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Abstract

Human SERPINA1 gene is located on chromosome 14q31-32.3 and is organized into three

(IA, IB, and IC) non-coding and four (II, III, IV, V) coding exons. This gene produces α1-anti-

trypsin (A1AT), a prototypical member of the serpin superfamily of proteins. We demon-

strate that human peripheral blood leukocytes express not only a product corresponding to

the transcript coding for the full-length A1AT protein but also two short transcripts (ST1C4

and ST1C5) of A1AT. In silico sequence analysis revealed that the last exon of the short

transcripts contains an Open Reading Frame (ORF) and thus putatively can produce pep-

tides. We found ST1C4 expression across different human tissues whereas ST1C5 was

mainly restricted to leukocytes, specifically neutrophils. A high up-regulation (10-fold) of

short transcripts was observed in isolated human blood neutrophils after activation with lipo-

polysaccharide. Parallel analyses by liquid chromatography-mass spectrometry identified

peptides corresponding to C-terminal region of A1AT in supernatants of activated but not

naïve neutrophils. Herein we report for the first time a tissue specific expression and regula-

tion of short transcripts of SERPINA1 gene, and the presence of C-terminal peptides in

supernatants from activated neutrophils, in vitro. This gives a novel insight into the studies

on the transcription of SERPINA1 gene.

Introduction

Gene expression is responsible for the synthesis of functional gene products, typically proteins.

The question of how many genes are present in the human genome led to the collection of

known protein-coding genes not only in the human genome but also in Arabidopsis, worm, fly

and mouse [1–4]. The findings revealed that there is a significantly greater amount of
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transcriptional output from genomes than anticipated by the collection of annotated protein-

coding transcripts [5]. New proteomic high-throughput technologies provide a strong evi-

dence of the existence of non-canonical protein isoforms generated by the translation outside

of the annotated protein-coding genes [6,7]. A variety of short open reading frames (ORFs),

long noncoding RNAs and pseudogenes are coding short transcripts [8,9], which may express

unrecognized biological functions.

The serpins (serine proteinase inhibitors) are proteins found in plants, animals, and viruses

[10–12]. These proteins participate in the regulation of the coagulation, fibrinolysis, comple-

ment activation, angiogenesis, apoptosis, inflammation, neoplasia, viral pathogenesis, among

others [13]. Human genome encodes 16 serpin clades, termed A to P. So far, 36 human serpins

have been identified, among which 29 have a primary function in the regulation of the proteo-

lytic activity. Mutations in serpin genes are associated with different human diseases, globally

named serpinopathies [14]. Alternative splicing results in multiple transcript variants of serpin

genes, however, to our knowledge; current databases contain no information about noncoding

transcripts in human serpins.

Human SERPINA1 gene is located on chromosome 14q31-32.3 [15], which covers approxi-

mately 12.2 kb, and has four coding exons, three untranslated exons and six introns. SER-
PINA1 gene is expressed and translated in different tissues, and encodes alpha1-antitrypsin

(A1AT), a prototypical member of the serpin superfamily of proteins. The regulation of A1AT

expression is controlled by different promoters and transcription start sites located in the

5’UTR of the gene [16–18]. In hepatocytes, transcription typically begins in exon 1C [17,19]

whereas in monocytes and macrophages A1AT transcribed mainly from exons 1A and 1B

[16,18,20]. One particular feature of SERPINA1 gene is its high transcriptional complexity i.e.

according to the Emsembl Genome Browser, human SERPINA1 gene has 19 transcripts (splice

variants), generated in a stimulus- and cell-type specific manner [21–23]. Different types of

alternative splicing mechanisms generate this complexity of transcripts, including exon skip-

ping and alternative 5’ and 3’ splice site usage. Most of the SERPINA1 transcript variants are

produced by the alternative splicing between the non-coding exons 1A, 1B and 1C.

Remarkably, a recent study on ovine SERPINA1 gene expression found short transcripts

lacking exons II or III [24]. Because the SERPINA1 gene exon and intron organization is simi-

lar among the species, theoretically short transcripts can also be present in human SERPINA1
gene. In support of our prediction, herein we identified novel short transcripts of SERPINA1
gene and provided evidence for tissue specific expression and regulation of these transcripts.

Materials and Methods

RNA extraction, cDNA synthesis and SERPINA1 expression analysis by

RT-PCR

Peripheral blood samples were obtained from subjects previously tested for A1ATD, and

informed consent for this study was signed. The study was approved by the ethics committee

of Instituto de Salud Carlos III. RNA isolation from peripheral blood leukocytes was per-

formed using RNAeasy kit (Quiagen) following manufacturer’s recommendations. The cDNA

synthesis was generated using the Maxima First Strand cDNA Synthesis kit (Thermo Scien-

tific). To amplify SERPINA1 transcripts, primers located in exon 1C: 1C_F:5’ctgtctcctc
agcttcaggc3’ and 1A: 1A_F:5’tgaggagagcaggaaaggaca3’were used in combina-

tion with a reverse primer located in exon V, EX5_R:5’ccatgaagaggggagacttgg3’.

The PCR was performed under the following conditions: 35 cycles of 94˚C for 45s, 60˚C for

45s, and 72˚C for 45s. Amplified products were visualized in 1–2% agarose gels. PCR products

were purified by using PCR purification Kit (Qiagen) and subsequently cloned into pGEM-T
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easy vector (Promega). Ligation reactions were used to transform DH5α competent cells.

Clones containing PCR products were selected by blue/white colony screening and standard

ampicillin selection. Positive transformants were analyzed by the PCR and sequenced using

SERPINA1 primers.

Quantification of ST1C4 and ST1C5 by QT-PCR

The expression levels of two short transcripts, ST1C4 and ST1C5, were independently analyzed

by real time quantitative PCR (qPCR). cDNA samples were diluted and amplified using Taq-

man Fast advance master mix in a 7500 Fast Real Time PCR System (Applied Biosystems) with

recommended PCR cycle conditions. To amplify the ST1C4 or ST1C5 transcripts two different

reactions were performed using boundary-spanning primers for the sequence covering the 1C-

exon4 junction ST1C4_F:5’tgggacagtgaatc/gtctgc3’or the spanning region between

1C-exon5, ST1C5v3_F:5’acctgggacagtgaatc/gccgtg3’ in combination with a reverse

primer in exon 5 for both reactions EX5_R:5’ccatgaagaggggagacttgg3’. Specific fluo-

rescent-labelled Taqman probes were selected from the Universal probe library, UPL, Roche.

UPL probe #57 was used for the ST1C4 transcript and the probe #3 was selected for the ST1C5

transcript. GUSB gene was used as an endogenous control to normalize the expression levels of

the transcripts. All experiments were performed in triplicate and data were analyzed by Applied

Biosystems 7500 software v2.0. Relative expression was calculated by using the comparative Ct

method and obtaining the fold-change value (ΔΔCt).

We also analyzed SERPINA1 full transcripts and compared these with expression of identi-

fied short transcripts. We individually analyzed alternative full transcripts generated by the use

of exons 1A, 1B and 1C by using primers and methods reported before [25].

ST1C4 and ST1C5 expression in cDNA samples from human tissues

We used a set of first-strand cDNAs from different tissues for analysis of short transcripts

ST1C4 and ST1C5. We analyzed 16 commercially available first-strand cDNAs from 16 differ-

ent human tissues (Human MTC Panel I and II, Clontech) as described before [25]. We per-

formed at least two experiments in triplicate for all tissues. We normalized the expression of

short transcript to the expression obtained in a leukocyte sample.

PBMCs and neutrophil isolation from human blood

Human Peripheral blood mononuclear cells (PBMCs) were isolated from blood of healthy vol-

unteers using Lymphosep discontinuous gradient centrifugation. PBMCs were re-suspended

at a density of 5 x 106 cells/ml in RPMI-1640 with 2 mM N-acetyl-L-alanyl-L-glutamine

(Gibco, Life Technologies) supplemented with 1% nonessential amino acids, 2% sodium pyru-

vate and 20 mM HEPES and plated. We incubated cells for 75 min at 37˚C and 5% CO2 to

allow monocytes to adhere to the cell culture plates. Afterwards, we removed non-adherent

cells by washing with PBS containing Mg2+ and Ca2+ (Gibco, Life Technologies) and fresh

medium was added. Next day, adherent PBMCs were used for experiments.

Neutrophils were isolated from the freshly obtained peripheral blood of healthy donors

using PolymorphoprepTM (Axis-Shield PoC AS, Oslo, Norway) according to the manufactur-

ers’ recommendations. The neutrophil purity was typically 98% as determined by cytospins

and cell viability was more than 90% according to trypan blue staining. Before starting the

experiment, neutrophils (3x106 per well) were always left alone for 30–40 min in cell culture

plates pre-coated with fetal calf serum.

Freshly isolated neutrophils were treated with 10 ng/ml LPS for 5h. In parallel, cells were

incubated with appropriate buffer.

Short Transcripts of SERPINA1 Gene
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Sample preparation and LC-MS analysis

C-10, C-21 and C-36 standard peptides (JPT, Innovative peptide solutions, Berlin, Germany)

were dissolved in RPMI Medium, to obtain a final concentration of 20 μM. All supernatants

from neutrophil cultures (controls and LPS-stimulated) were filtered using Microcon1 cen-

trifugal filters (Millipore Corporation, Bedford, MA, USA) with 10 kDa molecular weight cut-

off (MWCO), to remove any large protein and concentrate the C-terminal peptides. 100 μL ali-

quots of both standard solutions and real samples were acidified by addition of 2 μL of formic

acid (FA), to reach a final pH of about 3.0 was reached, and analyzed by LC-MS.

The LC-MS system (Thermo Finnigan, San Jose, CA, USA) consisted of a thermostated col-

umn oven Surveyor autosampler controlled at 25˚C; a quaternary gradient Surveyor MS

pump; a diode array detector and a Linear Trap Quadrupole (LTQ) mass spectrometer with

electrospray ionization ion source controlled by Xcalibur software 2.0.7. Analytes were sepa-

rated by RP-HPLC on a Jupiter (Phenomenex, Torrance, CA, USA) C18 column (150 x 2 mm,

4 μm, 90 Å particle size) using a linear gradient (2–60% solvent B in 60 min) in which solvent

A consisted of 0.1% aqueous FA and solvent B of acetonitrile (ACN) containing 0.1% FA.

Flow-rate was 0.2 mL/min. Mass spectra were generated in positive ion mode under constant

instrumental conditions: source voltage 5.0 kV, capillary voltage 46 V, sheath gas flow 40 (arbi-

trary units), auxiliary gas flow 10 (arbitrary units), sweep gas flow 1 (arbitrary units), capillary

temperature 200˚C, tube lens voltage –105 V. MS/MS spectra, obtained by CID studies in the

linear ion trap, were performed with an isolation width of 3 Th m/z, the activation amplitude

was 35% of ejection RF amplitude that corresponds to 1.58 V. All analyses were performed in

triplicate.

Statistical analysis

Statistical Package (SPSS for Windows, release 21.0) was used for the calculations. An indepen-

dent two-sample t-test was used. The differences in the means of cell experimental results were

analyzed for their statistical significance using one-way ANOVA combined with a multiple-

comparison procedure (Scheffe multiple range test), with an overall significance level of

p = 0.05.

Results and Discussion

Identification of SERPINA1 short transcripts

Peripheral blood leukocytes (e.g., T cells, monocytes, neutrophils) are readily accessible source

of information about the health and physiological state of an individual. By comparing gene

expression profiles of leukocytes, it is possible to identify genes with cell-type-specific expres-

sion patterns [26]. To analyze SERPINA1 expression we prepared cDNA from human periph-

eral blood leukocytes and used a primer pair for a full-length SERPINA1 cDNA (1C_F and

EX5_R) to amplify SERPINA1 transcripts. When agarose gels visualized amplified products,

we identified an expected 1279 bp band corresponding to the full-length A1AT. Cloning and

sequence analyses confirmed the presence of the exon 1C and four coding exons (exon II to

exon V) encoding the 419 aa A1AT protein. This transcript corresponded to the Ensembl tran-

script ENST00000393087.

Surprisingly, in addition to the 1279 bp band, we constantly observed two bands of few

hundred base pairs, one of which (a band of 358 bp) revealed a short transcript of A1AT (Fig

1). After cloning, several colonies were obtained and sequencing showed a transcript with

exon IC directly spliced to exon IV (ST1C4), with an exon structure IC-IV-V, lacking exons II

and III. A shortest band of 248 bp revealed another transcript of A1AT with exon IC joined to

Short Transcripts of SERPINA1 Gene
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exon V (ST1C5) missing exons II, III and IV. Sequence information of these new short tran-

scripts is available through the following NCBI GenBank accession numbers: KU535895

(ST1C4) and KU535894 (ST1C5).

Since SERPINA1 alternative splicing events typically occur among the first non-coding

exons, we investigated whether the newly identified short transcripts can possibly originate

from exon IA. Using a primer pair located in exon IA (1A_F) and exon V (EX5_R), three main

bands and few less evident bands occurred, similarly as we found by using the primer at exon

IC (1C_F) (Fig 1). The band of 1288 bp represented the full SERPINA1 transcript starting at

exon IA joined to the rest of coding exons II, III, IV and V. This transcript corresponded to

the Ensembl transcript ENST00000355814.

Several colonies expressing an intermediate band of 367 bp were obtained, and sequencing

analysis revealed a transcript structure containing exon IA directly bound to exons IV and V

(ST1A4) (Fig 1). Finally, a shortest band of 219 bp was also cloned and sequencing analysis

revealed a short transcript with exon IA directly joined to exon V, lacking all other coding

exons (ST1A5). Sequence information of SERPINA1 short transcripts transcribed from exon

IA can be accessed through NCBI GenBank accession numbers: KU755451 for the ST1A4

short transcript and KU755450 for the ST1A5 short transcript. Altogether, our results demon-

strate that short transcripts can be transcribed from either exon IC or IA.

A previous study on ovine SERPINA1 gene expression also found short transcripts lacking

exons II or III [24]. However, human genomic databases (Ensembl or UCSC genome browser)

do not contain information regarding short transcripts of SERPINA1 gene identified in this

study. Importantly, however, we found a RNA-Seq data set [27], presenting expression and

alternative splicing analysis of blood leukocytes derived from controls and Parkinson’s

patients. In this data set, we found evidence supporting the presence of SERPINA1 short tran-

scripts. By looking at single reads that map to different exon/exon junctions, we identified sev-

eral reads, in which the exon IA binds directly to exon IV, lacking the exons II and III, similar

as occurred with the transcript ST1A4 described here.

Interestingly, in silico analysis showed that, ST1C4 and ST1C5 as well as ST1A4 and ST1A5

have an ORF in exon V starting at Met351 of the full-length A1AT protein. Further analysis

confirmed that in the exon V, in addition to Met351, there are three more methionine

Fig 1. Expression of A1AT transcripts in peripheral blood cells. Gel electrophoresis shows cDNA

transcript variants of SERPINA1 gene generated from exon 1C or exon 1A. Three different transcripts were

obtained by PCR using RNA extracted from whole blood samples. The larger bands in both cases

corresponded to the full length SERPINA1 transcript. The other lower bands represent short transcripts of the

gene which included the untranslated exons IC or IA joined to exon IV and V (ST1C4 and ST1A4) or joined to

exon V (ST1C5 and ST1A5).

doi:10.1371/journal.pone.0170533.g001
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residues. Hence, putative peptides generated by the short transcripts would have the same C-

terminal amino acid sequence as a full-length A1AT protein, i.e. the last 44aa, 36aa, 21aa or

10aa, respectively (Fig 2).

Differential expression and induction of short ST1C4 and ST1C5

transcripts in blood monocytes and neutrophils by LPS

To investigate, if short transcripts of SERPINA1 gene have a tissue specific expression, we per-

formed a quantitative analysis focusing on ST1C4 and ST1C5, using cDNA from various

human tissues (Fig 3). These cDNA panels represent pooled tissue samples obtained from dif-

ferent individuals, and allow accurate and precise gene expression analysis in a wide variety of

tissues. The expression profile of the ST1C4 transcript resembled that known for A1AT, i.e.

showed a high expression in the liver, lung, kidney, small intestine and leukocytes [28,29]. In

contrast, the expression of ST1C5 transcripts was almost exclusively restricted to leukocytes.

As illustrated in Fig 3, ST1C5 was detected in the lung tissue but expression levels accounted

Fig 2. Sequence of the short transcript ST1C5. The exon 5 sequence has an ORF with several in frame

ATG codons (these are underlined). Predicted amino acid sequences of potential peptides of 44, 36, 21 and

10 amino acids, generated by these ORF are shown.

doi:10.1371/journal.pone.0170533.g002

Fig 3. Expression profiles in different tissue samples. Tissue expression of short transcripts ST1C4 and

ST1C5. Short transcripts show differential expression patterns in human tissues. Data were normalized to the

expression detected in leukocytes. Histograms represent mean expression values of two experiments

performed in triplicates. Bars represent mean (SD). LEUKO: Leukocytes, SMALL INT: Small Intestine,

PROST: Prostate.

doi:10.1371/journal.pone.0170533.g003
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only for 20% of those seen in leukocytes. Although the commercial cDNA panels used for

expression patterning of short transcripts provided a nice overview about their expression, it

would be useful to perform a more detailed analysis in future studies on specific tissues and

cell types.

Since leukocytes showed the highest expression of both ST1C4 and ST1C5 transcripts, we

next investigated the expression and regulation of these transcripts in human blood isolated

PBMCs and neutrophils. Cytokines, chemokines, hormones and other substances control the

constitutive and modulated expression, and release of A1AT [17,30]. These factors act specifi-

cally on different cell types and probably control the production of A1AT at sites of inflamma-

tion. Bacterial lipopolysaccharide (LPS), an inflammatory activator, modulates synthesis of

A1AT in different cell types including neutrophils, monocytes and macrophages [31]. There-

fore, we prepared freshly isolated human blood PBMCs and neutrophil cultures that were

stimulated or not with LPS. As expected, LPS increased the expression of the full A1AT tran-

script in PBMCs and neutrophils (Fig 4). In PBMCs, LPS also induced the ST1C4 expression

by 2 to 4-fold, but had no effects on ST1C5 expression. Neutrophils stimulated with LPS

showed increased expression of both ST1C4 (by 2 to 8-fold) and ST1C5 (by 5 to 10-fold) if

compared to non-treated neutrophils (Fig 4). In contrast, T lymphocytes did not show signifi-

cant expression of either A1AT or short transcripts (data not shown).

Detection of A1AT short C-terminal peptide in LPS-stimulated

neutrophils

Since A1AT short transcripts ST1C4 and ST1C5 were highly induced in LPS-stimulated neu-

trophils, we speculated about the possibility to find A1AT peptides in cell culture superna-

tants. Therefore, we next performed LC-MS analysis in the cell culture supernatants from

LPS-stimulated and not stimulated neutrophils. Fig 5A shows the MS profile obtained from

non- stimulated cells (used as “controls”) and Fig 5B and 5C illustrate the profiles of LPS-

stimulated cells (for 2 h), obtained from two independent experiments (indicated as LPS1

and LPS2). While non-stimulated cells (Fig 4A) do not show any significant signal, thus rep-

resenting essentially a “blank”, LPS-stimulated cells (Fig 5B and 5C) contain clear signatures

(at 690,25; 827,99; 1034,32 and 1378,88 m/z values) corresponding to the multiple-charged

ion ([M +H]6+; [M +H]5+; [M +H]4+; [M +H]3+, respectively) with 4134,9 ± 1 Da molecu-

lar size. Using the Swissprot database, this fragment unambiguously was identified as a C-

terminal fragment of A1AT (4135 Da). To “validate” this, in both experiments the real sam-

ple was spiked with an aliquot (1μM) of the standard, synthetic C-36 fragment. Not surpris-

ingly, the pattern of m/z signatures was identical to that described above, the only difference

being observed in the intensity of multiple-charged ions. Spiking the “blank” with 1 μM

standard C-36 fragment resulted in the generation of a MS profile that was similar to that

shown in Fig 5B and 5C. These latter results are presented in the inset of Fig 5A. The LC-MS

runs performed on supernatants of cells that were LPS-stimulated for 5 h in two indepen-

dent experiments gave essentially the same results to those illustrated in Fig 5 (data not

shown). The results from the LC-MS experiments for the first time identify C-terminal pep-

tide of A1AT in the supernatants of activated neutrophils but unfortunatelly do not answer

the question of whether this peptide is generated after endogenous A1AT cleavage or is

newly produced and secreted. Cleavage by target proteases (like neutrophil elastase or pro-

teinase 3) triggers a conformational change of A1AT, in which the N-terminal portion of the

reactive center loop spontaneously inserts into β-sheet A, carrying the bound protease (cova-

lently linked as an acyl-enzyme intermediate) along with it. Cleaved C-terminal part of the

A1AT typically remains bound to the larger part of the cleaved A1AT. However, under the
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specific conditions free C-terminal peptide of A1AT can be generated. For example, Fro-

chaux V et al. [32] shows that the reaction of placental A1AT with HTRA1 leads not only to

the formation of a protease-protease inhibitor complex, but also to the formation of cleavage

fragments of A1AT. Therefore, future studies are needed to specifically address the question

of whether the free C-terminal peptides of A1AT are newly synthesized.

So far, all described alternative human SERPINA1 transcripts differ regarding their sites of

transcription initiation and alternative splicing events, located in exons 1A, 1B and 1C at the

5’UTR region. Intriguingly, the new short transcripts variants are generated by alternative

splicing affecting the coding exons, and all short transcripts include the last exon V of the

gene. Exon V encodes a very important functional part of the A1AT protein, since it includes

the active site (Met358-Ser359) as part of the reactive site loop of the A1AT, which acts as a

Fig 4. Induction of SERPINA1 transcripts by LPS-treatment in isolated human blood PBMCs and

neutrophils. Treatment of PBMCs with 100 ng LPS (n = 4 independent experiments) and neutrophils with

10ng LPS for 5 hours (n = 4 independent experiments) resulted in enhanced expression of full transcripts (1A,

1B and 1C) and short transcripts ST1C4 and ST1C5 relatively to the basal expression in untreated cells

(represented by a dashed line). Box plots display variation in samples. Statistically significant values are

shown by *(p<0.05) or **(p<0.01).

doi:10.1371/journal.pone.0170533.g004
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docking site for binding and neutralizing neutrophil elastase [33]. Therefore, the 44 aa peptides

are expected to contain the active site region and protease inhibitory activity. In support, the

44-residue C-terminal fragment of A1AT detected in placenta and human tissues [34], was

found to inhibit neutrophil and pancreatic elastases [35].

A1AT is a well-known protease inhibitor forming stable complexes with a range of serine

proteases, specifically neutrophil elastase and proteinase 3. A1AT can be targeted by non-spe-

cific proteases (e.g., matrix metalloproteases) without the formation of stable inhibitor

Fig 5. MS profiles of supernatants from cell cultures. A) shows the MS spectrum of a control sample

(“blank”) and of the same sample spiked with an aliquot (1μM) of the standard C-36 fragment (inset). B and C)

show to the profiles of LPS-stimulated cells for 2 h, obtained from two different experiments (indicated as

LPS1 and LPS2). The multiple-charged ions ([M +H]6+; [M +H]5+; [M +H]4+; [M +H]3+), represent the

fragment with 4134,9 ± 1 Da molecular size. For further details, see the text.

doi:10.1371/journal.pone.0170533.g005
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complexes. (MEROPS database, http://merops.sanger.ac.uk/index.shtml). In both cases, inter-

action between A1AT and proteases results in cleavage of A1AT and irreversible loss of its

inhibitory activity. Different studies provide evidence that native A1AT is proteolytically pro-

cessed into firmly attached larger N-terminal and shorter C-terminal fragments [36]. Interest-

ingly, in contrast to the biochemical and structural data, variants of A1AT C-fragments have

been identified in human tissues and body fluids [34,37–41]. The physiological functions for

these peptides have also been reported, like NK-cell suppression (CRISPP peptide)[42], extra-

cellular matrix protection (SPAAT peptide) [43], pro- or anti-inflammatory immune modulat-

ing functions [41,44], and inhibition of HIV entry (VIRIP peptide) [40]. We previously

reported that the C-terminal fragment of A1AT forms amyloid-like fibrils, activates human

monocytes and is present in atherosclerotic plaques [45]. We also found C-terminal peptide of

A1AT in the lungs of patients with chronic obstructive pulmonary diseases. [41]. Recent stud-

ies revealed that so called cell-penetrating peptides (CPPs) have the ability to cross cellular

membranes, either alone or in association with bioactive cargo. The C-terminal peptide of

A1AT, 105Y (CSIPPEVKFNKPFVYLI), has been characterized as endoporter for siRNA [46].

Hence, the effects of C-terminal peptides in vivo are likely to be complex. It remains to be con-

firmed if free C-terminal peptide(s) of A1AT are exclusively produced from the A1AT cleavage

or/and can be de novo synthesized and released by different cells.

In summary, we identified novel short transcripts of the SERPINA1 gene, differentially

expressed in tissues and cells. We also provide experimental evidence that the expression of

short transcripts can be regulated and that C-terminal peptides of A1AT can be found in free

form in LPS stimulated neutrophils.
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