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A B S T R A C T   

Objective: Extremely preterm birth has been associated with atypical visual and neural processing of faces, as well 
as differences in gray matter structure in visual processing areas relative to full-term peers. In particular, the right 
fusiform gyrus, a core visual area involved in face processing, has been shown to have structural and functional 
differences between preterm and full-term individuals from childhood through early adulthood. The current 
study used multiple neuroimaging modalities to build a machine learning model based on the right fusiform 
gyrus to classify extremely preterm birth status. 
Method: Extremely preterm adolescents (n = 20) and full-term peers (n = 24) underwent structural and func-
tional magnetic resonance imaging. Group differences in gray matter density, measured via voxel-based 
morphometry (VBM), and blood-oxygen level-dependent (BOLD) response to face stimuli were explored 
within the right fusiform. Using group difference clusters as seed regions, analyses investigating outgoing white 
matter streamlines, regional homogeneity, and functional connectivity during a face processing task and at rest 
were conducted. A data driven approach was utilized to determine the most discriminative combination of these 
features within a linear support vector machine classifier. 
Results: Group differences in two partially overlapping clusters emerged: one from the VBM analysis showing less 
density in the extremely preterm cohort and one from BOLD response to faces showing greater activation in the 
extremely preterm relative to full-term youth. A classifier fit to the data from the cluster identified in the BOLD 
analysis achieved an accuracy score of 88.64% when BOLD, gray matter density, regional homogeneity, and 
functional connectivity during the task and at rest were included. A classifier fit to the data from the cluster 
identified in the VBM analysis achieved an accuracy score of 95.45% when only BOLD, gray matter density, and 
regional homogeneity were included. 
Conclusion: Consistent with previous findings, we observed neural differences in extremely preterm youth in an 
area that plays an important role in face processing. Multimodal analyses revealed differences in structure, 
function, and connectivity that, when taken together, accurately distinguish extremely preterm from full-term 
born youth. Our findings suggest a compensatory role of the fusiform where less dense gray matter is coun-
tered by increased local BOLD signal. Importantly, sub-threshold differences in many modalities within the same 
region were informative when distinguishing between extremely preterm and full-term youth.   

1. Introduction 

Preterm birth, defined as birth at a gestational age < 37 weeks, is a 
common occurrence, affecting roughly 10% of newborns in the United 
States (Rogers and Hintz, 2016). Although survival rates of preterm (PT) 
infants have improved substantially, both physical and behavioral 

morbidities are common in this population across development (Janvier 
et al., 2013). In late childhood and adolescence, peer integration is one 
domain in which behavioral difficulties are particularly evident (Taylor, 
2020). Social difficulties, along with emotion regulation and attention 
problems, occur consistently in preterm populations and comprise the 
three prongs of the ‘preterm behavioral phenotype’ that characterizes 
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developmental difficulties in preterm children (Johnson and Marlow, 
2011). Specific dysfunction in social cognition and socio-emotional 
behavior are frequently reported even after other cognitive and 
emotional difficulties are accounted for (for review, see (Dean et al., 
2021). 

Over the past two decades, the neural substrates that underlie spe-
cific components of social cognition have been the focus of a great deal 
of neuroscience research (Stanley and Adolphs, 2013). Due to the 
extreme importance of sociality for the survival of social primates 
(including humans), specific neural systems are thought to have evolved 
for the processing of social signals—such as faces and voices—in addi-
tion to more complex social cognitive capacities like mentalizing, social 
valuation, and social memory (Adolphs, 2009; Blakemore, 2008; 
Brothers et al., 2002; Dunbar, 2009; Rushworth et al., 2013). Indeed, in 
addition to the classic ventral (what) and dorsal (where) visual streams, 
a third pathway was recently proposed along the superior temporal lobe 
in both human and non-human primates. In this pathway, social per-
cepts such as faces, body movements, and voices are thought to undergo 
neuronal processing which includes multimodal integration, valuation, 
and abstraction of social information (Pitcher and Ungerleider, 2021). 

The fusiform face area (FFA) is one of the earliest pathways into this 
social information processing stream (Pitcher and Ungerleider, 2021). 
The FFA is a functionally defined region in the fusiform gyrus along the 
ventral temporal lobe that selectively responds to faces relative to other 
similar visual categories (Haxby et al., 2002; Kanwisher and Yovel, 
2006). Substantial maturational refinements of the FFA occur across 
development and into adulthood (Germine et al., 2011; Nordt et al., 
2018). However, exposure to faces in early infancy is thought to be a 
particularly important window for tuning FFA responsiveness to faces 
(Fox et al., 2011; Maurer and Werker, 2013; Sugita, 2008), rendering it 
potentially especially vulnerable to the impact of preterm birth. 

Several recent studies have reported behavioral and perceptual dif-
ferences in infants, children, and adults who were born preterm that 
may relate to altered fusiform function (Fenoglio et al., 2017; Hasler 
et al., 2020; Healy et al., 2013; Mathewson et al., 2020). Throughout 
development, individuals born PT demonstrate differential processing of 
faces and social scenes. PT infants and children exhibit both a lack of 
preference to social information relative to non-social information and a 
different social orienting profile, with PT infants looking at the mouth 
more often than the eyes relative to full-term (FT) infants (Telford et al., 
2016). Specific deficits in face memory have also been found in PT in-
fants (Perez-Roche et al., 2017). This profile persists through childhood 
and into adulthood, where individuals born PT tend to process visual 
stimuli by focusing on features in isolation (local configuration) rather 
than tending to relate individual features to the rest of the scene (holistic 
approach) (Mathewson et al., 2020; Pavlova et al., 2021; Santos et al., 
2010). Local configural processing is associated with poorer perfor-
mance IQ, which may suggest a deficit in perceptual processing 
(Mathewson et al., 2020). 

In addition to these behavioral differences in face responding, 
several studies have also reported alterations in brain regions that un-
derlie face processing, including structural differences in the fusiform 
gyri (Bäuml et al., 2015; Healy et al., 2013; Meng et al., 2016; Nosarti 
et al., 2008; Shang et al., 2019) , as well as other emotional face pro-
cessing regions (Healy et al., 2013; Kesler et al., 2008; Nosarti et al., 
2008; Peterson et al., 2000). While the direction of these differences are 
inconsistent, the right fusiform is continually mentioned as having dif-
ferential gray matter volume than that of FT peers (Bäuml et al., 2015; 
Meng et al., 2016; Shang et al., 2019). Reduced functional responses 
have also been reported during exposure to faces in both PT infants (Frie 
et al., 2016) and older PT children (Mossad et al., 2020). In addition, 
alterations in the pattern of functional connectivity in social cognition 
regions has been demonstrated in PT individuals both at rest (Johns 
et al., 2019; Mossad et al., 2021; Papini et al., 2016) and during face 
processing tasks (Mossad et al., 2020; Sato et al., 2021) . 

While these studies have separately demonstrated differences in 

structure or function of the fusiform gyrus, a few recent studies have also 
begun to integrate differences in both structure and function using 
machine learning approaches. These multivariate models can integrate 
information from multiple voxels and even modalities, resulting in a 
more holistic representation of how the included features are interre-
lated. Studies have found partly overlapping regions of altered structure 
and neural activity at rest in PT youth in both the right fusiform (Shang 
et al., 2019) and the right ventral attention network (Bäuml et al., 2015). 
However, these studies did not examine face-processing functions per se. 
To address this limitation, the current study examined both gray matter 
density and blood-oxygen level-dependent (BOLD) response during face- 
processing within the right fusiform. As an exploratory follow up, a 
linear support vector machine was employed to distinguish extremely 
preterm (EPT, gestational age < 28 weeks) from FT youth based on 
several metrics of the structure and function of the fusiform gyrus. These 
metrics included gray matter density, BOLD signal during a face pro-
cessing task, the number of outgoing white matter streamlines from the 
right fusiform gyrus (rFG), and both local and brain wide functional 
connectivity during the task and at rest using the rFG as a seed region. 

2. Material and methods 

2.1. Participants 

Fifty-four youth were recruited to participate in this study. Partici-
pants included EPT (gestational age < 28 weeks) and FT (gestational age 
>= 37 weeks) adolescents. EPT youth were identified through a review 
of electronic medical records at a large urban children’s hospital for 
youth with a diagnosis of preterm birth. EPT youth were mailed a letter 
of invitation and were given 10 days to opt out before being called to 
assess interest. FT youth were recruited via digital flyers distributed to 
hospital staff. Study procedures were approved by the local institutional 
review board and written informed consent/assent was obtained from 
all participants prior to participation. All procedures were evaluated and 
approved based on guidance from the Office of Human Research Pro-
tections, consistent with ethical principles and codes. 

All participants were able to participate in the functional magnetic 
resonance imaging (fMRI) protocol, had normal or corrected vision, and 
were between the ages of 11–16 years (born between 2002 and 2008). 
Of the original 54 participants, 5 were excluded due to having a sibling 
also enrolled, four were excluded because they failed to complete the 
entire imaging protocol, and one was excluded due to a neuro-
developmental disorder. Of the participants with missing data, three 
were missing only resting state data, and one was missing data from all 
functional tasks. Importantly, although some radiologic abnormalities 
were detected in six participants (three in the EPT group), none had 
clinical MRI abnormalities in the rFG and all were kept in the analysis. 
Neurologic abnormalities were reported by a neuroradiologist and 
included pineal cyst, Chiari I, ventriculomegaly, and one case of ence-
phalomalacia in the thalamic regions. The final sample consisted of 44 
youth: 20 EPT and 24 FT youth. Basic demographic information of both 
groups including age, gender, race, ethnicity, birth weight, gestational 
age, and estimated yearly family income, a proxy for socioeconomic 
status, are reported in Table 1. Groups did not differ in age t(43) = 0.02, 
p = 0.99 or gender, χ2(1, N = 44) = 0.001, p = 0.97. All demographic 
variables were tested for homogeneity and all assumptions of normality 
were met except for birth weight (see Table 1). 

2.2. MRI data acquisition 

MRI data were collected on a Siemens 3 Tesla Prisma scanner using a 
64-channel head coil. The imaging protocol included a whole brain 
isotropic 3D T1-weighted anatomical scan (Magnetization prepared- 
rapid gradient echo; MPRAGE), a single shell acquisition diffusion 
weighted imaging (DWI) for tractographic analysis, and fMRI using echo 
planar imaging (EPI) acquisitions. All sequences included simultaneous 
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multi-slice acquisition. Imaging parameters for MPRAGE were: 1 mm3 

voxels, 160 sagittal slices, repetition time (TR) = 2300 ms, echo time 
(TE) = 2.98 ms, field of view (FOV) = 240 mm2. DWI sequences were 
collected in 64 directions with b = 0, TR = 1900 ms, TE = 62 ms, FOV =
240 mm2, 36 axial slices, and 0.92 mm × 0.92 mm × 4 mm voxels. 
Parameters for the functional scans were: 2.5 mm × 2.5 mm × 4 mm 
voxels, 36 axial slices, TR = 1500 ms, TE = 30 ms, FOV = 240 mm2. The 
face task (see section 2.3) involved 532 brain volumes acquired across 
two 6.5-minute runs. 246 brain volumes of resting state were also ac-
quired using the same parameters in a separate single 6.25-minute run. 
Due to changes made part way through data collection, a subset of 5 full- 
term participants’ resting state images were acquired using slightly 
different parameters: 3 mm × 3 mm × 4 mm voxels, 48 axial slices, TR =
2000 ms, TE = 28 ms, FOV = 240 mm2. 160 brain volumes were 
collected in a single 5.33-minute run. For the rest sequence, a visual 
fixation cross was displayed, and participants were instructed to keep 
their eyes open and rest for the entire sequence. 

2.3. Neuroimaging task 

The face processing task was an adaptation of a neuroimaging pro-
tocol used previously to assess neural systems employed during implicit 
judgements of trustworthiness and dominance (Engell et al., 2007; 
Oosterhof and Todorov, 2008; Todorov et al., 2011)). Stimuli were 
computer generated faces that varied on dimensions of dominance and 
trustworthiness from a large publicly available sample (Oosterhof and 
Todorov, 2008); https://tlab.uchicago.edu/). The task was ostensibly a 
face recognition task in which a set of 10 stimulus faces were shown 
followed by a single test face. Participants were asked to indicate via 
button press if the test face had appeared in the previous set of probes. 
All faces were presented for a 1 s duration. The inter-trial interval be-
tween stimulus faces was randomly set to 1.5 or 3.5 s and a 3 s response 
interval followed the test face. In total, 140 stimulus and 14 test faces 
were administered (see S1 for diagram). Both test and stimulus faces 
varied on dominance and trustworthiness dimensions. For the present 

purposes, all faces were collapsed across these dimensions and treated as 
a single category. 

2.4. Data processing and analysis 

2.4.1. T1-and DWI images 
The T1-weighted MPRAGE images underwent standard processing 

using the current version of Statistical Parametric Mapping (SPM12) 
software (Ashburner and Friston, 2000). This included 1) manual re- 
alignment to the anterior commissure, 2) segmentation into gray mat-
ter, white matter, and cerebrospinal fluid, 3) image registration, 
normalization, and modulation (Ashburner, 2007), 4) transformation to 
Montreal Neurological Institute (MNI) space, and 5) smoothing with a 
10 mm full width at half maximum (FWHM) isotropic Gaussian kernel. 
Group differences in gray matter density, measured via voxel-based 
morphometry (VBM), were then compared with a two-sample t-test 
that was masked to only include the rFG from the automated anatomical 
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Estimated total 
intracranial volume (ETIV) was calculated by adding gray matter, white 
matter, and cerebrospinal fluid volume for each participant. ETIV was 
included as a regressor of non-interest in the SPM12 second-level ana-
lyses. The results from these analyses generated a density map. Results 
were considered significant if they passed family-wise error correction at 
p < 0.05. 

DWI images underwent standard preprocessing including correction 
for both eddy current and motion with FSL’s fMRIB Diffusion Toolbox 
(v5.0). This was followed by probabilistic tractocographic analysis using 
Bayesian Estimation of Diffusion Parameters Obtained using Sampling 
Techniques (BEDPOSTx), which established diffusion parameters at 
each voxel (Behrens et al., 2007). A single b0 was obtained with the 
remaining 128b-values equal to 1000. 

2.4.2. Functional imaging 
EPI images from both the task and resting state scans were denoised 

using Automatic Removal of Motion Artifacts (AROMA) as described in 
(Pruim et al., 2015) and further preprocessed using standard pipelines in 
Analysis of Functional NeuroImaging (AFNI), version 18.1.02 and 
analyzed in AFNI, version 20.3.01 (Cox, 1996). Images were aligned to 
the anterior commissure/posterior commissure plane, co-registered to 
the T1 image, normalized non-linearly to the MNI template, and 
spatially smoothed with a Gaussian filter (FWHM, 6 mm kernel). Motion 
outliers were identified as volumes exceeding 1 mm Euclidean distance 
based on framewise change. Volumes in which more than 10% of voxels 
were signal outliers (as defined by AFNI 3dToutcount, based on median 
absolute deviation from the time series) were regressed out of the final 
model. Voxel-wise signal was scaled to a mean value of 100 and signal 
values above 200 were winsorized to 200 within each run. Nuisance 
regressors for motion (6 affine directions and their first-order de-
rivatives) and scanner drift (third polynomial) were also included. 

For task-based analysis, the hemodynamic response function was 
convolved with a basis function for the duration of face presentation. A 
separate regressor for test faces was included but test faces were 
regressed out of analyses. The fixation cross was displayed during inter- 
trial intervals and served as the implicit baseline: contrasts were thus 
non-test face stimuli relative to baseline. Although the stimuli in this 
task were designed to probe implicit responses to the dominance and 
trustworthiness of faces, the present analysis was focused on more 
rudimentary face processing, so we collapsed across dominance and 
trustworthiness dimensions and included only a single regressor for face 
presentation, excluding test faces, to maximize power. AFNI’s 3dttest++

was used to generate group comparisons using the face minus baseline 
contrast images produced at the individual participant level. Cluster size 
threshold corrections were estimated using the AFNI command 
3dClustsim, with two-sided thresholding and first-nearest neighbor 
clustering at α = 0.05 and p < 0.005. The resulting cluster threshold of 
33 voxels was applied to the results. 

Table 1 
Displays demographic information for the extremely preterm and full-term 
groups. Age, gender, birth weight, gestational age, and family income are re-
ported as mean (standard deviation); race and ethnicity data are reported as n 
(%). The “Non-White” racial category includes Black, Asian, and multi-race 
members. Birth weight and gestational age are both missing for 2 full-term 
participants. Birth weight is reported in grams. Gestational age is reported in 
weeks.  

Demographic information  

Preterm M(SD) Full-term M 
(SD) 

t scores Levene’s 
Statistic 

Age 13.45 (1.90) 13.46 (1.53) 0.02 0.19 
Birth weight 807.96 

(209.24) 
3382.62 
(348.02) 

28.69** 4.67* 

Gestational age 25.86 (1.26) 39.26 (1.12) 36.71** 0.49 
Median family 

income 
90578.83 
(34412.59) 

71312.00 
(32293.57) 

1.90 0.27  

Gender, racial, and ethnic information  

Preterm n (%) Full-term n 
(%) 

χ2  

Gender   0.08  
Female 10 (50.00) 13 (54.17)   
Male 10 (50.00) 11 (45.83)   
Race   6.19*  
Non-White 15 (75.00) 9 (37.50)   
White 5 (25.00) 15 (62.50)   
Ethnicity   1.55  
Hispanic/Latinx 3 (15.00) 1 (4.17)   
Non-Hispanic/ 

Latinx 
17 (85.00) 23 (95.83)    
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2.4.3. Secondary analyses 
Primary analysis involved assessment of group differences in gray 

matter density and BOLD response to faces in the rFG. Because signifi-
cant group differences were found on both measures, we further probed 
group differences with a series of secondary analyses using white matter 
tractography, regional homogeneity, and functional connectivity of 
BOLD signals during both task and rest. Results from all analyses were 
then included in machine learning classification analyses. These ana-
lyses were conducted to investigate how these features are interrelated 
with each other, yielding a more holistic depiction of differences in the 
rFG. 

2.4.3.1. Functional connectivity during task. Functional connectivity 
during the face processing task was examined using generalized psy-
chophysiological interaction (gPPI) analyses (McLaren et al., 2012). 
First, we used the observed significant group difference clusters in 
density and BOLD responses to define gPPI seed regions within the rFG. 
We then fit the same subject-level model (faces vs baseline) with the 
addition of activation in this seed, and an interaction between the seed 
and task to identify regions that were co-activated alongside the seed 
region. Whole brain group-level comparisons using AFNI’s 3dttest++

were then performed comparing these co-active regions. 
The resulting t-maps were masked to exclude the seed region and an 

uncorrected cluster-forming threshold of p < 0.005 and cluster size of 50 
voxels was used to reduce spurious findings. 

2.4.3.2. Functional connectivity at rest. A seed-based approach was used 
to analyze resting state functional connectivity (RS-FC) using AFNI’s 
3dGroupIncorr. As in the gPPI approach above, group difference clusters 
identified in the BOLD and VBM analyses were used as seed regions and 
the mean time series within each seed was correlated with the time se-
ries of all other voxels in the brain. Group difference clusters were 
formed via two-sample t-tests of FT minus EPT. To reduce spurious 
findings, a cluster-forming threshold of p < 0.005 and cluster size of 50 
voxels was used. Brain-wide group differences in both task-based and 
resting state connectivity patterns were subsequently input into the 
classifier model. 

2.4.3.3. White matter connectivity. An ROI-based tractography 
approach was used to calculate white matter connectivity from the 
group difference clusters from the BOLD and VBM analyses (seeds) to all 
other regions. Probabilistic tractography (probtrackx2; (Behrens et al., 
2007)) was used to determine streamline counts leaving each seed and 
terminating in any cortex gray matter (as labeled by Desikan-Killiany 
atlas (Desikan et al., 2006) after applying an exclusion mask of the 
right fusiform AAL atlas region to avoid short range white matter con-
nections. In this calculation, we enabled distance correction; in other 
words, the distance between each streamline’s origin and terminating 
location was used to weight the streamline count to avoid bias toward 
lower counts on longer-distance connections (Behrens et al., 2007). 

2.4.3.4. Regional homogeneity. Functional connectivity at rest among 
neighboring voxels was calculated using AFNI’s 3dReHo (Taylor and 
Saad, 2013) function. Regional homogeneity (ReHo) is a measure of 
similarity among neighboring voxels during fMRI. For each voxel within 
the seed region, ReHo was defined as the Kendall’s coefficient of 
concordance (KCC) of the time series including first-nearest neighbors, 
with higher values indicating higher temporal synchronization within 
those voxels and suggesting functional integrity of clusters. At the sub-
ject level, ReHo was calculated for each voxel within the seed regions, 
then smoothed with a Gaussian filter (FWHM, 6 mm kernel). Altered 
ReHo has been reported in several clinical populations, suggesting dis-
rupted communication among neighboring voxels (Cao et al., 2006; Liu 
et al., 2006; Liu et al., 2008). Additionally, there is evidence that many 
clusters of altered ReHo are positively correlated with alterations in gray 

matter density (Wang et al., 2012), revealing an important relationship 
that is well suited for multivariate analyses to further probe; in other 
words, more dense gray matter has been related to stronger temporal 
synchronization and including both of these features in a classification 
model may yield better results than if only one feature (density or ReHo) 
is included. 

2.4.4. Support vector machine classifications 
Finally, group difference clusters from the primary VBM and BOLD 

analyses were further probed using a linear support vector machine 
classifier (SVC). Data from all six modalities (gray matter density, BOLD 
signal, ReHo, outgoing white matter streamlines, and functional con-
nectivity during the task and at rest) were recomputed within each 
cluster and were included to investigate the impact of multiple modal-
ities from the rFG on the classification of EPT and FT youth. Group 
difference clusters from the primary analyses were probed in isolation to 
examine local differences within the rFG. Classifiers were built in Python 
3.8 using the default parameters in Scikit-Learn (version 0.23.1) 
(Pedregosa et al., 2011). For each cluster identified in the primary an-
alyses, input into the classifier included the recomputed 1) average 
BOLD signal to all faces; 2) average gray matter density; 3) average 
ReHo; 4) number of outgoing white matter streamlines; 5) functional 
connectivity between the cluster and any regions surviving the gPPI 
analysis; and 6) RS-FC between the cluster and any regions surviving the 
resting state analysis. 

All modalities were included in the classifications, regardless of 
significant univariate differences: thresholding was employed for the 
gPPI and RS-FC analyses solely as a feature reduction technique. Since 
gray matter density, BOLD, tractography, and ReHo analyses yielded 
one result per cluster instead of a whole brain t-map, no thresholding 
was necessary. By building multimodal classifiers and observing how 
adding data modalities can affect classification performance, we can 
understand whether different variables carry redundant or comple-
mentary information and identify those features that better differentiate 
the extremely preterm phenotype. A total of 32 classifiers, each repre-
senting different feature combinations, were evaluated for each cluster 
(see S2 and S3 for a full breakdown of classifier performance). These 
feature combinations consisted of the orthogonal combinations of all 
modalities as long as the primary cluster-derived modality was also 
included. Despite having binary target labels, the “chance” level in these 
complex data structures may not be equivalent to 50 percent: in such 
cases, permutation testing can be employed to address this issue. Per-
mutation testing is a non-parametric bootstrapping technique where the 
target labels (EPT or FT) are randomly shuffled to generate a null dis-
tribution. Our true accuracy was tested against this null distribution 
created from 1000 random iterations to obtain a p-value. 

The resulting classifier input was a z-scored 44-subject by 6-feature 
matrix. Model performance was evaluated using a leave-one- 
participant-out cross-validation scheme. For each cluster, all combina-
tions of features that included the modality from the primary cluster- 
forming analysis (i.e., VBM or BOLD) were evaluated to find which 
combination of features was best at distinguishing EPT from FT youth. 

3. Results 

3.1. Primary analyses 

3.1.1. Behavioral task performance 
Although behavioral performance was not considered in any ana-

lyses, group differences were compared to confirm similar levels of 
engagement between groups. Independent t-tests revealed no group 
differences in either behavioral accuracy t(43) = 1.04, p = 0.31 or re-
action time t(43) = -0.03, p = 0. 98 across task. Levene’s test indicated 
equal variances between groups for both behavioral accuracy (p = 0.69) 
and reaction time (p = 0.71). 

C. Grannis et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 35 (2022) 103078

5

3.1.2. Local neural response to face perception 
Comparison of BOLD response to faces vs baseline within the rFG 

revealed a cluster of greater activation in the EPT compared to FT youth 
(see Table 2 and Fig. 1). 

3.1.3. Gray matter density 
A cluster within the rFG that partially overlapped with the cluster of 

BOLD differences revealed the opposite pattern: greater density in FT 
relative to EPT youth (see Table 2 and Fig. 1). 

3.2. Secondary analyses 

3.2.1. Functional connectivity during task and at rest 
Functional connectivity during the face processing task and at rest 

were evaluated for each cluster found in the primary analyses. No re-
gions survived thresholding for the RS-FC analysis using either cluster as 
the seed region. Similarly, no regions survived thresholding in the gPPI 
analysis for the cluster identified from the BOLD analysis. However, a 
region in the prefrontal cortex (PFC) (see Table 2) survived the gPPI 
analysis when the seed from the VBM analyses was used. For consistency 
in the subsequent classifiers, results from each seed were masked using 
this identified PFC region from the gPPI analysis. 

For both clusters from the primary analyses, there were non- 
significant trends of greater RS-FC in FT relative to EPT youth. Simi-
larly, functional connectivity during the face processing task was non- 
significantly greater in FT relative to EPT youth in the cluster identi-
fied in the primary VBM analysis. 

3.2.2. White matter connectivity 
The number of outgoing white matter streamlines were calculated 

per person for each cluster from the primary analyses. Independent t- 
tests revealed no significant differences between groups in the cluster 
from the face processing task t(43) = 1.15, p = 0.26 or the cluster from 
the VBM task t(43) = 0.56, p = 0.58. Levene’s statistic indicated equal 
variances between groups for the number of outgoing white matter 
streamlines emanating from the cluster from the face processing task (p 
= 0.81) and the cluster from the VBM task (p = 0.52). 

3.2.3. Regional homogeneity 
ReHo was used to measure the functional integrity among neigh-

boring voxels during the resting state scan. Independent t-tests revealed 
no significant differences between groups in the cluster from the face 
processing task t(43) = 0.30, p = 0.77 or the cluster from the VBM task t 
(43) = − 1.26, p = 0.21. Levene’s statistic indicated equal variances 

between groups for the functional integrity of the cluster from the face 
processing task (p = 0.98), however unequal variances were indicated in 
the cluster from the VBM task (p = 0.04). 

3.2.4. Classifier performance 

3.2.4.1. Classification in the cluster of BOLD signal differences. When 
BOLD signal was considered in isolation for the cluster identified from 
the face processing task, the model had an accuracy score of 77.27% (SD 
= 41.90, p < 0.001). The addition of gray matter density increased ac-
curacy to 79.55% (SD = 40.34, p < 0.001). The further inclusion of ReHo 
and outgoing white matter streamlines yielded an accuracy of 84.09% 
(SD = 36.58, p < 0.001), and peak performance was achieved when all 
six modalities were included in the model with an accuracy of 88.64% 
(SD = 31.74, p < 0.001) (see Fig. 2a). The best performing classifier was 
re-computed excluding the two participants for which birth status was 
missing but assumed to be full-term (accuracy = 85.71, SD = 36.46, p- 
value < 0.001). Separately, this classifier was re-computed excluding 
the six participants with neurological abnormalities (accuracy =

84.21%, SD = 36.46, p-value < 0.01). 

3.2.4.2. Classification in the cluster of gray matter differences. When gray 
matter density was considered in isolation for the cluster identified from 
the density analysis, the model had an accuracy of 88.64% (SD = 31.74, 
p < 0.001). The next highest accuracy score was achieved when ReHo 
was added to the model, giving an accuracy score of 93.18% (SD =
25.21, p < 0.001). Peak performance was attained when density, ReHo, 
and BOLD were included in the model with an accuracy score of 95.45% 
(SD = 20.83, p < 0.001). When all six modalities were included, the 
model was only 84.09% (SD = 36.58, p < 0.001) accurate suggesting 
suboptimal overfitting of parameters (see Fig. 2b). The best performing 
classifier was re-computed excluding the two participants for which 
birth status was missing but assumed to be full-term (accuracy = 95.24, 
SD = 21.30, p-value < 0.001). Separately, this classifier was re- 
computed excluding the six participants with neurological abnormal-
ities (accuracy = 94.74, SD = 22.33, p-value < 0.001). 

3.2.4.3. Validation analyses. As a validation to our results, we recom-
puted the primary, secondary, and classification analyses within a leave- 
one-participant-out framework to control for data from the training set 
influencing the accuracy of the test set. Results from this validation are 
consistent with our reported results and a break-down of model per-
formance is included in Supplemental Materials (S4). As an additional 
validation examining the specificity of the right fusiform, secondary and 
classification analyses were computed within the left supplementary 
motor area, which we did not expect to be as discriminatory as the rFG. 
Classification accuracy within this region was drastically lower than in 
the rFG (see S5). 

4. Discussion 

Building on previous studies demonstrating that preterm birth is 
associated with alterations in behavioral performance and brain re-
sponses to perceptual processing of faces, the current study assessed the 
ability of machine learning to classify individuals into EPT or FT groups 
based solely on information from the rFG, a region important for face 
processing. Consistent with previous studies, we found differences in 
both structural and functional responses in the rFG of EPT and FT ado-
lescents using unimodal analyses. Results from the primary analyses 
revealed that EPT youth had less gray matter density and greater BOLD 
signal in response to faces compared to the FT youth. In addition, we 
were able to demonstrate a remarkable 95% classification accuracy 
using a variety of additional structural and functional metrics from this 
brain region. 

Beyond the negative relationship between density and BOLD signal, 

Table 2 
Displays the peak coordinates and t-scores for the BOLD (a) and VBM (b) ana-
lyses. Both analyses are set up as full-term minus extremely preterm. (c) displays 
the peak coordinates and t-score for the prefrontal cortex (PFC) cluster resulting 
from the gPPI analysis using the seed region resulting from the VBM analysis.  

(a) R Fusiform BOLD response to neutral faces 

Region X Y Z Cluster size T value P value 

R Fusiform − 45 47 − 15 67 − 3.50 0.01  

(b) R Fusiform gray matter density 

Region X Y Z Cluster size T value P value 

R Fusiform − 46 − 42 − 18 38 5.56 0.01  

(c) PFC cluster from gPPI analysis 

Region X Y Z Cluster size T value P value 

PFC –23 − 68 16 130 3.57 < 0.005* 

* The p-value reported for the PFC region from the gPPI analysis is uncorrected 
and does not survive cluster correction at α = 0.05. 
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the rFG showed different spatial patterns in BOLD response between 
groups. The neural response to faces was more localized in the FT youth 
and more widespread in the EPT youth (see Fig. 1). This pattern of 
activation paired with the finding of less dense gray matter and lack of 
task differences may suggest the rFG of EPT youth is more inefficient 

than that of FT youth. Although speculative, decreased gray matter 
density may necessitate the need for increased (more widespread) 
neural resources to generate similar levels of functional perception. 

Our speculation of inefficiency of the fusiform in EPT youth is further 
supported by our multimodal analyses (see Fig. 2). Findings of more 

Fig. 1. The mean differences in BOLD signal during a face processing task (top) and grey matter density (bottom) in the right fusiform. Full-term youth show a more 
restricted area of activation while the extremely preterm youth have stronger, more widespread activation. In contrast to the activation patterns, full-term youth had 
a cluster of more dense grey matter. Warmer colors in the brain images indicate areas in which full-term youth had relatively higher values compared to extremely 
preterm youth. 

Fig. 2. Radar plots represent the z-scored data for each modality. The left column (A) shows plots from the cluster of BOLD differences in the primary analysis. The 
right column (B) shows plots from the cluster of VBM differences in the primary analysis. The top row (1) displays the mean standardized value for each modality and 
the bottom row (2) displays the mean standardized value for only gray matter density, BOLD signal, and ReHo. A1 was the best combination of features for the cluster 
identified from the primary BOLD analysis, with a classification accuracy of 88.64%. B2 was the best combination of features for the cluster identified from the 
primary VBM analysis, with a classification accuracy of 95.45%. 
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focalized BOLD signal, more gray matter density, stronger functional 
connectivity to the PFC, and slightly more outgoing white matter 
streamlines may reflect greater efficiency of the fusiform in our FT 
sample. While this interpretation is consistent with our findings, fiber 
tracts are sensitive to many factors and increased white matter con-
nectivity might not necessarily represent greater efficiency and may also 
reflect a greater number of outgoing streamlines, which may be inter-
preted as decreased efficiency. An interesting observation is the increase 
in ReHo within the rFG in the EPT youth in the cluster identified from 
the primary VBM analysis. While this should be interpreted cautiously 
because it did not reach significance, the findings of greater BOLD signal 
and greater functional integrity (as measured by ReHo) in EPT youth 
may both reflect compensation for reductions in gray matter density. 
Additionally, the lack of connectivity to the PFC and relatively fewer 
outgoing white matter streamlines may support this interpretation of 
more intensive local processing and inefficient distribution to other 
brain areas. A similar pattern of structural reductions and compensatory 
BOLD hyperactivity has been reported in PT adults during a working 
memory task (Froudist-Walsh et al., 2015). Thus, this pattern may be a 
common form of ‘compensatory plasticity’ throughout the brain. 

Compensatory plasticity enables PT youth to function reasonably 
well under most circumstances, as evidenced by our lack of behavioral 
differences during the face processing task. However, subtle group dif-
ferences often appear when tasks become more challenging (Mathewson 
et al., 2020; Stern, 2002). For example, differences in social processing 
during difficult tasks, such as biological motion tasks, have been re-
ported (Taylor et al., 2009). These basic perceptual skills may have 
downstream consequences on more complex and slowly developing 
aspects of social cognition, like empathy and theory of mind, which 
some studies have found to be challenging for many PT children (Dean 
et al., 2021; Mossad et al., 2017). Further, the fusiform gyrus is involved 
in empathetic tasks, strengthening our hypothesis that alterations to its 
function and structure may be related to atypical social cognitive skills 
(Healy et al., 2013; Preston et al., 2007) . 

Many studies of neural development have used maturation of face 
processing as a model of experience-expectant maturation, in which the 
developmental trajectory is tuned by features encountered in the envi-
ronment during a sensitive developmental window (Fox et al., 2011; 
Leppänen and Nelson, 2009; Maurer and Werker, 2013). There are 
several aspects of the PT environment during early life that may pose 
challenges to this experience guided development. First, the coupling of 
face exposure and maturational state of the fusiform is asynchronous 
because environmental exposures occur much earlier in development for 
PT – and especially EPT – children than for FT youth. Second, EPT in-
fants typically spend much of their early life in the Neonatal Intense Care 
Unit or other institutional settings, which are quite different from the 
environment of the typical newborn. This may impact development of 
the visual system (Fontana et al., 2020). Finally, for reasons which are 
not presently clear, EPT infants appear to adopt a different pattern of 
visual engagement with faces in early life (Berdasco-Muñoz et al., 2019; 
Santos et al., 2010; Telford et al., 2016). It is unclear whether this is 
causal or consequent to early wiring of the fusiform, however these 
differences in visual engagement may suggest that the development of 
face processing brain regions may begin to follow a different develop-
mental trajectory relatively early in life. 

The current study offers novel insight into the important in-
terrelations between fusiform structure, function, and connectivity and 
the differences between EPT and FT youth. Our findings add to the 
growing body of literature investigating the neural correlates of altered 
social processing and social cognition and expand on the work limited 
work involving multiple modalities. While our comprehensive multi-
modal approach yields impressive results, our study is not without its 
limitations. First, despite being age and gender matched, our relatively 
small sample size may hinder generalizability to EPT youth outside of 
our sample. Indeed, previous studies have found conflicting findings 
regarding fusiform density among preterm (gestational age < 32 weeks) 

adolescents (Nosarti et al., 2008) and PT adults (Bäuml et al., 2015; 
Shang et al., 2019) , confirming the need for a large, representative 
sample. Relatedly, our convenience sample of FT youth recruited by 
flyers distributed to hospital staff may be a source of bias. It is unclear 
whether the group differences in the race of our samples reflects the 
different procedures used to recruit EPT and FT youth or if this reflects 
regional variation in race distributions of EPT and FT children. While 
estimated family income is an important factor in determining socio-
economic status, our lack of a complete measure detracts from our 
ability to accurately describe our samples. While future studies should 
include a representative sample from the community with no neurologic 
abnormalities, our sensitivity analyses suggest that the inclusion of these 
six participants did not hinder the current analyses. A second limitation 
is the cross-sectional design of our study. A longitudinal design is needed 
to further probe the developmental trajectory of the fusiform. The cur-
rent study is unable to shed light on whether the density difference in the 
fusiform is the result of injury due to premature birth or an experience 
driven reduction as a sequalae of altered stimuli processing (Cassia et al., 
2009). A third limitation is the use of neutral expression faces compared 
to a fixation cross. Without comparing to a non-face object, a possible 
interpretation of our findings is a difference in general visual perception 
instead of a specific alteration to face processing. Future studies should 
combine eye tracking with a fMRI face processing task to allow for direct 
comparison of neural activation and attention to faces. Further, the in-
clusion of five participants with different resting state scan acquisition 
parameters introduces a confound which future studies should avoid. 
Additionally, future work should use a multivariate approach to 
examine the relationship between brain structure, function, connectiv-
ity, and social outcomes. Despite these limitations, to our knowledge no 
other study has taken a multimodal approach to investigate fusiform 
differences in EPT and FT adolescents. A strength of this approach is to 
examine the cumulative impact of these features to form a more com-
plete picture of how EPT youth process visual stimuli. Used in a clinical 
setting, this multimodal approach may help inform decisions regarding 
behavioral therapy, although replication on an independent sample is 
needed. 

4.1. Conclusions 

The current study used novel multimodal machine learning methods 
to determine with 95% accuracy whether an individual was born 
extremely premature or not – solely based on information from the right 
fusiform. While reporting partially overlapping regions of structural and 
functional differences is not unusual in this population, this study is, to 
our knowledge, the first to use multiple modalities including gray and 
white matter, BOLD signal during a face processing task, and functional 
connectivity both during the task and at rest to examine the effects of 
EPT birth on face processing. Our findings are further evidence of the 
long-term consequences of preterm birth and suggest that youth born 
EPT may have a differential mechanism for processing social stimuli 
than FT born youth. 
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