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Abstract

It is well known that Affymetrix microarrays are widely used to predict genome-wide gene expression and genome-wide
genetic polymorphisms from RNA and genomic DNA hybridization experiments, respectively. It has recently been proposed
to integrate the two predictions by use of RNA microarray data only. Although the ability to detect single feature
polymorphisms (SFPs) from RNA microarray data has many practical implications for genome study in both sequenced and
unsequenced species, it raises enormous challenges for statistical modelling and analysis of microarray gene expression
data for this objective. Several methods are proposed to predict SFPs from the gene expression profile. However, their
performance is highly vulnerable to differential expression of genes. The SFPs thus predicted are eventually a reflection of
differentially expressed genes rather than genuine sequence polymorphisms. To address the problem, we developed a
novel statistical method to separate the binding affinity between a transcript and its targeting probe and the parameter
measuring transcript abundance from perfect-match hybridization values of Affymetrix gene expression data. We
implemented a Bayesian approach to detect SFPs and to genotype a segregating population at the detected SFPs. Based on
analysis of three Affymetrix microarray datasets, we demonstrated that the present method confers a significantly improved
robustness and accuracy in detecting the SFPs that carry genuine sequence polymorphisms when compared to its rivals in
the literature. The method developed in this paper will provide experimental genomicists with advanced analytical tools for
appropriate and efficient analysis of their microarray experiments and biostatisticians with insightful interpretation of
Affymetrix microarray data.

Citation: Wang M, Hu X, Li G, Leach LJ, Potokina E, et al. (2009) Robust Detection and Genotyping of Single Feature Polymorphisms from Gene Expression
Data. PLoS Comput Biol 5(3): e1000317. doi:10.1371/journal.pcbi.1000317

Editor: Gary D. Stormo, Washington University, United States of America

Received August 27, 2008; Accepted February 3, 2009; Published March 13, 2009

Copyright: � 2009 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by research grants from the Nature Science Foundation and the Basic Science Research Program of China. Z.L., M.J.K. and
R.W. are also supported by research grants from the Biotechnology and Biological Sciences Research Council of the United Kingdom. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: z.luo@bham.ac.uk or zwluo@fudan.edu.cn

. These authors contributed equally to this work.

Introduction

Microarray technology has stimulated tremendous research

interest in exploring genetic polymorphisms and gene expression

at the genome wide level. Several studies have reported the use of

oligonucleotide arrays for sequence variation discovery in a highly

parallel manner. Winzeler et al pioneered the development of a

high-throughput genotyping platform by hybridizing labelled total

genomic DNA to oligonucleotide arrays [1]. In yeast, it has proven

useful in linkage analysis, the dissection of quantitative trait loci,

and in assessing species population structure [2]. Recently, this

approach has been applied to organisms with more complex

genomes, such as Arabidopsis thaliana [3], to assess the molecular

basis of natural phenotypic variation. This type of sequence

variation detected by a single probe in an oligonucleotide array

was termed a Single-Feature Polymorphism (SFP), where a feature

refers to a probe in the array [3]. By hybridizing cRNA from two

parental yeast strains and their segregants onto yeast Affymetrix

GeneChip arrays, Ronald et al was probably the first to propose

the concept of simultaneous genotyping and gene expression

analysis, and developed a method for identifying SFPs and

genotyping the yeast strains at the SFPs mainly by combining a k-

means clustering analysis and a mixture population analysis [4].

The idea behind the approach was the proposition that the

presence of polymorphism in a perfect-match (PM) probe

sequence between the parental strains, one of which was assumed

to have the same reference sequence as the probe sequence, would

lead to a detectable difference between the observed PM value of

the probe and its corresponding predicted value from the

positional-dependent-nearest-neighbour (PDNN) model [5]. This

idea has been modified and implemented to predict SFPs using

gene expression data profiled by Affymetrix GeneChip arrays in

more complicated species such as Arabidopsis [6] and barley [7,8].

On the basis of analyzing the Affymetrix microarray datasets of

gene expression profiled at two developmental stages of two elite

barley parental varieties and their 30 doubled-haploid segregation

lines, Luo et al recently found that a large proportion of the SFPs

predicted from the methods proposed in [4] and [1] were actually

gene expression markers (GEM) [9]. Although the integration of

genetic polymorphism detection and gene expression analysis
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undoubtedly has tremendous value in genomics studies, serious

problems may arise if the SFPs so predicted are used as genetic

markers in conventional QTL analysis or genetical genomics

analysis [10–12]. It is an essential feature for genetic markers to be

devoid of effect on the traits under question. In the scenario of

expression QTL (eQTL) analysis, an autocorrelation between the

expression level and GEM for a gene will always lead to inference

of a cis-acting regulator for the gene even though the gene is

actually trans-regulated.

In this paper, we present a novel method with improved

robustness and accuracy for identifying and genotyping SFPs from

Affymetrix gene expression data profiled on two parental lines (or

strains) and their offspring population. We demonstrate the

efficiency and robustness of the method by analyzing genomic

DNA microarray hybridization profiles and RNA expression

profiles of two laboratory strains of budding yeast (S. cerevisiae) and

their 40 segregants as well as gene expression profiles at the

embryonic stage of two elite barley varieties (Steptoe and Morex)

and their 139 doubled haploid (DH) lines. The method was

compared to those documented in both historical and more recent

literature [1,4,6,7,8].

Results

It has been theoretically demonstrated that hybridization

intensity of a transcript molecule onto its target probe on an

Affymetrix GeneChip oligonucleotide microarray can be modelled

as a product of the binding affinity between the transcript and

probe sequences and the abundance of the transcript [9]. This

explains the multiplicative model for perfect match hybridization

intensities, firstly proposed in [13]. The model confers two useful

properties in the present context. Firstly, it enables separation of

the binding affinity parameter from the transcript abundance

parameter. The former reflects the degree of homogeneity

between the transcript and its probe sequences. The latter is a

function of the expression level of the gene represented by the

probe set. Secondly, both parameters can be estimated from a

properly designed experiment, thus avoiding the confounding

influence of gene expression when comparing the binding affinity

of the same probe between different genotypes. On the basis of this

proposition, we developed a new method (Method 1) for

identifying and genotyping SFPs by making use of the estimated

hybridization affinity from gene expression data profiled on two

parental strains or lines and their segregating progeny with

Affymetrix oligo-microarrays.

We explored the new method and compared it with five existing

methods for predicting SFPs, Method 2 [1], Method 3 [4],

Method 4 [7], Method 5 [6] and Method 6 [8]. Method 1 is

explained in the Methods section, and the others outlined in the

supplementary Text S1 available at the website of PLoS

Computational Biology. We implemented all six methods in the

Fortran-90 computer language to analyze three Affymetrix

microarray datasets. The first two datasets were genomic DNA

and cRNA microarray hybridization datasets collected from the

same budding yeast population consisting of two parental strains,

each of which was replicated three times, and their 40 haploid

segregant offspring without replication. The third dataset was

collected from a cRNA microarray hybridization experiment on

two commercial varieties of barley, each of which was repeated

three times, and their 139 doubled-haploid progeny lines without

replication.

Consistency in SFPs predicted from parallel DNA and
RNA datasets

With gene expression data, one may anticipate a large variation

in abundance of transcripts among different genes within the same

individual or between different individual genotypes. However,

with genomic DNA microarray data, one can expect uniformity in

the number of DNA molecules hybridized onto a microarray chip

across all genes interrogated on the chip. We first compared the

SFPs from the two parallel yeast (DNA and RNA) microarray

datasets by the six different methods. It can be seen from Table 1

that the present method (Method 1) predicted a total number of

4107 (2077+2030) SFPs from the yeast DNA dataset and a total of

2388 (2077+311) from the RNA dataset. The number of SFPs

called in both the datasets was 2077 by this method, indicating

that 87% (2077/2388) of the SFPs called by the method in the

RNA data were also detected in the DNA data. This percentage is

the highest among the six methods. Because the SFPs called from

RNA data, which were also recovered in DNA data, are more

likely to be the true sequence polymorphisms, the present method

thus confers the highest accuracy in identifying the SFPs bearing

sequence polymorphisms from RNA microarray data. This also

suggests that the present method could be implemented for

predicting SFPs from the DNA dataset as well as from the RNA

microarray dataset.

All the methods except for method 4 predicted a larger number

of SFPs from the DNA dataset than from the RNA dataset, as

expected given the fact that RNA microarray data involves much

larger variation than genomic DNA data. Among the six methods

explored here, method 4 proposed in [7] shows the poorest

performance, predicting the smallest number of SFPs in the two

datasets and having the lowest consistency in the SFP prediction

from the two parallel datasets. Method 2 was originally developed

to predict SFPs from genomic DNA microarray data. Table 1

indicates that this method revealed a comparable number of SFPs

from the DNA data to the numbers called by the other methods

(except for Method 4). However, its predictability was significantly

worse in the RNA data analysis, reflecting a remarkable difference

in recovering SFPs between the two types of Affymetrix

microarray data.

Author Summary

One of the ultimate goals of genomics is to explore
structural and functional variations of all genes in a
genome. High-density oligo-microarray techniques enable
prediction of genome-wide gene expression and genome-
wide genetic polymorphisms from using RNA and
genomic DNA samples, respectively. A recent proposal to
integrate the two predictions by use of RNA microarray
data alone has great practical implications in genomics.
However, it is essential but very challenging to develop an
appropriate analytical method for detecting genetic
polymorphisms (SFPs) from RNA expression data, which
are inherently coupled with various sources of biological
and technical variations. This paper presents a novel
statistical approach to detect SFPs from gene expression
data. We demonstrated that the new method is signifi-
cantly more robust to variation due to differential
expression of genes and improves the reliability of calling
SFPs that bear genuine sequence polymorphisms than the
other five methods in the mainstream literature on SFP
prediction from microarray data. The improved predict-
ability of detecting SFPs not only confers accuracy in
evaluating gene expression from microarray information,
but also opens up an opportunity to integrate structural
and functional analyses by using only one set of
microarray data.

Robust SFP Identification and Genotyping
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Efficiency in avoiding gene expression markers
It has been demonstrated by Brem et al that up to 43% of genes

may express differentially between two laboratory yeast strains

[14]. Differential gene expression between two parental strains has

a high heritability with an average of 84%. These observations in

yeast were also observed in the genomes of other more complex

organisms [12,15,16,9]. This heritable variation in gene expression

was referred to as gene expression markers (GEM) by West et al

[6]. It is essential to minimize the chance of calling a GEM in the

SFP prediction for a robust genetical genomics analysis particu-

larly when both genetic marker information and gene expression

are extracted from the same RNA microarray dataset. Table 2 lists

the numbers of SFPs and SFP-bearing genes, which carried at least

one SFP, called by each of the six different methods as well as the

proportion (in parentheses) of the SFP-bearing genes that were

differentially expressed between the two parental lines in the yeast

and barley RNA microarray experiments. A gene in these

experiments was tested for differential expression between the

two parental genotypes by fitting its expression level, which was

evaluated from the Affymetrix recommended software MAS 5.0, if

either of the genotypes exceeded the expression level of the other

genotype by two fold or more. We explored use of SAM

(Significance Analysis of Microarrays) proposed in [17] to test

for significance of difference in gene expression between the two

parental genotypes and found a very similar pattern to the MAS

5.0 analysis. Although Method 3 consistently detected the largest

numbers of SFPs and SFP-bearing genes from both the RNA

datasets (yeast and barley) among the six methods, the proportion

of the differentially expressed genes called by this method was

about two (in yeast data) to three (in barley data) times as many as

that by Method 1 developed in the present study. The consistently

lowest proportions of differentially expressed genes called by the

present method in the two independent RNA microarray

experiments demonstrated its effectiveness in avoiding GEMs in

the SFP prediction. Method 6 was originally proposed to detect

SFPs from Affymetrix microarray data from hybridizing RNA of

multiple tissues of two genotypes [8]. The number of SFPs

predicted from the method depends on the use of different

stringency parameters (see [8,17] for details). Although SFP

predictions were made at a series of stringency parameters

(supplementary Table S1), we chose the one at which the number

of SFPs predicted was comparable to that by Method 1. It is clear

from Table 2 that Method 6 calls SFPs associated with

differentially expressed genes much more frequently than the

method developed in the present study.

Mutual predictability among the six methods
One important aspect in comparing the different methods

would be to compare their mutual predictability to the same SFPs.

The figures listed in diagonal cells of Table 3 were the numbers of

SFPs predicted from the yeast DNA data, yeast RNA data and the

barley RNA data accordingly for the methods 1–6. The upper and

lower diagonal cells were the numbers and percentages (in

parentheses) of the SFPs called by method j ( j = 1st, 2nd, …, 7th

column) and also by Method i (i = 1st, 2nd, …, 7th row, i ? j ). For

example, Method 1 predicted 1606 out of the 3492 SFPs predicted

by Method 2 in the yeast DNA data. Thus, the predictability of

Method 1 to Method 2 was 1606/3492 = 46%. Conversely, the

predictability of Method 2 to Method 1 was 1606/4107 = 39% in

the same dataset.

It can be seen from this table that Method 1 predicted a high

proportion of 54,96% of SFPs called by Methods 3–6 in the two

yeast (DNA and RNA) datasets. The proportion decreased to

39,61% in the barley RNA data. Methods 1 and 3 predicted a

very comparable and high proportion of the SFPs called by

Methods 4 and 5. However, the latter two methods predicted only

a much smaller proportion of SFPs called by the former. This is

partly a reflection that the numbers of SFPs predicted by Methods

1 and 3 are much larger than those by Methods 4 and 5 from all

the three datasets. In the two RNA datasets, Method 1 predicted

smaller proportions of SFPs called by Method 3 than the

Table 1. The number of SFPs detected by the present and other methods from the yeast genomic DNA and RNA microarray
datasets.

SFPs called Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

(Present) (Winzeler et al 1998) (Ronald et al 2005) (Cui et al 2005) (West et al 2006) (Rostoks et al 2005)

Shareda 2077 107 2475 429 1260 1401

Unique in DNAb 2030 3385 1550 574 2062 2697

Unique in RNAc 311 143 732 809 424 921

% sharedd 87 42.8 77.1 34.7 74.8 60.3

athe SFPs called in both DNA and RNA microarray datasets.
bthe SFPs called only in DNA microarray data.
cthe SFPs called only in RNA microarray data.
dpercentage of SFPs called in RNA data that were also called in the DNA.
doi:10.1371/journal.pcbi.1000317.t001

Table 2. The numbers of SFPs and SFP-bearing genes called
by the six different methods from the yeast and barley gene
expression datasets.

Method Species

Yeast Barley

SFPs Genes (%) SFPs Genes (%)

1 (Present) 2388 1801 (5.6) 3206 2509 (6.7)

2 (Winzeler et al 1998) 250 199 (9.0) 2105 1674 (8.4)

3 (Ronald et al 2005) 3207 2280 (9.2) 4323 2869 (18.2)

4 (Cui et al 2005) 1238 841 (11.7) 2368 1137 (28.1)

5 (West et al 2006) 1684 1297 (8.0) 971 753 (23.4)

6 (Rostoks et al 2005) 2322 1726 (8.2) 3294 2160 (21.2)

The percentage of genes differentially expressed between the two parental
lines is given in parentheses.
doi:10.1371/journal.pcbi.1000317.t002

Robust SFP Identification and Genotyping
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proportion predicted by Method 1 but also called by Method 3.

This reflects a larger number of SFPs called by Method 3 than by

Method 1 because the former is prone to including GEMs in the

SFPs called. If the comparison was made after removing those

SFPs in the differentially expressed genes, the mutual predictability

between the two methods becomes more comparable (47,71% vs.

51,90%).

Efficiency to predict sequence polymorphisms
Sequence information was available for 10 genes of the two

yeast parental strains. A BLAST analysis revealed that the

sequences cover a total of 98 probes interrogated on Affymetrix

yeast 2.0 Gene Chips. In six of the 98 probe sequences, the two

yeast strains were polymorphic. There were 518 DNA segments

sequenced for the two barley parental lines, which covered a total

of 4690 probes on Affymetrix barley 1.0 chips. The two parental

lines were polymorphic at 167 probes sequenced. It should be

stressed that these sequence data were collected from other

independent research projects conducted before the present study.

From these sequence data, we calculated the probability (s) of a

probe bearing genetic polymorphism given it is called as an SFP

and the probability (r) of a probe bearing genetic polymorphism

given it is not called as an SFP. The former reflects the true

discovery rate of genetic polymorphism from predicted SFPs and

the latter measures the rate of false negatives in the predicted

SFPs. By definition, 1-s gives the rate of false positives.

Let N be the total number of probes interrogated on the yeast

2.0 or barley 1.0 Affymetrix microarray chip. Among M

sequenced probes, there are m showing polymorphism between

the two parental lines. For a given SFP prediction method under

question here, K out of n predicted SFPs are included among the

sequenced SFPs (K#M) and k of the K SFPs are found

polymorphic (k#m). Based on the observed numbers, the most

likely estimates of s and r can be calculated from ŝs~k=K and

r̂r~ m{kð Þ= M{Kð Þ.
Table 4 lists the observed numbers of the aforementioned

parameters and the estimates of the parameters describing the true

discovery rate and the rate of false negatives of SFPs predicted by

the six different methods from the three microarray datasets.

Method 1 recovered all 6 and 4 out of the 6 probes that carried

genuine sequence polymorphism in the yeast DNA and RNA

datasets respectively without making any false positive discoveries,

showing that the method had an estimated true discovery rate of

100% and an estimated rate of zero false negatives in the SFPs

predicted from the yeast DNA and RNA microarray datasets. In

the barley RNA data, the method identified 57 SFPs out of 167

probes confirmed with sequence polymorphism, suggesting that

35% SFPs predicted by Method 1 bear genuine sequence

polymorphism and 2% of polymorphism free probes were called

as SFPs by the method. Although Method 1 performed much

worse in recovering true polymorphic SFPs and avoiding false

negatives in the predicted SFPs in the barley data than in the yeast

datasets, it is clear that the method confers a better predictability

of genuine sequence polymorphisms and a lower risk for calling

polymorphism-free probes to be SFPs when compared the other

five methods.

It should be noted that the number of probes sequenced is very

limited in comparison to the total number of probes. This indicates

that the estimates of s and r may have large sampling variances,

suggesting a larger number of probes need to be sequenced to

Table 3. Comparison in SFP predictability between methods 1–6 from the three datasets.

Methods 1 2 3 4 5 6

1 (Present) 4107a 1606(46%) 3546(88%) 967(96%) 2963(89%) 2237(54%)

2388b 61(24%) 2141(67%) 1040(84%) 1384(82%) 1665(71%)

3206c 202(10%) 1704(39%) 1164(49%) 588(61%) 1688(51%)

2 (Winzeler et al 1998) 1606(39%) 3492 1533(38%) 5(0%) 926(28%) 900(21%)

61(3%) 250 88(3%) 7(1%) 30(2%) 20(0%)

202(6%) 2105 261(6%) 120(5%) 31(3%) 129(3%)

3 (Ronald et al 2005) 3546(86%) 1533(44%) 4025 934(93%) 3023(91%) 2260(55%)

2141(90%) 88(35%) 3207 1129(91%) 1559(93%) 1955(84%)

1704(53%) 261(12%) 4323 1102(47%) 497(51%) 1714(452%)

4 (Cui et al 2005) 967(24%) 5(0%) 934(23%) 1003 979(29%) 730(17%)

1040(44%) 7(3%) 1129(35%) 1238 946(56%) 1064(45%)

1164(36%) 120(6%) 1102(25%) 2368 667(69%) 1638(49%)

5 (West et al 2006) 2963(72%) 926(27%) 3023(75%) 979(98%) 3322 2044(49%)

1384(58%) 30(12%) 1559(49%) 946(76%) 1684 1328(57%)

588(18%) 31(1%) 497(11%) 667(28%) 971 752(22%)

6 (Rostoks et al 2005) 2237(54%) 900(25%) 2260(56%) 730(72%) 2044(61%) 4098

1665(69%) 20(8%) 1955(60%) 1064(85%) 1328(78%) 2322

1688(52%) 129(6%) 1714(39%) 1628(68%) 752(77%) 3294

The upper and lower diagonal cells were the numbers and percentages (in parentheses) of the SFPs called by method j (j = 1st, 2nd, …, 7th column) and also by Method i
(i = 1st, 2nd, …, 7th row, i ? j). For example, Method 1 predicted 1606 out of the 3492 SFPs, predicted by Method 2 in the yeast DNA data. Thus, the predictability of
Method 1 to Method 2 was 1606/3492 = 46%. Conversely, the predictability of Method 2 to Method 1 was 1606/4107 = 39% in the same dataset.
aYeast DNA data.
bYeast RNA data.
cBarley RNA data.
doi:10.1371/journal.pcbi.1000317.t003

Robust SFP Identification and Genotyping
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provide more precise estimates of the parameters. However, as

aforementioned, the sequenced probes represent an independently

and arbitrarily chosen sample of all probes. Thus, comparative

assessment of performance of the methods in predicting truly

polymorphic SFPs should be informative. In addition, the number

of SFPs predicted by one method varies markedly from that by

other methods. Compared to Method 1, Methods 2, 4 and 5
predicted a much smaller number of SFPs. This may suggest that

these methods may apply a more stringent selection criterion in

prediction of SFPs. Nevertheless they did not produce more

accurate prediction of true sequence polymorphisms in the

predicted SFPs. Without influence of gene expression differenti-

ation as in the yeast DNA microarray data, performance of

Methods 1 and 3 is comparable. However, the former performed

clearly better than the latter in the RNA, particularly in barley

RNA data.

All six methods consistently performed considerably better in

SFP prediction from the yeast than from the barley data.

Genotyping and map construction with SFPs
Of the 139 DH lines in the barley RNA dataset, 30 were

genotyped at the 518 single nucleotide polymorphic markers

(SNPs) in another independent research project. We firstly

explored Methods 1–5 for their ability to predict the genotypes

of the 30 DH lines at the SFPs called by each of the methods and

whose polymorphic status were confirmed by sequence informa-

tion. Method 6 did not provide genotype prediction and was thus

excluded from further analysis. Percentages of erroneously

genotyped DH lines at different numbers (in parentheses) of truly

polymorphic SFPs were 2.5 (57), 2.7 (19), 4.6 (44), 4.0 (43) and 2.0

(24) for each of the five methods accordingly. It is clear that the

present method has a slightly higher (by 0.5%) genotyping error

than Method 5, but a lower genotyping error than the other

methods. It should be noted that the erroneous genotyping rate

reported for Method 5 was based on less than half the number of

SFPs on which the present method was assessed.

Another useful test of the accuracy in genotyping the DH lines at

a larger scale of SFPs predicted by the present method is the extent

of agreement in the haplotypes and genetic linkage maps which are

constructed from the genotype data on the SNPs and the SFPs

predicted. We performed a post-genotyping filtering process to

eliminate those SFPs with .10% missing genotypes scored,

distorting from the 1:1 segregation ratio and showing identical

genotypes at any pair-wise loci. After this screening process, a total

of 1381 SFP markers remained. JoinMap, a least-square based

computer software [18], was employed to join the SFP markers into

linkage maps. At LOD = 5.0, all but 3 SFP markers were clustered

into 7 linkage groups, corresponding to the seven chromosomes of

barley. We also compared chromosomal haplotypes constructed for

each of the 30 DH lines from the SNP markers and from the SFPs.

Figure 1 illustrates the 7 chromosomal haplotypes of the DH line,

which bears the largest number of recombination events, construct-

ed from the SFP (left) and SNP (right) markers. The good agreement

between the two groups of chromosomal haplotypes suggests that

genetic maps built using the SFP markers identified and genotyped

from the present method would be as reliable as those constructed

by using conventional DNA molecular markers. The 1,378 SFPs

predicted in the present study were well mapped into seven linkage

groups, corresponding to the seven barley chromosomes. The

linkage maps were illustrated as Supplementary Figure S1. This

probably represents the barley linkage maps with the densest

currently available marker coverage.

Table 4. The numbers of total probes interrogated on yeast 2.0 and barley 1.0 Affymetrix microarray chips (N), SFPs called (n),
probes sequenced (M), probes bearing sequence polymorphism (m), probes sequenced and called as SFPs (K) and SFPs bearing
sequence polymorphisms (k), and the estimates for rates of true discovery (s) and false negative (r).

Dataset Methoda N n M m K k s r

Yeast (DNA) 1 62810 4107 98 6 6 6 1.00 0.00

2 62810 3492 98 6 3 2 0.67 0.04

3 62810 4025 98 6 6 6 1.00 0.00

4 62810 1003 98 6 3 2 0.67 0.04

5 62810 3322 98 6 5 5 1.00 0.01

6 62810 4098 98 6 9 5 0.56 0.01

Yeast (RNA) 1 62810 2388 98 6 4 4 1.00 0.02

2 62810 250 98 6 0 0 0.00 0.06

3 62810 3207 98 6 5 4 0.80 0.02

4 62810 1238 98 6 5 4 0.80 0.02

5 62810 1684 98 6 13 6 0.46 0.00

6 62810 2322 98 6 7 4 0.57 0.02

Barley (RNA) 1 250811 3206 4690 167 163 57 0.35 0.02

2 250811 2105 4690 167 120 19 0.16 0.03

3 250811 4323 4690 167 192 44 0.23 0.03

4 250811 2368 4690 167 139 43 0.31 0.03

5 250811 971 4690 167 83 24 0.29 0.03

6 250811 3294 4690 167 147 44 0.30 0.03

a1 – The present; 2 – Winzeler et al 1998; 3 – Ronald et al 2005; 4 – Cui et al 2005; 5 – West et al 2006; 6 – Rostoks et al 2005.
doi:10.1371/journal.pcbi.1000317.t004

Robust SFP Identification and Genotyping
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Discussion

Integrating identification of genetic polymorphisms and analysis

of gene expression from a single experiment that hybridizes cRNA

samples onto Affymetrix oligo-nucleotide microarrays has an

extremely useful implication in at least two aspects. Firstly, it

improves both accuracy and precision in calculating gene

expression indices by excluding the probes involving genetic

polymorphisms. Secondly, it enables generation of an abundant

number of reliable genetic markers and, in turn, mapping genetic

regulators controlling gene expression. Compared to modelling

genomic DNA microarray data, modelling RNA data for this

purpose raises remarkable analytical challenges because the effect

of genetic polymorphism within a transcript molecule on

hybridization signal of its target probe is always coupled with

expression level of the gene represented by the probe. To

minimize the influence of the confounding effect of gene

expression has been the central topic for a robust diagnosis of

the single feature polymorphisms (SFPs) from RNA microarray

data [6,7]. In this paper, we proposed to separate binding affinity

between a transcript and its target probe from the abundance

parameter of the transcript based on the multiplicative regression

model described in [13]. The binding affinity parameter would

reflect any sequence variation in the transcript sequence, while the

abundance parameter is a measure of expression level for the gene.

We presented here a novel statistical approach for discovering

and genotyping SFPs from oligonucleotide microarray expression

data based on estimates of the binding affinity parameter. The

approach (Method 1) was compared to those which were designed

for detecting SFPs in historical (Method 2, [1]) and more recent

(Method 3–6, [4,7,6] and [8] accordingly) literature. We explored

the methods from several angles. Firstly, their robustness to the

influence of differential gene expression is assessed by comparing

the SFPs predicted from parallel genomic DNA and mRNA

hybridization datasets collected from the same set of two parental

yeast strains and their 40 haploid offspring segregants. Because we

can safely postulate a very high level of uniformity in the number

of genomic DNA molecules hybridized onto their target probes

across different arrays, a higher proportion of the SFPs predicted

by a method from both the datasets must indicate greater

robustness of the method to variation in gene expression. The

present method yields a proportion of SFPs simultaneously

detected from the two datasets which is at least 10% higher than

each of the five other methods. In addition, we investigated the

methods for their predicted SFPs in the genes that were

differentially expressed in the yeast RNA dataset and another

independent RNA dataset containing expression profiles from two

commercial barley varieties and their 139 DH lines. Compared to

its rivals, the present method calls the lowest proportion of SFPs

involving differentially expressed genes. These observations clearly

demonstrate that the SFPs called by the present method would be

those more likely due to sequence variation than to differentiated

gene expression. This is important for the SFPs to be used as

genetic markers in mapping quantitative trait loci (QTL) or

expression of genes (eQTL) because it is essential for any genetic

markers to be devoid of any biological and functional effect. In

particular, use of gene expression markers (GEMs) in eQTL

analysis will inevitably result in false declaration of cis-transcrip-

tional regulators resulting from autocorrelation between the

GEMs and expression trait phenotype.

Lack of full sequence information at the SFPs predicted to be

used as ‘‘gold standard’’ hinders a direct assessment for their

polymorphic status in the previous studies. In this study, we

evaluated the six methods for their ability to recover true sequence

polymorphisms in the SFPs predicted based on sequence

information for a limited number of probes (98 in the yeast

experiment and 4690 in the barley experiment). With information

of sequenced probes in both yeast and barley datasets, we are able

to calculate the probability of a probe bearing genetic polymor-

phism given it is called as an SFP and the probability of a probe

bearing genetic polymorphism given it is not called as an SFP for

each of the six methods. These probabilities enable evaluation of

Figure 1. Haplotypes of chromosomes from line SM116 drawn to compare SFP (left) and SNP (right) predictions. Black bars = St
chromosomes, white = Mx chromosomes.
doi:10.1371/journal.pcbi.1000317.g001
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the methods for the true discovery rate and the rates of false

positive and false negative in recovering true genetic polymor-

phisms from the predicted SFPs. The present method shows the

highest true discovery rate and the lowest rate of false negative

across all three datasets. The method, although developed for SFP

prediction from RNA microarray data, performed markedly better

in unravelling the true sequence polymorphisms from DNA

microarray data when compared with Method 2 [1], which was

originally designed for SFP prediction from the same dataset.

Methods 4 and 5 ([7,6] respectively) predicted a considerably

smaller number of SFPs when compared to Method 1 and this

implies that these methods have applied a more stringent criterion

in detecting the SFPs but this has not resulted in more accurate

prediction of SFPs. The number of SFPs detected by Method 6 [8]

is largely dependent on the prior use of stringency parameters, so

we compared this method using the stringency criterion that leads

to a similar number of SFPs predicted by the method to that by

Method 1. One may argue that the improved performance of

Method 1 in predicting truly polymorphic SFPs is due to the

markedly larger number of SFPs predicted by the method. Given

the fact that, among the sequenced probes, the number of probes

without polymorphism is much larger than that of the probes with

genetic polymorphism, Method 1 has consistently the lowest

estimated probability to call the polymorphism-free SFPs in all

three datasets, indicating that the present method outperforms the

others, but this is not due to its larger number of predicted SFPs.

Methodologically, Methods 1 and 3 are developed on the

multiplicative model described in equation (1) and the PDNN

model [4] respectively for PM hybridization intensities from

Affymetrix microarrays. We compared predictability of the two

models by regressing the predicted PM intensities on the observed

PM values from each of three replicates of the yeast parental

strains and the barley parental lines. The regression coefficients of

the predicted PM intensity from the multiplicative model on the

observed PM intensity are 0.995,0.998 (R2^1:00) across the six

yeast datasets and 0.994,0.998 (R2^1:00) across the six barley

datasets, but those from the PDNN model are 0.749,0.788

(R2^0:83) and 0.623,0.658 (R2^0:59) respectively. Figure 2

illustrates the correlation between the observed and predicted PM

intensities from the present model (a, c) and PDNN (b, d)

algorithm for the yeast (a, b) and barley (c, d) microarray datasets.

It is clear that the multiplicative model shows remarkably better

Figure 2. Regression analysis of predicted PM hybridization intensities from the multiplicative model (a and c) and PDNN model (b
and d) with the yeast (a and b) and barley (c and d) data.
doi:10.1371/journal.pcbi.1000317.g002
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performance in predicting the PM intensities than the PDNN

model. We also explored the predictability of the PDNN model in

a logarithm-transformed scale and found that the logarithm

transformation did not result in notable improvement in the

predictability (data not shown but available upon request from the

corresponding author). Obviously, an accurate prediction of the

PM values constitutes an important basis for an accurate diagnosis

of SFPs, and in turn, reliable genotyping of the SFPs. This at least

partially, if not fully, explains why the two methods perform

differently in the current context of application. It should be noted

that this comparison does not necessarily indicate an evaluation of

the methods’ performance in calculating expression indices.

It should be highlighted that all six methods under investigation

here consistently and considerably performed better in SFP

prediction from the yeast microarray datasets (both DNA and

RNA) than from the barley data. This difference could be largely

explained by the fact that the yeast data were obtained from an

advanced oligo-based microarray designed from information of the

sequenced and well-annotated genome. In contrast, the barley gene

expression data was obtained from the first generation Barley 1.0

Affymetrix microarray GeneChip assembled based on high quality

expressed sequence tag information but without the benefit of whole

genome sequence information. Design of the barley microarray

probes could be less optimized than that of the yeast probes.

Regardless of this limitation, Method 1 clearly outperformed its five

rivals based on accuracy in detecting SFPs in the barley dataset.

When an SFP is identified between two individual strains or lines,

assignment of a genotype at the SFP to each of them and their

offspring, i.e. genotyping at the SFP, makes the second part of the

SFP analysis. The present study, in which offspring lines or strains

are not replicated, considered a much less demanding design of

expression microarray experiments, in which offspring lines or

strains are not replicated, than those in [6] and [7]. A practical

challenge for the present method is that the binding affinity

parameter can not be directly and independently estimated for each

offspring individual without setting replications for these individuals

in both the yeast and barley microarray experiments. To address

this problem, we once proposed to approximate the probe binding

affinity as simple functions of PM and MM hybridization intensities

and calculated the probe effect independently for each of the

offspring individuals (Equations 4.1–4.3 in [9]). The approximation

may be questionable because it involves other effects in addition to

the probe effect. Obviously, this biases estimates of the binding

affinity parameter and thus could lead to poor prediction of the

SFPs. Although there is insufficient data for directly estimating the

binding affinity parameter at any given probe for each of the

offspring, it is certain that each of the genes interrogated on the

arrays must be from either of the two parental genotypes. On the

basis of this observation, we developed a Bayesian approach to

calculate the posterior probability of an offspring individual having

inherited an allele from one of the two parents given the individual’s

and its parents’ microarray data. We compared the genotypes

predicted by the five different methods at the SFPs whose

polymorphic status was confirmed by sequence information, for

the 30 barley DH lines whose genotypes were known at 167 SFPs.

At more than twice as many SFPs that contain confirmed sequence

polymorphism, the present method correctly genotypes the DH

lines with a rate very comparable to that by Method 5, which has

predicted the highest proportion of correct genotypes at the SFPs.

Our ability to extract information of genetic polymorphism

from microarray gene expression data would be useful in at least

the following aspects. Firstly, this enables integration of genetic

marker development and gene expression profiling from only one

set of RNA hybridization experimental data for recently launched

gene expression QTL analyses. Secondly, the ability to genotype a

population, while simultaneously measuring gene expression, is

very valuable in a context where mislabelling and other quality

assurance issues can easily occur. SFP genotype can be used to

confirm the identity of individual (or sample) source material

because the SFP genotype may be checked directly against

previously obtained SNP genotypes. Thirdly, SFP prediction may

allow allele-specific preferential gene expression to be explored

when relative expression of a specific gene can be compared with

that of its allele through detecting significance of the SFP

associated effect on the gene expression. However, in either of

these analyses, accuracy and robustness in SFP prediction is a

crucial basis for their efficiency and reliability.

Materials and Methods

Yeast genomic DNA and RNA microarray hybridization
experiment

YH1A, an isogenic haploid strain of the standard reference strain

S288c, and YL1C, also a haploid strain that differed in ethanol

tolerance from the former strain [19], were crossed to generate two

backcross populations with each of the parental strains as recurrent

parents. From each of the backcross populations, 20 offspring were

randomly selected. This yielded 40 backcross strains. Total genomic

DNA and mRNA were extracted individually from both the

parental strains and the offspring strains. Then DNA and cRNA

samples were labelled and hybridized to the Affymetrix Yeast

Genome 2.0 GeneChip according to the supplier’s guide manual

(Affymetrix, GeneChip Expression Analysis technical manual

701021 Rev. 5. 2004). Each of the parental strains was repeated

three times in both genomic DNA and RNA hybridization

experiments, while the offspring were not repeated.

There were a total of 92 ( = 2646) hybridized chips for yeast

DNA and RNA datasets. Quality of the hybridization experiment

was checked and confirmed by the standard method (GeneChip

Expression Analysis Data Analysis Fundamentals; http:/www.

affymetrix.com). We extracted hybridization data for 5,716 genes

interrogated on the yeast 2.0 microarray chips and excluded 6 of

them, which were represented by less than 11 probes. This

resulted in a data set consisting of 62,810 ( = 5710611) probe pairs

present as a perfect match (PM) and a mismatch (MM).

Barley RNA microarray experiment
Two commercial barley varieties, Steptoe (a feed variety)6

Morex (a malting variety), were crossed to generate 150 doubled

haploid (DH) lines. Preparation of plant material and embryo

derived tissues for the microarray experiment can be found

elsewhere [20]. RNA was isolated from the two parental lines and

the 150 DH lines, processed and hybridized onto the Barley 1.0

Affymetrix microarray GeneChip. Technical details and protocols

for running the microarray experiment can be found at www.

biotech.iastate.edu/facilities/genechip/Genechip.htm. Each of

the parental lines was repeated three times but the DH lines were

not repeated in the microarray experiment. Of the 150 DH lines,

11 were removed for technical reasons. Thus, the barley RNA

data analyzed in the present study was extracted from 145 (6+139)

microarray chips. Altogether there were 22,801 different probe

sets on every chip. Each probe set was represented by 11 pairs of

perfect and mismatch hybridization values.

Sources of sequence data
A total of 10 genes were partially sequenced for both yeast

parental strains YH1A and YL1C. The sequence data had a total

length of 16.6 kb. A BLAST analysis revealed that the sequence
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covered 98 probes on the Affymetrix yeast 2.0 chip. Partial DNA

sequence information was available for a sample of 518 genes on

the Affymetrix barley 1.0 chip for both parents and 30 of 139 DH

lines. The sequence of 595.4 kb covered a total of 4690 probes on

the barley chip. The sequence data was collected from other

independent research projects conducted before the present study

and used as ‘‘gold-standard’’ to assess accuracy of the six methods

in identifying SFPs.

Detecting SFPs
In an Affymetrix GeneChip, each gene is usually represented by

a set of 11 probe pairs. Each of the probe pairs consists of a perfect

match (PM) probe and a mismatch (MM) probe. The latter serves

the role of distinguishing background noise from hybridization

signal. Recent studies have shown that MM values do also detect

hybridization signals [21–23], which raises the question about the

reliability of estimating background noise from MM values. We

thus consider PM values only in this analysis.

It has been shown that hybridization intensity of the j-th perfect

match probe in the i-th probe set from an Affymetrix GeneChip

can be modelled properly as a multiplicative model as given below

PMij~ji|djzeij ð1Þ

[13] and [9]. In equation (1), ji represents the model-based

expression index of the probe set i, dj measures binding affinity

between the transcript and probe j and eij is a normally distributed

residual variable of the model.

We consider a mating design in which two parental lines or

strains are crossed to generate n offspring individuals. Genomic

DNA or RNA samples are collected from the parents and offspring

and hybridized to Affymetrix oligo-microarray chips. The

hybridization experiment is repeated l times for each of the

parents, whose genotypes are denoted by H and L respectively, but

done only once for each of the n offspring individuals. For

simplicity but without loss of generality, the perfect-match

hybridization signal may be represented by

PMXj~jX |dXjzej ð2Þ

with X = H or L. For each probe set, there are l|11 PM values

observed on each of the two parental genotypes and they can be

used to estimate the parameters in equation (2) through a

restrained iterative least-square algorithm with the constraint

P11

j~1

d2
Xj~11 as proposed in [13]. For instance, let d̂dHj

n o
j~1,...,11

and d̂dLj

n o
j~1,...,11

be the estimates of the 11 binding affinity

parameters for the two parental genotypes respectively, then one

calculates xj~d̂dHj

.
d̂dLj (j = 1, 2, …, 11). If the two parental

genotypes are identical in the probe sequences, xj will be expected

to take a value of 1.0 but deviate from the expectation if the j-th

probe bears a polymorphic sequence between the two parents. To

screen for the polymorphism bearing probe(s), i.e. single feature

polymorphisms, we calculate the first (q1) and the third (q3)

quartiles and inter-quartile range (i1{3) from xj

� �
j~1,2,...,11

. On

the basis of the calculated quartiles, the j-th probe is inferred to be

a candidate SFP if xjvq1{3i1{3 or xjwq3z3i1{3.

Genotyping SFPs
When an SFP is detected between the two parental lines, the next

step is to determine the genotypes of their offspring at the SFP. The

challenge in genotyping the offspring lies in that the offspring

individuals are not replicated in the microarray experiment so that

the binding affinity parameters can not be estimated independently

for each of these individuals. Nevertheless, the SFP genotype for one

of the individuals must be either H or L. Based on the argument, we

develop here a Bayesian approach to calculate the probability that a

particular individual has a genotype of H or L given its observed PM

value and the distribution of the binding affinities of the two

parental lines at the SFP.

We assume that binding affinity of each of the two parental

genotypes (X = H and L) follows a normal distribution with mean

and variance of mX and s2
X accordingly. Let dkj be the estimate of

binding affinity of the k-th offspring individual at the SFP probe j

and Gk denote genotype of the individual at the probe j. The

Bayesian probability has a form of

Pr Gk~HjmH ,s2
H ; mL,s2

L; dkj

� �

~
Pr Gk~Hf gf dkj

��mH ,s2
H ; mL,s2

L; Gk~H
� �

P
X~H,L Pr Gk~Xf gf dkj

��mH ,s2
H ; mL,s2

L; Gk~X
� �

~
f dkj

��mH ,s2
H ; Gk~H

� �
P

X~H,L f dkj

��mH ,s2
H ; mL,s2

L; Gk~X
� �

~
Q dkj{mH

� ��
sH

� �

Q dkj{mH

� ��
sH

� �
zQ dkj{mL

� ��
sL

� �

ð3Þ

because the offspring individual takes either of the parental

genotypes with an equal probability of K. In above equation,

f xj:ð Þ represents a conditional probability density function and

Q xð Þ is the probability density function of the standard normal

distribution.

We propose the use of the sample mean and variance as

approximations of mX and s2
X (X = H or L). For m hybridization

replicates for each of the parents, there are a total of m(m-1)/2

possible pairs of PM values. Each of these paired PM values may

be used to fit the model (1) and to generate an estimate of the

binding affinity, d̂d’Xj . The sample mean and variance are then

calculated from d̂d’Xj

0
s. We denote the sample means and variances

as m̂mX and ŝs2
X . It should be noted that the variance may be

underestimated because the data points are not completely

independent each other. However, this may become negligible

when the number of replicates, m, becomes large. To calculate the

conditional mean dX
kj~E dkj

��Gk~X
� �

(X = H or L), we fit all m

pairs of PM values (one from the conditional parent and the other

from the offspring) to the model (1) and calculate the mean, d̂dX
kj ,

from the m estimates of binding affinity. On the basis of these

estimates, we can numerically work out

pk~
Q d̂dH

kj{m̂mH

� �.
ŝsH

� �

Q d̂dH
kj{m̂mH

� �.
ŝsH

� �
zQ d̂dL

kj{m̂mL

� �.
ŝsL

� � ð4Þ

and infer the offspring individual has genotype H if pkw95% or

genotype L if pkƒ5%, otherwise its genotype is uncertain.

Computer programs and datasets
The programs developed to carry out the SFP diagnosis and

genotyping presented in this paper are written in FORTRAN-90

and their executable versions with instructions are available upon

request. We will make more user-friendly Windows-based

applications in the longer term. The datasets analysed here are

also available from the corresponding author.
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Supporting Information

Text S1 The supplementary text summarizes the key statistical

algorithms developed by the five other methods under comparison

in the present study for predicting single feature polymorphisms

from Affymetrix microarray data.

Found at: doi:10.1371/journal.pcbi.1000317.s001 (0.09 MB PDF)

Figure S1 Genetic linkage maps of 1,378 single feature

polymorphism markers identified from two barley commercial

varieties (Steptoe and Morex) and their 139 double haploid

offspring.

Found at: doi:10.1371/journal.pcbi.1000317.s002 (0.41 MB EPS)

Table S1 The number of SFPs called at different values of the

stringency parameter delta by Method 6 (Rostoks et al 2005,

Genome Biology 6, R54)

Found at: doi:10.1371/journal.pcbi.1000317.s003 (0.03 MB XLS)
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