each feature, the median and range as the 5th–95th percentile of values within the dataset
is reported
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be true positives. The model predicted 557 variants to
be of low confidence, and 92.1% of those were true nega-
tives (513/557). Only 44 of the NGS variants called at
low confidence were confirmed by Sanger sequencing (0.
6% of all 7179 variants). Previous methodologies have
been reported to encounter difficulties with indels [8]. In
contrast, our model was able to effectively differentiate
high and low confidence indels: 100% (1138 of 1138) of
high confidence indels were true positive predictions,
and 1.9% (4 of 212) of low confidence indels were false
negative predictions (Additional file 2). Lastly, only 7.8%
(557 of all 7179 variants) were classified as low confi-
dence, indicating that most variants can be called reli-
ably by NGS alone.

Key model parameters
Previous studies have attempted to differentiate between
true and false NGS calls, employing various protocols
and parameters to make this distinction [8, 9]. Our
model incorporated the parameters listed in Table 1 to
differentiate between high and low confidence variants.
We investigated the influence of some key parameters to
elucidate how our multi-featured model can accurately
assign a confidence level to a variant.
Some studies have used a single indicator of call qual-

ity, such a Phred quality score [8], to determine high
quality variants. We found that using the single param-
eter of call quality (QUAL, as assigned by the GATK
HaplotypeCaller) is not sufficient to segregate true

Fig. 1 Model Sensitivity. ROC curve plotting the true positive rate (sensitivity) against the false positive rate (specificity). The model threshold was
chosen to eliminate false positives (variants erroneously called as high-confidence, but were found to be not present by Sanger sequencing). This
resulted in a calculated area under the curve (AUC) of 0.99913

Table 2 Model performance

Present Not present

High confidence variant 6622 / 6622 (100.0%)
True positive prediction

0 / 6622 (0%)
False positive prediction

Low confidence variant 44 / 557 (7.9%)
False negative prediction

513 / 557 (92.1%)
True negative prediction

Results of a 10-fold cross-validation of the model on all 7179 variants. Variants called in the NGS pipeline were tested by Sanger sequencing. Those that were
confirmed by Sanger sequencing are reported here as “Present”, and those that did not confirm are reported here as “Not Present”. All the variants were evaluated
by the machine learning model and categorized as a “High confidence variant” or a “Low confidence variant”
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positives from true negatives with confidence. Figure 2a
shows the distribution of call quality, with the variants
confirmed present by Sanger sequencing indicated in
green and the variants that did not confirm in red. As
shown in the zoomed-in second panel of Fig. 2a, there
were several variants in our data set with a relatively
high QUAL score (> 1500) that did not confirm (colored
in red). In order to eliminate false positives, all variants
with a score below 2000 would require confirmation, ne-
cessitating orthogonal confirmation of 32% of variants
(2338/7179).
In our analysis, the most influential parameter was

allele frequency (AF), or the fraction of reads that sup-
port the call, calculated by dividing the number of reads
that support the call by the total read depth at the pos-
ition (Fig. 2b). While AF does a relatively good job of
segregating high and low confidence alleles, the
introduction of additional parameters greatly improves
the performance of the model, as can be seen in Fig. 2b,

where the two most influential parameters, call quality
and allele frequency, are combined.
Normalizing QUAL by read depth (QD =QUAL/DP)

and inclusion of the homopolymer rate surrounding the
variant (WHR) results in further segregation of confirmed
and not confirmed variants (Fig. 2c). In its entirety, the
model incorporates all parameters listed in Table 1. Mater-
ial improvements were achieved with the relatively minor
cost of incorporating these additional features, which are
standardly collected by our bioinformatics pipeline.

Model performance on challenging variants
As shown in Fig. 2b, allele fraction is a key feature that
can be used to distinguish between high and low confi-
dence variants. However, by incorporating many fea-
tures, the model still has the ability to classify low
fraction variants as high confidence. For example, Fig. 3
shows a variant with an allele fraction of ~ 25% in ATM
(c.6491A > G) that was confirmed to be at a low fraction

a

c

b

Fig. 2 Key model parameters. Predictive power of call-dependent and site-dependent signals. All instances of the data set are shown; instances
marked in green are NGS calls that were confirmed with Sanger, and instances marked in red are cases that did not confirm. a Call quality (QUAL),
a single metric of call quality as measured by GATK HaplotypeCaller. Left panel: all variants. Right panel: zoom-in of variants which did not
confirm, showing that some not confirmed variants have relatively high QUAL scores. b The values of the two strongest features associated with
the call: allele frequency (AF) and QUAL. c The values of QUAL normalized by read depth (QD), AF, and weighted homopolymer rate (WHR)
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by Sanger sequencing (bottom panel). This variant was
given a relatively low call quality score by GATK
(QUAL = 683.77). However, the high coverage in the re-
gion (DP = 175) and good quality of the site (balanced
GC content, no homopolymers, no strand bias) resulted
in the model correctly predicting this as a high confi-
dence variant. This example highlights that including
site-specific features is important for good model per-
formance, especially for challenging variants.
In contrast, Fig. 4 shows an example of a variant that

the model determined to be of low confidence but which
was actually confirmed by Sanger sequencing. This variant
in MSH2 (c.942 + 3A > T) was challenging to detect due
to the presence of a long homopolymer and highlights the
necessity of orthogonal confirmation to ensure accurate
calls for low confidence, clinically-actionable variants.
Overall in the dataset, the rate of low confidence vari-

ants that were confirmed by Sanger sequencing was low

(7.9%), representing 0.6% of all variants. However, we
wanted to understand the reason for the low confidence
estimated by the model in these cases. Variants were
therefore annotated for repetitive elements and genomic
duplications (> 1000 bp and > 90% identity) using the
UCSC genome browser tracks for Repeatmasker and
Segmental Duplications respectively. In addition, vari-
ants attributed to the presence of processed pseudogenes
were flagged. We then examined the subset of variants
that the model predicts as low-quality (requiring con-
firmation) that were actually confirmed using Sanger se-
quencing (Table 3). A majority of these variants were
low fraction, called in substantially less than 30% of the
NGS reads and visible as lower peaks in Sanger chro-
matograms. Other common features of these variants
were those typically difficult for NGS sequencing, such
as having high or low GC content or being in close
proximity to long homopolymers.

Fig. 3 High confidence, low allele fraction variant. Example of a true positive prediction of a low allele fraction variant, ATM (c.6491A > G). Top:
NGS reads, visualized in IGV [18, 19] showing the variant was detected in reads of both directions. Bottom: Sanger sequencing chromatogram,
showing a detected allele fraction of ~ 25%
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Fig. 4 False negative prediction. MSH2 (c.942 + 3A > T), an example of a false negative prediction. Top: NGS reads, visualized in IGV. Note the
presence of the long homopolymer results in errors in sequencing and alignment. Bottom: Sanger sequencing chromatogram, showing the
presence of the variant

Table 3 Features of low confidence variants

Low Confidence Present (n = 44) Not Present (n = 513)

AF < 30% (37) AF≥ 30% (7) AF < 30% (505) AF≥ 30% (8)

Low coverage (20–30 reads) 0 2 15 2

Low GC content (GC20 < 0.25) 2 2 23 2

Low GC content (GC50 < 0.25) 1 0 5 0

High GC content (GC20 > 0.75) 1 0 206 1

High GC content (GC50 > 0.75) 0 0 35 1

Homopolymer (> = 10 within 20 bp) 0 3 15 7

Segmental duplication 16 4 67 0

Processed pseudogene 0 0 3 0

Repeatmasker 0 2 6 0

Other 17 2 246 0

Common features of variants classified by the model as low confidence. “Present” indicates that the variant was confirmed present by Sanger sequencing, and
“Not Present” indicates that the variant was not present by Sanger sequencing. The number of low confidence variants with AF (allele frequency) less than and
greater than or equal to 30% are reported in parentheses. Note that some of the categories are not mutually exclusive
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Discussion
The rise of NGS in genetic testing has lowered cost and
increased accessibility of testing. Several recent studies
have investigated the accuracy of variant calling in NGS
pipelines, and reconsidered the necessity of confirming
variants with an orthogonal technology. Here, we pre-
sented a machine-learning-based model that can differ-
entiate between high confidence variants that do not,
and low confidence variants that do, require orthogonal
confirmation.
We developed and tested our model on a set of 7179

variants identified in a capture-based assay that had been
classified as pathogenic, likely pathogenic, or variants of
uncertain significance. This set included low quality vari-
ants that are difficult to call in NGS data such as low
fraction variants. Nonetheless, our model was able to ac-
curately segregate high and low confidence variants for
not only SNVs, but also for the more challenging indels
[8]. Importantly, this model was able to achieve high ac-
curacy using data from a small 30-gene panel, in con-
trast to previous methods which require much larger
datasets [10]. Indeed, in our setting, we found that per-
formance of the model started converging after about
100 true negatives and 2000 true positives.
Low coverage variants, variants in regions of high

homology, and low fraction variants are usually classi-
fied by the model as low confidence variants that re-
quire confirmation. Here, we highlighted a variant in
MSH2 (c.942 + 3A > T) that the model identified as low
confidence, but which Sanger sequencing confirmed to
be present (Fig. 4). This variant has been previously re-
ported and discussed in the literature as a difficult vari-
ant for NGS assays. A recent report [5] suggested that
dedicated algorithms can reliably call such challenging
variants in NGS data. However, the results from this
study and others [6] support the necessity of Sanger
confirmation in such difficult-to-sequence regions, es-
pecially when relying on variant callers that have not
been optimized for such regions.
Though the model described here can be employed as

a useful tool for identifying low confidence variants, it
does have limitations that would hinder its use to evalu-
ate all variant types. Importantly, the model must be
trained on the types of variants that are to be analyzed.
If others were to adapt the techniques presented here,
we strongly recommend that they optimize the model
on a training set that closely matches the variants they
plan to analyze. In this work the model training set was
limited to small variants (≤25 bp) that are typically con-
firmed by Sanger orthogonal confirmations, and thus
was unable to assess variants that might be detected by
other methodologies such as alternative sequencing
technologies, MLPA, and array CGH. Additionally, while
the training set did include homozygous variants and

low fraction variants, these variants are technically chal-
lenging, relatively rare, and clinically interesting. There-
fore in our application of the model in a clinical setting,
we choose a conservative approach for these variants
and always orthogonally confirm homozygous variants,
low fraction variants (AF 0.1–0.3), and variants in re-
gions where a processed pseudogene was detected in the
same sample. Lastly, we developed the model with germ-
line variants only, and its applicability to somatic vari-
ants has not been tested.
The model presented here captures and evaluates the

potentially problematic features associated with a vari-
ant call and determines the likelihood that the variant
is truly present. Not surprisingly, low allele fraction,
GC content, and segmental duplications account for
most of these low confidence variants, as these genomic
regions are known to be difficult for NGS and lead to
inaccurate variant calling. This only reinforces the
importance of confirming variants in difficult regions,
despite recommendations by other groups that con-
firmation of NGS results is not necessary [4, 5]. Contin-
ued confirmation will build additional data that can be
used to evaluate and improve NGS variant calling for
low allele fraction variants and somatic variants. This
study and others [8, 9, 17] add to a growing body of
evidence that the majority of variants calls in NGS data
alone are accurate, and the practice of orthogonal con-
firmation for all variants may not continue to be stand-
ard in the field. As the limitations of NGS technology
are better studied and understood, appropriate safe-
guards can be enacted where necessary.

Conclusions
While the cost of NGS has dropped dramatically over
the past decade, including orthogonal confirmation of
all calls may be adding unnecessarily to the cost of gen-
etic testing. Most NGS calls are of high quality, and our
model classified 92% of the variants in this study as
high confidence variants. While just using one indicator
of call quality was not sufficient to make this distinc-
tion, the combination of many measures of call quality
allowed a machine learning model to make a clear dif-
ferentiation between high and low confidence variants.
The majority of low confidence variants had features
known to be problematic for capture-based NGS assays:
low allele fraction, segmental duplications, and aberrant
GC content. The model performed with high accuracy
on both SNVs and indels. Using this model to robustly
differentiate high and low confidence variants could re-
duce the burden of necessary orthogonal confirmations,
while identifying the few calls that do need to be con-
firmed to maintain the high quality required of a clin-
ical genetic test.
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Additional file 1: Table S1. Genes in panel. Genes tested in the 30-gene
NGS panel. Variants in genes indicated with an asterisk (*) were not
evaluated by the machine learning model because only large copy
number variants were evaluated in these genes. (XLSX 27 kb)

Additional file 2: Table S2. Variant Dataset. Characteristics of variants
used for model development and testing. (XLSX 844 kb)

Additional file 3: Supplemental Methods. Using the model in a
clinical laboratory setting. (DOCX 103 kb)
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