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We present a statistical finite element method for nonlinear, time-
dependent phenomena, illustrated in the context of nonlinear
internal waves (solitons). We take a Bayesian approach and lever-
age the finite element method to cast the statistical problem as a
nonlinear Gaussian state–space model, updating the solution, in
receipt of data, in a filtering framework. The method is applica-
ble to problems across science and engineering for which finite
element methods are appropriate. The Korteweg–de Vries equa-
tion for solitons is presented because it reflects the necessary
complexity while being suitably familiar and succinct for peda-
gogical purposes. We present two algorithms to implement this
method, based on the extended and ensemble Kalman filters,
and demonstrate effectiveness with a simulation study and a case
study with experimental data. The generality of our approach
is demonstrated in SI Appendix, where we present examples
from additional nonlinear, time-dependent partial differential
equations (Burgers equation, Kuramoto–Sivashinsky equation).

Bayesian calibration | finite element methods | model discrepancy

The central role of physically derived, nonlinear, time-
dependent partial differential equations (PDEs) in scientific

and engineering research is undisputed, as is the need for numer-
ical intervention in order to understand their behavior. The finite
element method (FEM) has emerged as the foremost strategy to
undergo this numerical intervention, yet when these discretized
solutions are compared with empirical evidence, elements of
model mismatch are revealed that require statistical formalisms
to be dealt with appropriately (1–3). To address this problem
of model misspecification, in this paper we introduce stochas-
tic forcing inside the PDE and update the FEM discretized PDE
solution with data in a filtering context.

Stochastic forcing is introduced through a random function
within the governing equations. This represents an unknown pro-
cess, which may have been omitted in the formulation of the
physical model. For an elliptic linear PDE with coefficients Λ,
this can be expressed as{

LΛu = f + ξθ, ξθ ∼GP(0,Cθ),

u := u(x ), f := f (x ), x ∈Ω⊂Rd .

The push forward of the Gaussian random field ξθ , with covari-
ance parameters θ, induces a probability measure over the space
of admissible solutions to the above. To embed this into a finite
element model, we start with the weak form

AΛ(u, v) = 〈f , v〉, +〈ξθ, v〉,

where AΛ(·, ·) is the bilinear form generated from LΛ and
〈·, ·〉 is the appropriate Hilbert space inner product. Discretizing
with finite elements u(x ) =

∑M
i=1 uiφi(x ), v(x ) =

∑M
i=1 viϕi(x )

yields the Gaussian measure over the solution FEM coefficients
u = (u1, u2, . . . , uM )∈RM :

p(u |Λ, θ) =N (A−1b, A−1G(θ)A−T),

where Aij =AΛ(φi ,ϕj ), bi = 〈f ,ϕi〉, and G(θ)ij = 〈φi ,Cθϕj 〉.
This defines a (finite-dimensional) prior distribution over the

FEM model, which represents all assumed knowledge before
observing data. The mean is the standard Galerkin solution, and
the covariance results from the action of the discretized PDE
operator on the covariance G(θ); further details are contained
in SI Appendix, section 1. This was first developed in ref. 4, and
we demonstrate the generality of such an approach by extending
it to nonlinear, time-dependent PDEs.

An area in which nonlinear and time-dependent problems
are ubiquitous is ocean dynamic processes, where essentially
all problems stem from a governing system of nonlinear, time-
dependent equations (e.g., the Navier–Stokes equations). The
ocean dynamics community has grown increasingly cognizant of
the importance of accurate uncertainty quantification (5, 6), with
many possible applications [e.g., rogue waves (7), turbulent flow
(8)] for our proposed methodology.

An example process is nonlinear internal waves (solitons),
which are observed as waves of depression or elevation along a
pycnocline in a density-stratified fluid and are of broad interest to
both the scientific and engineering communities (9–13). The clas-
sical mathematical model for solitons is the Korteweg–de Vries
(KdV) equation (14):{

ut +αuux +βuxxx + cux = 0,

u := u(x , t), x ∈ [0,L], t ∈ [0,T ],
[1]

where u is the pycnocline displacement. Coefficients α, β, and
c are determined by physical parameters. Eq. 1 is readily inter-
pretable: waves propagate at wave speed c, nonlinear steepening
results from uux , and dispersion is due to uxxx. Relative coeffi-
cient values determine the dominating regime, and waves can
vary from quasilinear to highly nonlinear.
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Despite KdV being well studied (15) and widely applied (16–
18), its relative simplicity makes it prone to model mismatch.
To compensate for this mismatch, we update the FEM dis-
cretized solution with observations in a filtering context. The
resulting statistical FEM (statFEM) is shown using simulated
and experimental data to
1) Approximate the data-generating process with a statistically

coherent uncertainty quantification.
2) Synthesize physics and data to give an interpretable posterior

distribution.
3) Utilize sparsely observed data to reconstruct observed phe-

nomena.
4) Enable the application of simpler physical models, updated

with observations.
For practitioners faced with data, we believe these benefits are of
importance, and we demonstrate the generality of our method in
SI Appendix with further examples. Code to replicate the analysis
is freely available online.

∗

A Nonlinear, Time-Evolving Statistical FEM
A Gaussian process (GP), ξθ , is introduced inside of the govern-
ing equations, which represent an unknown forcing process in
space and time, with time-varying parameters θ. For a general
nonlinear PDE, this is given by

ut +LΛu +FΛ(u) + ξθ = 0, ξθ ∼GP(0,Cθ), [2]

where LΛ and FΛ represent linear and nonlinear differential
operators, respectively, with coefficients Λ. The push forward of
the Gaussian measure ξθ induces a probability measure over the
space of admissible solutions to Eq. 2 and characterizes our prior
belief in the model based on modeling assumptions. The kernel
of the covariance operator Cθ is given by

E
[
ξθ(x , t)ξθ(x ′, t ′)

]
= kθ(x , x ′) · δ(t , t ′).

The exact form of this covariance can be decided upon by domain
experts so that the uncertainty induced is physically motivated.
For example, kθ can be chosen to be a Matérn covariance func-
tion to reflect the unknown forcing having derivatives up to a
known order. We assume a white noise process in time to facil-
itate the application of standard Kalman methods to solve the
filtering problem; this is also convention in stochastic differen-
tial equations (19). When computing the prior defined by Eq.
2, we use fixed parameters θ. When conditioning on data, we
take an empirical Bayes approach and estimate θ through the
log-marginal posterior.

Coefficients of Eq. 2 are assumed to be known, and we choose
to update the numerical solution to the model, acknowledging
that estimating Λ [using, e.g., maximum likelihood methods (20),
Markov chain Monte Carlo (21), or inversion methods in general
(22)] is also of utmost interest.

Discretizing Eq. 2 using finite elements in space with an
implicit or explicit Euler method in time,† denote by un ∈RM the
FEM coefficients at time n∆t , for time step ∆t . Further analy-
sis of this discretization will be the focus of future work. For a
potentially nonlinear system of equations FΛ, the resultant sys-
tem can be expressed as (full construction is given in SI Appendix,
sections 2 and 3)

FΛ(un , un−1) + en−1 = 0.

The vector en−1 represents Galerkin discretized increments of a
Brownian motion process, en−1∼N (0, ∆tG(θn)).

*It is available at https://github.com/connor-duffin/statkdv-paper.
†Crank–Nicolson may also be used to ensure stability.

Unlike the elliptic example in the Introduction, for Eq. 2 the
induced probability measure on the FEM coefficients is not avail-
able in closed form, and we present two approximations, based
on the extended Kalman filter (EKF) and the ensemble Kalman
filter (EnKF). The first linearizes about the current solution with
the Jacobian J of the nonlinear FΛ (evaluated at the current
solution) to give a Gaussian approximation of p(un |θ1:n , Λ)≈
N (mn , Cn). The second uses an ensemble in which a perturbed
system is solved, with realizations from en , at each time step.
Summary statistics (e.g., mean, covariance) are then computed
from this ensemble.

For the prior, the deterministic FEM solution is identically
equal to the mean in the EKF approach. However we have found
in numerical experiments that the EKF method, due to the use
of the Jacobian, inflates the covariance at points of high gra-
dient with reduction at points approaching near-zero gradient,
when using large time steps. This does not occur with the EnKF
approach.

Algorithm 1: EKF algorithm

for n≤nt do
(Prediction step)
Solve F(mn|n−1, mn−1|n−1) = 0.
Ĉn|n−1 = (Jn)−1 (Jn−1Cn−1|n−1(Jn−1)>

)
mbJn)−>

Estimate:
arg maxθn ,σn

{
log p(yn | y1:n−1, θ1:n,σ1:n)

+ log p(θn) + log p(σn)
}
.

Cn|n−1 = Ĉn|n−1 + ∆t(Jn)−1G(θn) Jn)−>.
Sn = HnCn|n−1H>n +σ2

nI.
(Analysis step)
mn|n = mn|n−1 + Cn|n−1H>n S−1

n (yn−Hnmn|n−1).
Cn|n = Cn|n−1−Cn|n−1H>n S−1

n HnCn|n−1.

Conditioning on Data. Data yn ∈RN are observed at time n∆t on
the grid xobs. These data are corrupted with noise ηn ∼N (0,σ2

nI)
independent to the model un to give the data-generating pro-
cess yn = Hnun +ηn , where the linear observation operator
Hn :RM →RN maps from the computed solution grid to the
observation grid, using the FEM interpolant.

The filtered distribution p(un | y1:n ,θ1:n ,σ1:n , Λ), where
y1:n = (y1, y2, . . . , yn), is our primary object of interest.‡ We take
a Bayesian interpretation and refer to this as the filtered poste-
rior distribution or just the posterior, when the context is clear.
However, as this is a filtering problem, non-Bayesian methods
are perfectly valid. We assume that all distributions are Gaus-
sian, so the posterior can be computed with standard methods
in data assimilation (23); we use the EKF (24) and the EnKF
(stochastic form) (25).

The initial conditions are known (i.e., they are given a
Dirac measure). For time n , we make a tentative prediction
step according to the PDE model FΛ, propagating uncer-
tainty in the previous time step [described by p(un−1 | y1:n−1,
θ1:n−1,σ1:n−1)], to give the prediction measure p(un | y1:n−1,
θ1:n−1,σ1:n−1). Parameters (θn ,σn) are then estimated,
and the full prediction step is completed to estimate
p(un | y1:n−1,θ1:n ,σ1:n). Data observed at time n∆t are then
conditioned on to give the updated filtering distribution
p(un | y1:n ,θ1:n ,σ1:n).

We assume the parameters are independent across time [i.e.,
p(θn |θn−1) = p(θn)]. Parameters may also be time constant,
which is discussed in the maximum likelihood setting in ref. 26
and in the hierarchical Bayesian setting in ref. 27. SI Appendix

‡From here on in, we implicitly condition on PDE coefficients Λ.
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Fig. 1. Simulation study results (using EnKF). A shows a prior solution with fixed hyperparameters θn with the data-generating process (DGP; as labeled)
for two times with accompanying 95% credible intervals. Note the degree of model mismatch between the two profiles. B shows the DGP and the posterior
mean and 95% credible intervals for the same times as the prior. Given the data, the model is highly certain about the updated mean, for which the model
mismatch has been corrected. This is now using estimated hyperparameters θn for a fully data-driven approach. C shows the prior mean, DGP, and posterior
mean over the entire simulation grid in space and time, and D shows the estimated parameters θn, σn across time, with the true value for σn shown as a
dashed turquoise line.

also contains a possible modification of the method that accounts
for time-invariant parameters. The following procedure pro-
vides an overview of the method, and Algorithms 1 and 2 give
pseudocode versions.
Conditioning procedure. At time n , assume that the measure on
the previous time is described by

p(un−1 | y1:n−1,θ1:n−1,σ1:n−1) =N (mn−1|n−1, Cn−1|n−1).

Then, proceed as follows:

1) Compute the tentative prediction step:

p(un | y1:n−1,θ1:n−1,σ1:n−1)

=

∫
p(un | un−1)p(dun−1 | y1:n−1,θ1:n−1,σ1:n−1)

≈N (m̂n|n−1, Ĉn|n−1).

2) Maximize the EKF log-marginal posterior to estimate param-
eters:

arg maxθn ,σn
{log p(yn | y1:n−1,θ1:n ,σ1:n)

+ log p(θn) + log p(σn)},

where Ĝ(θn) = ∆t(Jn)−1G(θn)(Jn)−>,

p(yn | y1:n−1,θ1:n ,σ1:n)

=N (Hnm̂n|n−1, Hn Ĉn|n−1H>n + HnĜ(θn)H>n +σ2
nI).

3) Compute the full prediction step:

p(un | y1:n−1,θ1:n ,σ1:n−1)

=

∫
p(un | un−1,θn)p(dun−1 | y1:n−1,θ1:n−1,σ1:n−1)

≈N (mn|n−1, Cn|n−1).

4) Complete the analysis step:

p(un | y1:n ,θ1:n ,σ1:n)

∝ p(yn | un ,σn)p(un | y1:n−1,θ1:n ,σ1:n−1)

=N (mn|n , Cn|n).

The prior p(un |θn , Λ) is recovered if only the full prediction
step (step 3) is completed at each iteration; completing the full
sequence gives the posterior. Optimization of the log-marginal
posterior is done using the limited-memory Broyden–Fletcher–
Goldfarb–Shanno algorithm (28) with starting points set to the
previous estimates. This log-marginal posterior is calculable due
to the Gaussian assumption made in step 1. Prior information
on hyperparameters is incorporated through p(θn) and p(σn),
which regularizes the optimization problem.

Simulation Study. We condition on data generated from an
extended Korteweg–de Vries (eKdV) equation with a cubic
nonlinear term:

wt +αwwx +βwxxx + εw3wx = 0,
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Algorithm 2: EnKF algorithm

for n≤nt do
(Prediction step)
for i≤Nens do

Solve F(un,[i]
pred, un−1,[i]) = 0.

Compute mn|n−1 and Ĉn|n−1 from {un,[i]
pred}

Estimate:
arg maxθn ,σn

{
log p(yn | y1:n−1, θ1:n,σ1:n)

+ log p(θn) + log p(σn)
}

for i≤Nens do
Solve F(un,[i]

pred, un−1,[i]) + e[i]
n−1 = 0.

Compute mn|n−1 and Ĉn|n−1 from {un,[i]
pred}

Sn = HnCn|n−1H>n +σ2
nI.

(Analysis step)
for i≤Nens do

un,[i] = un,[i]
pred + Cn|n−1H>n S−1

n

(
yn +η

[i]
n −Hnun,[i]

pred

)

setting α= 1, β= 0.01, and ε= 20. The misspecified KdV model

ut +αuux +βuxxx + ξθ = 0 [3]

has the same coefficient values, with initial conditions set
to a wave of depression u(x , 0) =−0.3sech2(x − 15) on the
space–time grid (x , t)∈ [0, 20]× [0, 50]. Boundary conditions are
periodic. Gaussian random forcing ξθ has spatial covariance
kθ(x , x ′) = τ2 exp(−‖x − x ′‖2/(2`2)) (we refer to τ as the scale
parameter and ` as the length parameter).

KdV is discretized following ref. 29, using P1 trial functions
and P0 testing functions, with a Crank–Nicolson method in time.
The data-generating process is simulated using Dedalus (30) with
1,024 grid points in space. This is then down sampled to 20 grid
points and jittered with synthetic Gaussian observational noise
(mean 0, variance 0.0012) to give the simulated dataset.

We assume yn = Hun +ηn , where un is the Galerkin dis-
cretized solution to Eq. 3 and ηn ∼N (0,σ2

nI). Hyperparameters
θn = (τn , `n) and noise level σn are estimated at each step by
maximizing the log-marginal posterior, with the weakly informa-
tive truncated Gaussian priors τn ∼N+(1, 12), `n ∼N+(1, 12),
and σn ∼N+(0, 12). The EnKF is used in this section, with
nx = 400, nt = 2,001, and Nens = 400. Results are presented in
Fig. 1.

For a fixed set of hyperparameters τn = 0.0025, `n = 1 for all
n , the data-generating process and estimated prior are shown in
Fig. 1A, appearing visually mismatched in the mean via phase
shift, increased oscillations, and increased wave interactions.
Note that the stochastic forcing induces an uncertainty about the
PDE solution, represented by the 95% credible intervals shown.
Note also that the data-generating process is approximately
contained within the credible intervals.

Fig. 1B shows that the posterior mean approximates the data-
generating process, and the posterior uncertainty bounds have
shrunk as a result of conditioning, indicating high certainty about
the posterior mean values. Model discrepancy between the data
and the statFEM solution has been corrected for. The space–
time view of the posterior, shown in Fig. 1C, shows that the
posterior has incorporated the complex soliton interactions in
the data, not present in the prior.

Parameter estimates (Fig. 1D) indicate that the length and
noise parameters are both stable, with the noise being slightly
overestimated (i.e., σn ≈ 0.003> 0.001). Times at which the
noise is not identified result in it being set to the lower bound.
The scale parameter quantifies the accuracy of the model predic-
tion step at each time step. In this case, model predictions vary

in their accuracy and appear approximately bounded to within
(10−5, 10−1).

Case Study: Experimental Data
We now apply the method to the experimental data collected in
ref. 31. Experiments were conducted to study weakly nonlinear
models for internal waves in lakes and consisted of generating
internal waves in a two-layer stratified system, inside of a clear
acrylic tank of dimensions 6× 0.3× 0.29 m. The tank contained
an upper layer of fresh water and a lower layer of saline water,
with a density gradient of ∆ρ= 20 kgm−3. The tank was able to
rotate in order to establish the initial conditions, which were an
inclined plane of angle ϑ= 0.5◦. This initial condition mimics the
shear induced by strong winds in lakes. At time t = 0, the tank is
rotated to restore it to the horizontal.

Data were recorded at three spatially equidistant locations in
the tank using ultrasonic wave gauges (Fig. 2), taking measure-
ments approximately every 0.01 s, up to T = 1,000 s; we use data
up to T = 300 s. Data are measured in voltages and are post-
processed to give pynocline displacements in meters. These data
are plotted in Fig. 3, where the small measurement error is visu-
ally apparent. Transient behavior is observed before steepening,
and a soliton wave train forms; three such steepening events
are observed in the data we analyze. As T→ 1,000 s, dissipation
results in the wave profile approaching a flat steady-state profile.

Our physical model is an eKdV equation with—for compu-
tational simplicity—a linear dissipation term. We acknowledge
that for laminar boundaries, other methods are preferred (31,
32). Including some form of dissipation is important as other-
wise, the model becomes impractically mismatched by the end of
the simulation. The eKdV is given by

ut +αuux +βuxxx + cux + νu + ξθ = 0 [4]

for u := u(x , t), x ∈ [0,L], t ∈ [0,T ], and with coefficients

α=
3

2

c(h1− h2)

h1h2
, β=

ch1h2

6
, c =

√
g ′h1h2

H
, g ′=

∆ρg

ρ0
.

We set ξθ as a GP as described previously, with spatial covari-
ance kernel kθ set to a squared exponential with scale and length
hyperparameters τ and `. For the experiment under considera-
tion, we have h1 = 0.232 m, h2 = 0.058 m, H = h1 + h2 = 0.29 m,
and ρ0 = 1,000 kgm−3. The dissipation coefficient ν is an inverse
timescale, which is set to 3× 10−3 s−1.

Incorporation of reflective boundary conditions is done by
solving the eKdV equation across the extended domain [0, 2L]
with periodic boundary conditions and summing solutions in the
(reflected) subdomains [0,L], [L, 2L]:

uexact(x , t) := u(x , t) + u(2L− x , t), x ∈ [0,L].

Details on the derivation are in ref. 31. Solutions to the deter-
ministic version of Eq. 4 at the locations of the wave gauges are

Fig. 2. Schematic diagram of the experimental apparatus. Wave gauges
(WGs) are labeled WG1, WG2, and WG3, and the initial conditions are shown
as a gray line, labeled with initial angle ϑ◦.
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Fig. 3. Experimental data results; posterior computed by the EnKF. A shows the observed data, the deterministic solution to the misspecified model, and the
posterior mean at the wave gauges with 95% credible intervals up to time T = 300 s. Model mismatch between the model and data is visually apparent and
has been offset in the posterior mean. B shows the posterior mean wave profile inside of the tank, with 95% credible intervals and the data, for three times.
The wave profile has been reconstructed by conditioning on the observed data. C shows the estimated hyperparameters θn, and D shows the estimated
posterior mean over the space–time grid.

shown in Fig. 3. We show the deterministic solution instead of the
prior due to accumulation of errors for large simulation times.

The eKdV model does not capture the observed behavior
exactly. The model waves have higher velocity than the obser-
vations, and model amplitudes are slightly larger than observed
amplitudes. It is conjectured that this is due to misparameteriza-
tion of dissipation, but in any case, the model is misspecified.
Rather than estimating the eKdV parameters using inversion
techniques, we sequentially update the model with observations
to give the posterior p(un | y1:n ,θ1:n ,σ1:n).

As before, we assume yn = Hun +ηn with known noise ηn ∼
N (0, 1.3588× 10−8I). As we solve on the extended domain
[0, 2L] and sum solutions, the observation operator H is taken
to be the sum of the appropriate function values given by our
FEM interpolant (a linear operation). The observation points
are unchanging, as is the solution mesh, so H is constant in time.
The hyperparameters of ξθ , θn = (τn , `n), must be estimated at
each iteration by maximizing the log-marginal posterior. Due to
small data in space (three observations each time step), we use
a projection method to estimate hyperparameters. This linearly
projects the predicted mean mn|n−1 forward, estimated from the
data points: yn

i = an + bnmn|n−1(xi). Parameters an , bn are esti-
mated to give the best least squares linear projection from the
prediction to the data. This gives a projected dataset, ỹn , using
the linear shift: ỹn = an + bnmn|n−1. The estimated hyperparam-
eters are then given by arg maxθn

{log p(ỹn | y1:n−1,θ1:n ,σ1:n) +

log p(θn)}, in which the observed data yn are replaced with the
projected data ỹn . We project to a grid of 100 points uniformly
spaced across the solution grid. Note that this is only for the
parameter estimation step, and we do not use this ỹn as the data
in the analysis step.

We set weakly informative priors: τn ∼N+(1, 12) and `n ∼
N+(1, 12). The posterior is computed using the ensemble

method with nx = 200, nt = 1,001, and Nens = 2,048. Results
are shown in Fig. 3. The posterior mean values of p(un | y1:n ,
θ1:n ,σ1:n) at the wave gauges are shown in Fig. 3A and offer a
close fit to the data in comparison with the eKdV solution. The
credible intervals shrink about the data (compare Fig. 3B) and
are not seen on the figure.

Posterior wave profiles are shown in Fig. 3B and demon-
strate that given the data, the method is able to yield a sensible
estimate for the underlying wave profile and is hence able to
reconstruct the wave profile given sparse observations in space
(Fig. 3D). Furthermore the provided uncertainty quantification
is physically sensible, with bounds contracting about the data and
expanding near the boundaries.

The hyperparameters, θn , are shown in Fig. 3C. The scale
parameter is seen to vary between two distinct levels, indicating
that the model predictions vary in their accuracy. The amplitude
of these mismatch scales shows that in this case, model mismatch
is a cumulative effect that takes some time before it is obviously
occurring (Fig. 3A, eKdV solution). Repeated conditioning on
data helps to mitigate these long timescale effects due to con-
tinual updating. A space–time view of the posterior mean wave
profile is shown in Fig. 3D, demonstrating that the general behav-
ior of the flow (e.g., reflective boundary conditions, dissipation,
wave train formation) is indeed captured.

Conclusions
We present a data-driven approach to the FEM that assim-
ilates observations into nonlinear, time-dependent PDEs by
embedding model misspecification uncertainty in the governing
equations and sequentially updating the discretized equations
with observations in a filtering context. Examples presented
using the KdV equation (and the additional systems studied
in SI Appendix) demonstrate that the method can approximate
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the data-generating process to give an interpretable posterior
distribution, which reconstructs the observed phenomena.

This work sets the foundation for future studies of embed-
ding data within FEM models. The use of the underlying
Kalman framework permits the drawing upon of ideas from high-
dimensional data assimilation, which for the systems studied here,
were not needed. Techniques from Bayesian inversion can also
be used to provide uncertainty quantification for physical quanti-
ties of interest, which will also allow for more accurate prediction.
Finally, we believe that the development of similar methodol-
ogy for alternate discretizations (e.g., spectral methods) could
also be of great benefit, allowing for even broader application.

Data Availability. Data and code have been deposited on GitHub (https://
github.com/connor-duffin/statkdv-paper).
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