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As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to
protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of
granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and
function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm
neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and
inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils’ variable and diverse
phenotypes and functions in different contexts.

1. Introduction

Neutrophils, considered as infantrymen in the innate
immune system, are indispensable in safeguarding the
human body against encroaching microbes. Generated
from the bone marrow and circulating in the blood, neu-
trophils are a critical “second defense” standing behind
the skin and mucus. As precursor leukocytes to be enlisted
in inflammatory sites [1], neutrophils possess the capacity
of both intra- and extracellular mechanisms [2, 3] to elim-
inate pathogens. Their very singular features, such as short
lifespan and lower transcriptional activity, have led to the
overly simplistic perception that neutrophils are homoge-
nous with limited phenotypic heterogeneity. However, this
classical view has been greatly challenged since different
phenotypes have been reported in both healthy and path-
ologic conditions. Are all neutrophils generated equally?
Do they share the same phenotypes in different environ-
ments? For those who know the Face Changing Dance
of the traditional Chinese Sichuan Opera, you may appre-
ciate the dance as a metaphor for the heterogeneity of
neutrophil phenotype and function. Just like the perfor-
mance of face changing in the Chinese Sichuan Opera,
neutrophils resemble the actors expressing “different faces”
in different conditions and places. We describe the

elasticity of neutrophils and discuss their multiple pheno-
types and functions.

2. Growth Footprint of Neutrophils

As the major activity of the bone marrow, almost two-thirds
of the hematopoiesis is dedicated to myelopoiesis [2], and
around 1 to 2 × 1011 neutrophils are generated every day.
Granulopoiesis is under the control of multiple physiological
and environmental cues. The feedback loop of IL-23, IL-17A,
and granulocyte colony-stimulating growth factor (G-CSF) is
vital to the regulation of granulopoiesis. Phagocytosis of apo-
ptotic neutrophils by macrophage and dendritic cells
depresses their production of IL-23, thus reducing IL-17A
production by T cells and neutrophils, which leads to the
downregulation and reduced production of G-CSF by fibro-
blasts and epithelial cells and reduction in neutrophil gener-
ation [4–6]. By contrast, the upregulation of G-CSF increases
granulopoiesis and triggers chemokine receptor type 2
(CXCR2) signaling and neutrophil release [7, 8].

There are six stages in neutrophil maturation: myeloblast,
promyelocyte, myelocyte, metamyelocyte, band cell, and
polymorphonuclear [2], during which the transcription fac-
tors C/EBPα (CCAAT/enhancer-binding protein α) and
ETS (E26 transformation specific) family transcription factor

Hindawi
Journal of Immunology Research
Volume 2019, Article ID 8016254, 18 pages
https://doi.org/10.1155/2019/8016254

http://orcid.org/0000-0003-1830-2368
http://orcid.org/0000-0002-9234-5457
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8016254


PU.1 (Spi-1) play fundamental roles. The balance between
the two factors maintains a precise state of myeloid lineage
commitment to granulocyte or monocyte. PU.1 is essential
for monocyte differentiation while C/EBPα promotes granu-
locyte differentiation [9–14]. Other transcription factors
including Lef-1, Gfi-1, and C/EBPε are also conductive to ter-
minal granulopoiesis [15–20].

3. Circulating Neutrophils: Fresh and Aged

Though neutrophils have a half-life of only a few hours in
the circulation, they nonetheless achieve phenotypic het-
erogeneity before migrating into tissues (Figure 1). It has
been demonstrated in vivo that during a four-hour circula-
tion in peripheral blood from the beginning of release
from the bone marrow to clearance by macrophages,
neutrophils change phenotype and morphology. This pro-
gression from fresh, new bone marrow emigrants to aged
neutrophils and total number of neutrophils is regulated
in a circadian way [21, 22].

CXCR4 and CXCR2 play vital roles in neutrophil
retention in the bone marrow. WHIM syndrome (warts,
hypogammaglobulinemia, infections, and myelokathexis) is
clinically characterized by the overaccumulation of neutro-
phils in the bone marrow, which can be linked to a mutation
of CXCR4 [23]. Deletion of CXCR4 or CXCR2 has a similar
negative effect on neutrophil migration from the bone mar-
row to circulation [8, 24]. Neutrophils isolated from fresh
blood have upregulated CXCR4 expression after four hours’
culture in vivo [25]. Higher expression of CXCR4 combined
with lower expression of CD62L promotes longer residency
of neutrophils in circulation in vivo [21].

As for the aged neutrophils, some membrane molecules
are increased including CD11b (αM) and CD49d (α4), the
alpha subunits for integrins Mac-1 (macrophage-1 antigen,
also known as αMβ2), VLA4 (very late antigen 4, also known
as integrin α4), TLR4 (Toll-like receptor 4), ICAM-1 (inter-
cellular adhesion molecule-1), CD11c, CD24, and CD45
[26] while the expression of CD47, which promotes resis-
tance to phagocytosis by macrophages, is downregulated
[27]. The classical TLR4 agonist lipopolysaccharide (LPS)
induced age-dependent changes in human neonatal neutro-
phil migration, gene expression, and cytokine production
[28]. In addition to the aforementioned molecular changes,
morphological alterations appear as smaller size, fewer
granules, and a more multilobular nucleus in aged cells
[21]. Signaling pathways related to cell activation, pathogen
recognition, cell adhesion, migration, and apoptosis are mod-
ified in aged cells [27]. All of these changes assist mature cir-
culating neutrophil migration to inflamed tissues and are
consistent with similar changes in sites of inflammation [22].

4. Neutrophil Extravasation: Go to
the Battlefront

4.1. Rolling. The very distinguished feature of neutrophil
extravasation starts from the activation of endothelial cells.
There are two ways to initiate this process: endothelial cells
can be directly stimulated by surrounding pathogens or

indirectly, irritated by inflammatory mediators released from
resident leukocytes like tumor necrosis factor α (TNF-α), IL-
1 and IL-17 [1, 29, 30]. Subsequent changes take place on the
luminal surface where the expression of E-selectin, P-selec-
tin, and α and β integrins is upregulated. Binding between
cell surface glycoproteins such as P-selectin ligand 1 (PS
GL-1) and P-selectin helps capture free neutrophils to the
endothelial surface. E-selectin’s binding with E-selectin
ligand 1 (ESL-1) helps slow neutrophil rolling speed, and
binding with CD44 leads to a distribution change of PSGL-
1 and L-selectin, which also contributes to further reduction
of rolling speed [31].

4.2. Adhesion.When it comes to the process of firm adhesion,
β2 integrins LFA-1 (lymphocyte function-associated antigen
1, also known as αLβ2) and MAC-1, together with their
ligands ICAM-1 and ICAM-2 expressed on endothelial cells,
are key molecules. LFA-1 binding to ICAM-1 initiates a
change in neutrophil motion from rolling to adhesion [32],
while the activation of LFA-1 depends on signals from PS
GL-1 and CD44 [33]. The activation of G protein-coupled
chemokine receptors on neutrophils leads to the conforma-
tional change of cell surface integrins that subsequently show
higher affinity for their ligands. Overall, the link between
integrins and ligands strengthens outside-in signaling path-
ways in neutrophils, reinforcing adhesion and initiating cell
motility [1].

4.3. Crawling. When neutrophils set about migrating across
endothelial cell-cell junctions, it is necessary for them to
crawl effectively. Considering the existence of shear force
in the blood flow, crawling vertically would be the best
way to move to the endothelial junction. Neutrophils are
endowed with the capacity to crawl forward while retaining
the adhesion to the endothelial surface. Actin-binding pro-
teins such as mammalian actin-binding protein 1 (MABP1,
also known as drebrin-like protein) fortify the high-affinity
conformation of β2 integrins to strengthen the interactions
with actin, helping neutrophils crawl stably in the shear
condition of blood flow. Additional signaling by VAV1 (a
guanine exchange factor for the RHO-family GTPase
RAC) and CDC42 (cell division control protein 42, a major
regulator of organization of the actin cytoskeleton during
leukocyte polarization and migration) contributes to neu-
trophil crawling [34] although the detailed mechanism is
still poorly understood.

4.4. Migration. Particular types of migration include transmi-
gration, abluminal crawling, and interstitial migration to
inflamed foci. Transmigration requires integrins and CAMs
(ICAM-1, ICAM-2, and VCAM-1 (vascular cell adhesion
protein 1)) as well as various junctional proteins, such as
CD31, CD99, CD155, and CD157 (reviewed in reference
[1]). There are two ways for neutrophils to pass through
the endothelium: paracellular and transcellular. Most neutro-
phils use paracellular migration, which is more efficient and
takes shorter time (about 2-5 minutes) [1]. In transcellular
migration, endothelial cells form microvilli-like transmigrat-
ing cups, which are projections enriched in ICAM-1 and
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VCAM-1, and form cuplike structures around adherent neu-
trophils in an LFA1- and VLA4-dependent manner [35, 36].
What is noticeable is that transcellular migration differs from
phagocytosis, as the neutrophils ipso facto never enter the
intracellular compartment of the endothelial cell.

The endothelial basement membrane consists of extracel-
lular matrix containing collagens and laminins. Proteases in
granules (described in detail below) vest neutrophils with
the ability to break down the matrix, such as elastase (azuro-
phil granules), matrix metalloproteinase 8 (MMP8) (specific
granules), MMP9, and the membrane-attached matrix metal-
loproteinase MT6-MMP (gelatinase granules and secretory
vesicles) [37].

Rab small GTPases (guanosine triphosphatases) belong
to the Ras superfamily and are constituted of around 60
family members in mammals. Rab family GTPases play cru-
cial roles in intracellular membrane trafficking, including
cargo sorting, vesicle budding, vesicle formation, vesicle
transport, docking, tethering, and fusion of vesicles with
target membranes in eukaryotic cells [38]. Rab27, a Rab

subfamily member which is known to control granule exocy-
tosis, has two main isoforms: Rab27a and Rab27b. Rab27
stimulates elastase release from azurophilic granules, thus
allowing local proteolysis of the extracellular domain of
CD11b leading to uropod detachment and forward move-
ment of the cell [39, 40]. Neutrophil proteases and its intra-
cellular transport system provide the means for neutrophils
to move through the extracellular matrix, but the complete
mechanism for neutrophil extravasation requires more
detailed understanding.

5. Tissue-Residing Neutrophils: One or More?

Recruitment and migration to tissues and organs are
necessary processes for neutrophil functions [41]. Pattern
recognition receptors (PRRs) expressed in local epithelial,
endothelial, and dendritic cells, for example, such as TLRs
and NOD-like receptors (NLRs), can be triggered in both
infected and noninfected conditions. That activation may
lead to increased vascular permeability and the release of
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Figure 1: Heterogeneity of neutrophils in both health and disease. Neutrophils protect human body from intruding microbes and they
display notable heterogeneity in blood circulation and specific tissues. After being activated by pathogens, neutrophils extravasate from the
blood vessel and function as “immune soldiers” in various states. Intriguingly, neutrophils are verified to share multiple phenotypes and
functions in autoimmune disease and cancer as well as inflammation and infection.
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chemokines to enhance neutrophil recruitment to the
infected sites [1, 42]. So, neutrophils that have migrated into
tissues are more active as phagocytic cells than blood neutro-
phils. Do all of extravasated neutrophils share a similar phe-
notype, or are they per se heterogeneous? Recent evidence is
supportive for multiple phenotypes among tissue-resident
neutrophils in different organs and sites.

In contrast to other organs, the lung is outstanding
because of the high numbers of neutrophils that accumulate
in pulmonary vessels. β2-integrins and very late antigen 4
(VLA4) are necessary for neutrophil adhesion, transmigra-
tion, and diapedesis into the lung tissue [1]. The smaller
diameter of capillary segments (around 5μm) enhances
extravasation of neutrophils by strengthening vessel wall
contacts since the diameter of a neutrophil is 7-8μm. On
the other hand, that change shows a high demand for cell
deformation [43, 44], which is regulated by multiple factors,
including anaphylatoxin C5a, chemotactic tripeptide fMLF
(N-formyl-Met-Leu-Phe) [45–48], and bacterial compounds
such as LPS [45, 49]. Neutrophils that collect in vascular
lumen and interstitial space are maintained via a CXCR4-
dependent pathway [50]. Since CXCR4 is expressed on aged
neutrophils, it is possible that they may be the first class of
neutrophils to migrate into the lung tissue [22], so the lungs
may be a pool for primed neutrophils.

In the splenic marginal zone, neutrophils are capable of
producing various cytokines, particularly IL-21, BAFF,
APRIL, and TNF, to promote B cell differentiation and anti-
body production [51]. They are CD62Llow CD11bhiICAM-1hi

and also assist in the formation of neutrophil extracellular
traps (NETs, described in detail below) [52]. The neutrophils
in draining lymph nodes play a direct role in phagocytic
killing and also protect against pathogens via noncell auton-
omous mechanisms including the release of NETs, producing
matrix metalloproteases and participating in tissue remodel-
ing [53], but the further impact of macrophages removed by
neutrophils remains unknown. It has been well studied that
CXCR4 is necessary for the migration of neutrophils to
lymph nodes, but the function of CCR7 is controversial since
neutrophils could migrate to draining lymph nodes through
a CCR7-independent way following S. aureus infection
[54]. Besides, the β2 integrin CD11b also plays an important
role in neutrophil migration from lymph vessels to lymph
nodes [55], but the precise ligand has yet to be unambigu-
ously determined [56].

6. Neutrophil Clearance and
Reversed Migration

Tissue-resident neutrophils undergoing apoptosis are finally
removed by neighboring macrophages and dendritic cells
via phagocytosis. This process forms a feedback loop to con-
trol the production of neutrophils in the bone marrow [6].
Neutrophils in inflamed tissue are traditionally considered
to be phagocytosed by macrophages; however, other research
has indicated that extravasated neutrophils may reenter the
circulation [57–59]. These reverse migrating neutrophils are
considered to migrate to remote infected tissues to kill

microbes, which makes effective utilization of neutrophils’
capacity to fight infection [1].

7. Granule Biogenesis and Heterogeneity

Granules are the notable features of neutrophils containing
various proteins to kill phagocytosed pathogens and digest
damaged tissues. There exists a continuum in granules man-
ifesting as four unique subsets: primary (azurophilic) gran-
ules, containing myeloperoxidase (MPO) and azurocidin;
secondary (specific) granules, containing lactoferrin; tertiary
(gelatinase) granules, containing MMP9 (gelatinase B); and
secretory vesicles. The granule subsets are formed in a con-
secutive manner during granulopoiesis [60–62]. Azurophil
granules are formed at the promyelocyte stage; the other
granule subsets are formed during the myelocyte to seg-
mented cell stage differentiation. The chronologic heteroge-
neity of granulopoiesis can be clarified by a mechanism
called “targeting by timing of biosynthesis” [63], and the for-
mation of granule proteins is confined to relevant stages of
myelopoiesis. Intriguingly, the timing of granule subtype
synthesis is not entirely concomitant with the expression of
granule protein, which results in heterogeneity within gran-
ules of the same granule subtype [62].

In general terms, granule heterogeneity is revealed by
neutrophil function and activity. Primary granules accumu-
late multiple antibacterial proteins such as MPO, azurophil,
cathepsin G, elastase and proteinase 3, lysozyme [64, 65],
enzymatic inactive CAP37 (protease cationic antimicrobial
protein of 37 kDa) (azurocidin) [66], NSP4 (neutrophil ser-
ine protease 4) [67], and defensins. The heterogeneity of
azurophil granules exists in both protein content and subcel-
lular targeting [62]. Some granules are transported to the cell
surface while others fuse with phagosomes. A vital member
of the Rab GTPases family, Rab27, along with its effector,
mammalian uncoordinated 13-4 (Munc13-4), regulates the
targeting of the granules. Interaction between Rab27a and
Munc13-4 mediates degranulation of neutrophils [68–70].
Secretory granules express Rab27 and fuse with the cell
membrane via a Munc13-4-dependent mechanism, while
nonsecretory granules fuse with phagosomes by a Munc13-
4-independent mechanism. These mechanisms might be
associated with changes in concentration and types of pro-
teins contained in the fusing granules. It has been reported
that nonsecretory granules display a high concentration of
antibacterial proteins, 500mg/ml in phagosomes [71]. Some
azurophil granules are defensin-poor [72, 73], and the
amount of defensin also varies. Some classical membrane
proteins of lysosomes, such as LAMP (lysosome-associated
membrane proteins) I and II, are not expressed on azurophil
granules [74], which is inconsistent with the view that azuro-
phil granules are specialized lysosomes though LAMP III is
expressed on azurophil granules [65, 75, 76].

Secondary and tertiary granules have important roles in
neutrophil extravasation and migration, and they display a
morphological and functional continuum rather than discrete
subsets [65]. There are three combinations of surface markers
that define granule subsets. Specific granules are lactoferrin
+/gelatinase−; gelatinase granules are lactoferrin-/gelatinase
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+; and “hybrid” granules containing both features are lactofer-
rin+/gelatinase+. Although these granules contain similar
proteins, they play distinct roles in the anti-infection process.
Gelatinase granules, containing less antibacterial proteins like
lactoferrin, are exocytosed earlier than the other two kinds of
granules followedby thehybrid granules, and specific granules
are exocytosed last to kill microbes [77]. The chronology of
granule exocytosis is consistentwith granules’ functions:when
tissues are invaded by pathogens, antimicrobial granules are
released after those that aid migration. Rab GTPases seem to
play an important role in this process. The trafficking of
specific and gelatinase granules to the cellular membrane is
via the Rab27- and Munc13-4-dependent pathway [70].
Rab32 cycleswithRab38 and regulates the endosomal traffick-
ing system (reviewed in reference [78]). Rab32 has not only
been shown to be associated with the biogenesis of lysosome-
related organelles, such as melanosomes, but also in control-
ling intracellular pathogens. For example, Rab32 has also been
shown to be involved in the degradation of intracellular Lis-
teriamonocytogenes by enclosing the listeria that escapes from
listeria-containing vesicles into the cytoplasm [79]. Far more
understanding of the Rab32-mediated host defense mecha-
nism should be a focus for both cell biology and medical
research. Granule defects often lead to diseases, for example,
granules that are abnormally clustered and polarized partici-
pate in the development of specific granule deficiency (SGD).
Besides, the abnormally clustered granules also express pro-
teinswith limited glycol-epitopes [80], displaying abnormality
in function.

Secretory vesicles (SVs) are formed in the late stage of
neutrophil phenotypic progression and function to convey
membrane proteins to the cell surface. The proteins packaged
in SVs include the formyl peptide receptor 1 (fPR1), the
integrin Mac-1 (αMβ2), the phagocytic receptors CD16,
together with CXCR2, which are vital for extravasation and
migration [65]. These proteins enhance the expression of
integrins and chemotactic receptors on neutrophil mem-
brane and promotes neutrophil extravasation and function
in inflammatory tissues.

8. Neutrophil Heterogeneity in Disease

There is no doubt that neutrophils contribute vital function
in the development of disease with an indispensable role in
innate immunity. It is becoming obvious that neutrophils
are much more than microbe-killing cells in diseases, and
they display various phenotypes and perform a wide range
of functions (Table 1).

8.1. Autoimmune Disease. Considerable research has
provided evidence for the critical and profound role of neu-
trophils in promoting the development of autoimmune dis-
ease [81]. Those neutrophil functions include, but are not
limited to, the following mechanisms: secretion of various
cytokines and chemokines; formation of NETs that promote
the production of antibodies to citrullinated protein antigens
(ACPA) in rheumatoid arthritis or ds DNA in lupus;
increased expression of inflammation-related membrane
molecules; interactions between cells, including activation

of natural killer cells; and release of ROS (reactive oxygen
species) and proteases to regulate the release of cytokines
[82]. Representative autoimmune diseases are presented
below and a discussion of all diseases where neutrophils are
known to play a role is impractical and beyond the intended
scope of the review.

8.1.1. Rheumatoid Arthritis. Rheumatoid arthritis (RA) is a
systemic autoimmune disease characterized by synovial
inflammation and cartilage erosion. The view has been
expounded that activated neutrophils assemble in inflamed
joint tissues, synovial fluid, and involved skin tissues to
aggravate the development of RA [83–86]. Circulating neu-
trophils isolated from RA patients’ peripheral blood are func-
tionally different from those in healthy people, being primed
for immediate ROS release. First, there are some autologous
alteration in RA neutrophils themselves. For example, tran-
scriptional changes take place with high-level expression of
TNF [87] and myeloblastin [88], and the expression of
membrane-bound receptor activator of NF-κB (nuclear fac-
tor κB) ligand (RANKL) is also upregulated in synovial fluid
neutrophils [89, 90]. Microenvironmental factors also con-
tribute to strengthen the specific function of RA neutrophils.
In the synovial cavity, cytokines like TNF-α, IL-8, and
granulocyte-macrophage colony-stimulating factor (GM-
CSF) [91, 92] help delay the apoptosis of neutrophils and
promote neutrophil activation and release of granules [93].
As a result, these stimulated neutrophils secrete various kinds
of cytokines and chemokines such as RANKL and BAFF (B
cell-activating factor) to activate osteoclasts and B lympho-
cytes [89, 94] and upregulate the transcription of major his-
tocompatibility complex (MHC) II molecules [95], which
may contribute to CD4+ T cell activation. All these changes
contribute to initiating the advancement of inflammation.
In addition, neutrophils at the pannus cartilage junction
aggravate matrix degradation through the secretion of
MMP-8, MMP-9, neutrophil elastase, cathepsin G, and pro-
teinase 3 [96], all of which have a significant link to cartilage
damage in RA. The granule proteins, such as collagenase,
gelatinase, and elastase, in RA neutrophils were found in high
concentrations and are largely responsible for cartilage and
tissue damage [82]. The high concentration of synovial fluid
calgranulins induces protease release from specific and gela-
tinase granules, as well as secretory vesicles [97].

To date, the synovial neutrophils display activating sur-
face markers as CD11b/CD18, CD43, CD63, CD35, CD55,
CD66, and CD45 [98–101]. Even though the RA neutrophils
are unique for delayed apoptosis, increased ROS release, and
intensified intracellular transport, there have been no
straightforward evidence or special surface markers for RA-
related neutrophils to identify them as a distinct or unique
subtype. Despite that, it is conclusive that RA neutrophils
have a distinct phenotype compared with neutrophils in
other functional states.

8.1.2. Systemic Lupus Erythematosus. Systemic lupus erythe-
matosus (SLE) is considered to be a disease with defects in
both innate and adaptive immune regulation [102], which
is characterized by the production of autoantibodies to
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Table 1: Neutrophils’ phenotypes and functions in different states.

States Representative phenotype Function Reference

Health

Neutrophils in
circulation

CXCR4highCXCR2highCD62Llow Migration [21, 23]

Aged neutrophils CD11b+CD49d+Mac-1+VLA-4+ICAM-1+TLR4+CD47low
Migration

Anti-inflammation
Resistance to phagocytosis

[26–28]

Tissue-resident
neutrophils

Lung β2 integrins, VLA4+CXCR4+
Adhesion

Transmigration
Deformation

[1, 22,
50]

Spleen CD62Llow CD11bhi ICAM-1hi, CD11b+, CXCR4+, CCR7+
Migration

Activated apoptosis
[51, 52,
54, 55]

Disease

Autoimmune disease

RA CD11b/CD18+CD43+CD63+CD35+CD55+CD45+CD66+
Complement regulation

Adhesion
Inflammatory activation

[88–96,
98–101]

SLE LDGs:CD15+CD14lowCD10+CD16+CD31+CD11c+G-CSFR+GM-CSFR+

Inflammatory activation
Activated apoptosis

Correlated with disease
activity

[85, 109–
113]

MS TLR2+fMLPR+IL-8R+CD43+ Activated apoptosis [117]

EAE ICAM-1+
Autoimmune
demyelination

[118]

DM PSGL-1+
Dysfunction in

neutrophil-endothelial
interaction

[119]

Cancer

Typical clusters

G-MDSC CD14-CD11b+CD15+CD66b+HLA-DR-CD33+ —
[118,
119]

TAN CD66b+CD15+CD16+CD11b+HLA-DR− Arg-1+
N1: antitumoral function

N2: support tumor
progression

[130,
131]

Melanoma High expression of β2 integrins
Transmigration
N2 activation

[137]

Metastases CD11b+Ly6G+ N2 activation [138]

GC CD66b+
Associated with GC

prognosis
[140]

HCC CD66b+ Proinflammatory activation [141]

Lung tumor CD62Llow CD54high N1 activation [142]

Colorectal tumor
CD45+Lin−HLA-DR−CD11b+CD33+ CD66b+ N2 activation [143]

ALL Altered expression of CD10, CD33, CD13, CD15/CD65, and CD123
No correlation with clinical

features
[147]

HNSCC CD16highCD62Ldim
N1 activation

Correlated with increased
survival rate

[148]
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nuclear antigens and immune complex-induced chronic
inflammation [103]. Evidence over the last few years have
implicated an influential role for neutrophils in the patho-
genesis of SLE. Lupus neutrophils display impaired phago-
cytic capabilities and reduced ability to be removed by the
C1q/calreticulin/CD91 pathway [104] as well as abnormal
oxidative activity [105–107]. In contrast with RA neutro-
phils, there are increased numbers of apoptotic neutrophils
in SLE, which are related to disease activity and serum levels
of anti-double-stranded DNA (anti-dsDNA) antibody.
Anti-dsDNA and anti-SS/B antibodies can modulate neutro-
phil cell death and function [108]. The phenotypic character-
istics of SLE neutrophils include enhanced apoptosis,
secondary necrosis, and impaired phagocytic capabilities.
Neutrophils in SLE also have enhanced NET formation and
impaired NET degradation (discussed later).

A distinct subpopulation of neutrophils in SLE is the
low-density granulocytes (LDGs) that have attracted much
attention in recent years. Although LDGs have been well
researched in various autoimmune diseases including
idiopathic arthritis [109] and antineutrophil cytoplasmic
antibody-associated (ANCA) vasculitis [110] and infections
including tuberculosis [111], this review will focus on LDGs
in SLE. Lupus LDGs are mononuclear, not polymorphonu-
clear, cells and included in almost all stages of granulocyte
development. They have an enhanced capacity to synthesize
proinflammatory cytokines such as interferon gamma
(IFN-γ) [112, 113]. FACS (fluorescence-activated cell
sorting) distinguished LDGs from monocytes by their high
expression of CD15 and low expression of CD14, compared

to monocytes. In addition, LDGs express CD10, CD16,
CD31, CD11c, G-CSFR, and GM-CSFR. Activated lupus
LDGs also have surface molecules of CD11b and CD66b
[85, 113]. The most prominent characteristic of LDG is
similarity in surface markers with a mature neutrophil phe-
notype (e.g., CD10) but differ the common neutrophil phe-
notype in the nuclear morphology, which tends to show an
immature neutrophil nuclear phenotype. Gene array studies
have shown higher mRNA levels of various immune-
stimulatory bactericidal proteins and alarmins present in
azurophilic granules in the LDGs [112]. Considering that
the levels of mRNAs encoding neutrophil serine proteases
are highest at the promyelocytic stage in the bone marrow
and reduced as granulocytes mature, some investigators hold
the view that lupus LDGs are actually immature neutrophils
[114]. Since LDGs have both “old” surface markers and
“young” nucleus, it is worthy to consider whether lupus
LDGs constitute a new subset of neutrophils, or they are just
activated cells with distinct phenotype and function. As for
their function, LDGs secrete high levels of proinflammatory
cytokines including TNF-α, IL-6, IL-8, and type I and II IFNs
to set up inflammation in lupus. Midgley and Beresford also
reported that increased numbers of LDGs in SLE were posi-
tively correlated with disease activity and anti-dsDNA anti-
body level in juvenile SLE (JSLE) [115]. Intriguingly, LDGs
are demonstrated to have an effect on cardiovascular inci-
dents in SLE patients. Noncalcified plaque burden (NCB) in
SLE patients is positively associated with LDGs, and activated
LDGs might contribute to vascular damage and unstable cor-
onary plaque [116].

Table 1: Continued.

States Representative phenotype Function Reference

Infection/inflammation

MRSA

PMN-1 CD49dhighCD11blow TLR2highTLR4highTLR5highTLR8high
Protective activation

IL-2 producing
[149]

PMN-2 CD49dlowCD11bhigh TLR2highTLR4highTLR7highTLR9high
Aggravating infection

IL-10 producing
[149]

Gout — Activated apoptosis
[151–
154]

Bronchiectasis CD11bhighCD62Lhigh
Inflammatory activation
Impaired phagocytosis

[155,
156]

Sepsis ICAM-1+
Accumulation and

migration
Inflammatory activation

[157]

Acute viral respiratory
tract infection

CD49d+CysLTR1+ Further researches needed [158]

Asthma CD66chigh
A biological feature of

treatment-resistant asthma
[155]

Cirrhotic EMR2+CD11bhighCD181highCD182highCD49dhigh
Inflammatory activation
Impaired phagocytosis;
correlated with infectious

complications

[158]

RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; MS: multiple sclerosis; EAE: autoimmune encephalomyelitis; DM: diabetes mellitus; G-MDSC:
granulocytic myeloid-derived suppressor cells; TAN: tumor-associated neutrophils; GC: gastric cancer; HCC: hepatocellular carcinoma; ALL: acute
lymphoblastic leukemia; HNSCC: head and neck squamous cell carcinoma; MRSA: methicillin-resistant Staphylococcus aureus.
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8.1.3. Multiple Sclerosis. Multiple sclerosis (MS) is character-
ized by autoimmune inflammation and demyelinating dis-
ease. Naegele et al. verified that neutrophils in MS patients
had a distinct phenotype with high expression of TLR-2,
fMLP (N-formyl-methionyl-leucyl-phenylalanine) receptor,
IL-8 receptor, and CD43, as well as displaying a primed state
based on reduced apoptosis, stronger degranulation, oxida-
tive burst, and higher levels of NETs in serum [117]. The
phenotypic changes might be associated with the specific
function of MS neutrophils, and the chronic inflammatory
environment in MS may contribute to the active phenotype,
thus verifying the elasticity of neutrophils in different states
and inflammatory environments.

The experimental autoimmune encephalomyelitis (EAE)
model is usually used to study MS. A cluster of extravascular
ICAM1+ neutrophils in the central nervous system (CNS) in
EAE has been demonstrated to gain macrophage-like proper-
ties after extravasation. These neutrophils play a role in
autoimmune demyelination [118]. They may support inflam-
mation via the enzyme aspartic peptidase retroviral-like 1
(ASPRV1, also knownas SASPase), which is, as demonstrated,
only expressed byneutrophils in the immune andnervous sys-
tems and is necessary for the transition from acute to chronic
inflammation in EAE [118]. The expression of ICAM1 distin-
guishes extravascular macrophage-like neutrophils in EAE,
and ICAM1+ and ICAM1– neutrophils are differentially dis-
tributed in the spinal cord, which again illustrates neutrophil
heterogeneity and plasticity.

8.1.4. Diabetes Mellitus. Diabetes mellitus (DM) is a proto-
typic dysmetabolic syndrome characterized by chronic
hyperglycemia and remains a serious health burden globally.
Hou et al. used a rapid microfluidic sorting analysis to isolate
a subset of rolling neutrophils from peripheral blood of DM
patients. This high-rolling-speed phenotype of neutrophil
was clarified to have significant correlation with neutrophil
activation, rolling ligand P-selectin glycoprotein ligand 1
(PSGL-1) expression, and cardiovascular risk factors associ-
ated with DM [119]. Morphologic changes were also detected
with a higher number of elongated cells in this high-rolling-
speed neutrophil group. A conclusion can be deduced that
phenotypic changes in DM patients lead to impaired initial
neutrophil capture and rolling, which result in dysfunction
in neutrophil-endothelial interaction.

8.2. Cancer.Neutrophils have a vital and controversial role in
the development of cancer. Circulating PMNs in patients and
experimental animals with cancer can be divided into at least
three groups according to their density: high-density neutro-
phils (HDNs), low-density neutrophils (LDNs), which
display a segmented nuclear, mature morphology, and gran-
ulocytic myeloid-derived suppressor cells (G-MDSCs) with
immature morphology [120], and CD14-/CD11b+/CD15+/
CD66b+/HLA-DR-/CD33+ cell surface phenotype [121].
LDNs and HDNs commonly show distinct levels of
CD11b+ expression. A group of sediment granulocytes from
renal cell carcinoma patients, which share the same density
as PBMC, has higher levels of CD11b+ and CD66b+ com-
pared to HDNs. LDNs were less segmented than the

normal-density PMNs although both of them express mem-
brane markers of CD11b+ and CD66b+ [122]. MDSCs, on the
other hand, are much more heterogeneous among different
individuals and can be separated into three groups as
CD16+/CD11b+, CD16-/CD11b+, and CD16-/Cd11b- [123].
The number of circulating neutrophils is increased in both
tumor-bearing mouse models and patients with tumor pro-
gression [124]. A general mechanism for this phenomenon
could be that cytokines produced within the tumor induce
the release of G-CSF [125], IL-1, and IL-6 [126]. Tumor-
infiltrating neutrophils are considered an independent prog-
nostic factor in tumor recurrence [127–129].

Tissue tumor-associated neutrophils (TAN), tradition-
ally divided into N1 and N2 neutrophils, share a similar sur-
face phenotype with circulating neutrophils including
CD66b+, CD15+, CD16+, CD11b+, HLA-DR−, and arginase-
1+ (Arg-1). Recent research indicates that the function of
TANs varies in different disease states [130, 131]. To be more
specific, N1 neutrophils have antitumor function, whereas
N2 neutrophils support tumor progression [131]. Since these
findings are mostly reported in murine models [124], the
nature and biological function of N1 and N2 phenotypes in
tumor immunity and progression need better understanding
in humans.

The transition of the TAN phenotype and neutrophil
dysfunction are strongly influenced by endogenous cytokines
released in the tumor microenvironment. Zou et al. [132]
found increased numbers of neutrophils in peripheral blood,
enhanced tumor infiltration by TANs, and a N2 phenotype
transition of infiltrating neutrophils in vivo. These changes
in neutrophil number and phenotype were induced by
IL-35, which has a high expression in tumor issue. This pro-
cess is initiated by IL-35-induced production of IL-1β and
IL-17. IL-17, serving as a protumorigenic factor, is capable
of upregulating the expression of IL-6 and G-CSF as well as
energizing the recruitment of neutrophils into the tumor
immune microenvironment [120]. IL-35 also downregulates
TNF-related apoptosis-inducing ligand (TRAIL) expression
to enhance the proangiogenic function of neutrophils [132],
strengthening tumor growth and disease progression. So, a
conclusion can be drawn that the N2 phenotype of TANs
in cancer is, at least in part if not wholly, a consequence of
IL-35 production by not only tumor cells but also stroma
cells and immune cells [133, 134]. Tumor-associated inflam-
mation of neutrophils is also modulated by NK cells. NK cells
might act as inhibitors of vascular endothelial growth
factor-A (VEGF-A) expression by neutrophils via an
IFN-γ-stimulated pathway that promotes angiogenesis and,
consequently, tumor growth. A higher production of
TGF-β was also observed in NK cell–depleted tumors,
given that TGF-β would promote the tumorigenic N2 phe-
notype [135]. Distant regulation was also found. A unique
subset of tumor-infiltrating SiglecFhigh (Sialic acid-binding
immunoglobulin-type lectin) neutrophils was verified to
display cancer-promoting properties. The SiglecFhigh tumor-
infiltrating neutrophils in lung cancer are sustained remotely
by bone-resident osteocalcin-expressing (Ocn+) osteoblastic
cells.This groupofneutrophils is considered tobe effector cells
inosteoblast-drivenprotumoralresponses[136].
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The interesting function of TANs to facilitate metastasis
formation has been well studied. A research of melanoma
revealed that tumor cells synthesized IL-8 to upregulate the
expression of β2 integrin on neutrophils, thus enhancing
the neutrophil–melanoma cells’ interaction with ICAM-1.
This function accelerated the transmigration of melanoma
cells through the endothelium. IL-8 also contributes to neu-
trophil retention in the lung tissue [137]. Additionally, TANs
may support the survival and dissemination of tumor cells.
CD11b+/Ly6G+ TANs improve intraluminal survival of
tumor cells by inhibiting NK cell function. In addition, the
secretion of IL1β and matrix metalloproteinases from neu-
trophils enhances the extravasation of tumor cells [138]. It
seems that CD11b+/Ly6G+ TANs in metastases tend to be
N2 phenotype. But intriguingly, this effect can be reversed
by TGF-β blockade in the tumor microenvironment, which
induces CD11b+/Ly6G+ neutrophils to display an antitumor
phenotype [131]. These findings indicate that the phenotype
of TAN may be altered artificially from N2 to N1, depending
on the tumor microenvironment, thus manifesting the
remarkable flexibility and heterogeneity of neutrophils.

CD66b is a very important molecule among TAN surface
markers. Huang et al. [139] clarified that CD66b+ TANs are
significantly increased in number in gastric cancer (GC)
and are independently associated with GC prognosis.
CD163+ TAMs (tumor-associated macrophages) combined
with CD66b+ TANs could serve as a precise marker to predict
the prognosis of GC patients. CD66b+ TANs are also found
in hepatocellular carcinoma (HCC). They exhibit high
expression of programmed cell-death ligand 1 (PDL1), IL8,
TNFα, and CCL2 but a low expression of CD62L. The upreg-
ulation of PDL1 could be a key molecule to maintain the sur-
vival and function of activated TANs through an IL6-
STAT3-PDL1 signaling cascade driven by cancer-associated
fibroblasts (CAFs) [140]. Increased survival rate in colorectal
cancer is also associated with CD66b+ TAN infiltration, and
these neutrophils enhance the activation of CD8+ T cells in
cocultural system [141], which might function as antitumor
cells and have a positive effect on the prognosis of patients.

Much detail of TAN functions has been derived from
research in animal models, but research on the function of
human TANs is controversial. There have been two contro-
versial reports on human TAN’s immunosuppressive capac-
ity. Eruslanov et al. [142] isolated TANs from digested
human lung tumors. These TANs displayed a phenotype of
CD62LlowCD54hi and produced a number of proinflamma-
tory cytokines that enhanced T cell proliferation and IFN-γ
production. Wu et al. [143], on the other hand, collected
TANs from colorectal tumor tissue that presented a pheno-
type of CD45+Lin−HLADR−CD11b+CD33+CD66b+, which
was similar to the classical neutrophil morphology. Those
TANs produced arginase 1 and ROS and downregulated T
cell proliferation and IFN-γ production. One possible expla-
nation for the different results could be that different tumor
microenvironments may determine the TAN’s heterogeneity
in both phenotype and function.

Although neutrophils have historically not been consid-
ered as MHC class II APC, they are now well established as
being able to express MHC class II under certain conditions

and function as “atypical” APC [144]. Yuan et al. [145] clar-
ified that CXCL1-induced, tumor-infiltrated neutrophils
have increased expression of MPO (myeloperoxidase) and
Fas/FasL (also known as CD95/CD95L), which may be
involved in TAN-mediated inhibition of CD4+ and CD8+

T cells. TANs displaying characteristics of both neutrophils
and antigen-presenting cells (APCs) were identified in
early-stage human lung cancer [146]. These hybrid neutro-
phils defined as CD11b+Arg-1+CD66b+CD15+HLA-DR+-

CD14+ have the capacity to trigger antitumor T cell
responses as well as cross-present antigens, which builds
an intriguing connection between innate and adaptive
immunity. Cohort studies on TAN phenotypes and func-
tions have generated considerable phenotypic data on
TAN in different human cancers. Changes to neutrophil
membrane markers in childhood acute lymphoblastic
leukemia (ALL) were reported in a 118 BCP-ALL cohort
study [147]. Around 77% of the cases showed altered
markers, including CD10 (53%), CD33 (34%), CD13
(15%), CD15/CD65 (10%), and CD123 (7%), although no
correlation was found between altered markers and clinical
features. So, the biological relevance of the abnormal
phenotypes has yet to be resolved. Another cohort study
[148] in head and neck squamous cell carcinoma (HNSCC)
patients verified the antitumor function of CD16highCD62L
dim neutrophils. The CD16highCD62Ldim neutrophils inhib-
ited migration and proliferation and induced apoptosis of
cancer cells via NET formation. An increased proportion of
CD16highCD62Ldim neutrophils was correlatedwith increased
survival rate in that cohort. The role of neutrophils, particu-
larly tumor-infiltrating neutrophils, in inhibiting or promot-
ing tumor growth and the variation in phenotypes associated
with the disparate functions, is emphasis of the remarkable
heterogeneity and plasticity of neutrophils.

8.3. Inflammation. As the vanguard of immune cells in
sites of inflammation, it is not surprising for neutrophils
to switch into different phenotypes with multiple functions
during infection and inflammation. Specific functions are
usually associated with altered phenotypes, thus defining
prominent functional subpopulations adapted to the
microenvironment and characteristics of relevant innate
or adaptive immune stimuli.

Infection and inflammation related neutrophils show
quite different characteristics with those in other diseases
and may have great heterogeneity even in the same microen-
vironment. In the condition of methicillin-resistant Staphylo-
coccus aureus (MRSA) infection, two distinct subsets of
neutrophils named PMN-1 and PMN-2 were first reported
in 2004 [149]. PMN-1 neutrophils were characterized as
CD49dhighCD11blow with upregulated expression of TLR2,
TLR4, TLR5, and TLR8, while PMN-2 cells were CD
49dlowCD11bhigh with upregulated TLR2, TLR4, TLR7, and
TLR9. There was also functional heterogeneity in cytokine
secretion between PMN-1 and PMN-2. PMN-1 were
prone to IL-2 production while PMN-2 were prone to
IL-10. Suppression of PMN-2 or enhancement of PMN-1
led to the protection of immunocompromised hosts
against MRSA infection.
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Gout is an acute inflammatory disease mostly presenting
with symptoms of joint swelling, redness, and pain attributed
to the precipitation of uric acid in the form of monosodium
urate(MSU)crystals [150] thatstimulate inflammationmainly
in joints. MSU crystals stimulate a NALP3 inflammasome-
dependent acute inflammation [134]. Numerous chemokines
are released into affected, inflamed sites, such as CXCR2,
CXCL-8,CXCL-1,CXCL-2,andCXCL-3[151], inducingaccu-
mulation of neutrophils and release and aggregation of NETs.
TherolethatNETsplayingoutseemstobeprotective.MSUcrys-
tals are embedded within NET chromatin, and proteins from
granules including serine proteases associatedwithNETs help
degrade inflammatory cytokines [152]. NETs also have an
anti-inflammatory function by blocking further accumulation
of neutrophils through lactoferrin synthesis [153]. MSU-
induced NETs are enriched for actin and are less sensitive to
DNasedegradation[154].Distinctly,NETscontributetotheres-
olutionof inflammationingout.

Only a few neutrophils are maintained in the lung in
normal homeostatic conditions. Bronchiectasis is a predom-
inantly neutrophilic condition. Circulating neutrophils in
bronchiectasis have a significantly prolonged lifespan,
delayed apoptosis, increased CD62L shedding, upregulated
CD11b expression, increased myeloperoxidase release, and
impaired phagocytosis and killing of Pseudomonas aerugi-
nosa (PAO1) that is associated with a worse outcome [155].
These aberrant functional activities of neutrophils in bron-
chiectasis indicate an attenuated capacity for bacterial elimi-
nation. Neutrophils overexpressing ICAM-1 had enhanced
effector functions including phagocytosis and reactive oxy-
gen species (ROS) generation [156]. An increased number
of ICAM-1+ neutrophils were shown to accumulate in the
lung tissue during sepsis, leading to acute respiratory distress
syndrome (ARDS). The abnormal accumulation of ICAM-1+

neutrophils was related to cold-inducible RNA-binding pro-
tein (CIRP), a damage-associated molecular pattern (DAMP)
[157]. CD49d+ CysLTR1+ (cysteinyl leukotriene receptor 1)
neutrophils isolated during acute viral respiratory tract infec-
tion produced TNF, CCL2, and CCL5 and were necessary for
the complete development of postviral atopic disease [158].
However, further research is needed to validate the function
of this group of neutrophils. CEACAM6high (CEACM6,
nonspecific cross-reacting antigen, also known as CD66c)
neutrophils were isolated from bronchi in severe asthma
patients and were considered to be a vital biological feature
of treatment-resistant severe asthma [159]. The expression
of CEACAM6 protein was upregulated in both bronchi
epithelial cells and lamina propria neutrophils in patients
with severe asthma. Homophilic binding of CEACAM6 to
N-domain CEACAM6 peptides could potentially enhance
neutrophil activation with the generation of superoxide
[158] potentially contributing to neutrophil activation and
epithelial damage as well as respiratory dysfunction in
asthma [155].

Circulating neutrophils from visceral leishmaniasis
patients have been shown to have reduced CXCL8 expres-
sion but increased IL-10 and arginase-1 expression with
enhanced capacity to phagocytose Leishmania spp. pro-
mastigotes [160]. These functions may support an

immunosuppressive role of neutrophils in active visceral
leishmaniasis, but prominent phenotypic markers for this
subset of neutrophils are unknown.

In a cohort liver cirrhotic study in 2016 [161], EMR2high

(EGF-like molecule containing mucin-like hormone receptor
2) neutrophils were verified to be associated with disease
severity and to predict the rate of mortality in cirrhotic
patients. These EMR2-expressing neutrophils displayed an
activated phenotype with a higher-level expression of activa-
tion molecules such as CD11b, CD181, CD182, and CD49d,
but these neutrophils also showed deranged function includ-
ing increased resting oxidative burst and impaired phagocyto-
sis ability. Besides, EMR2high neutrophils were also correlated
with higher mortalities in cirrhotic patients. Thus, these neu-
trophils can be considered as a significant parameter to predict
the outcome of liver cirrhosis in patients.

9. Neutrophils and NETs

An alternative pathway for the death of neutrophils besides
necrosis or apoptosis is the formation of NETs. NETs are
extracellular strands of unwound chromatin in complex
granule proteins including those with inflammatory and
bactericidal activity. The NET granule proteins include
neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin
G, lactoferrin, pentraxin 3, gelatinase, proteinase 3,
peptidoglycan-binding proteins, and DNA-free histones
[162]. There are at least 24 neutrophil proteins associated
with NET formation according to mass spectrometry analy-
sis [163]. Classical NET formation pathways include activa-
tion of integrins and Toll-like receptors (TLR) in response
to bacterial-associated pathogen-associated molecular pat-
terns (PAMPs) [164]. The prominent mechanism of NET
formation is dependent on ROS and the Raf/MERK/ERK
(rapidly accelerated fibrosarcoma (Raf)/mitogen-activated
protein kinase ERK kinase (MERK)/extracellular signal-
regulated kinase (ERK)) pathway. After neutrophil activa-
tion, nicotinamide adenine dinucleotide phosphate oxidase
(NOX) increases via protein kinase C (PKC), resulting in
cytosolic calcium intake, peptidyl arginase deaminase 4
(PAD4) activation, and chromatin decondensation. When
cytosolic calcium increases, PAD4 activation and chromatin
decondensation occur [165]. Secondly, ROS promotes the
loss of the nuclear membrane. Then chromatin spreads
throughout the cytoplasm together with cytoplasmic and
granule proteins and finally NETs are released out of the cell.
Another mechanism independent of ROS and the Raf/MER-
K/ERK pathway evolves through three stages: nuclear enve-
lope growth and vesicle release, nuclear decondensation,
and nuclear envelope disruption [166]. The NETosis,
although not unique to neutrophils, is bona fide a well-
recognized and important phenomenon in neutrophil
function, so this section will discuss NETs and NETosis
in detail in diseases where they are recognized as particu-
larly important.

9.1. NETs in Inflammation and Infection. It is generally
considered that NET formation plays a positive role in atten-
uating inflammation during infection since neutrophils
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primed by microbiota are more prone to form NETs [26]. A
UK cohort study [167] identified neutrophil dysfunction in
sepsis that included significantly decreased NET formation
accompanied by defects in neutrophil migration and delayed
apoptosis. These abnormal changes forebode poor outcomes
with increased 30-day and 90-day mortality. In addition,
NETs appeared to display a positive role in Streptococcus suis
serotype 2 (SS2) infection. Although SS2 biofilms are capable
of inhibiting NET formation, NETs derived from neutrophils
stimulated by planktonic bacteria and host inflammatory fac-
tors still display the ability to eliminate bacterial biofilms
[168]. This research elucidates a novel view on the battles
between NETs and bacterial biofilms. In the examples of bac-
terial infection cited above, NETs have a protective function.
In other types of infection, NETs may have a deleterious
effect. NET formation was associated with Sendai virus
(Sev) infection and amplified early inflammation in the lung
in the Sev-induced asthma model, consequently priming an
inflammatory cascade, immune cell activation, and airway
remodeling [169]. Neutrophil-derived cysteine protease
dipeptidyl peptidase I (DPPI) is an important mediator in
NET formation, and inflammatory conditions such as sepsis
were less severe in the absence of DPPI [170]. To summarize,
the role of NETs in infection and inflammation is variable
and dependent upon the activating stimulus.

Findings described above identify the value of NETs as
potential new biomarkers of disease activity, prognosis, and
NETosis as potential therapeutic targets. Future studies are
needed to illustrate and understand the detailed mechanisms
and relationships between NETs and diseases.

9.2. NETs in Autoimmune Disease. The function of NETs in
autoimmunity has been reviewed recently [133]. Externalized
DNA is a DAMP with potent innate immune-activating
potential, and it is more resistant to degradation [171]. The
persistence of nuclear components encompassed in NETs,
particularly DNA, creates a potent source of autoantigens.
Apoptotic neutrophils in the circulation could also be a source
of autoantigens in SLE patients. These autoantigens such as
dsDNA and cathelicidin (LL-37) show an increased level in
peripheral blood and correlate with disease activity in SLE
patients [172].NETs released fromLDGsdisplayedhigh levels
of autoantigens and immune-stimulating molecules, includ-
ingMMP-9,α- andβ-defensins, andLL-37 [112], and the abil-
ity for SLE patients to clear NETs is impaired [173]. A high
level of type I IFN, which enhances autoimmune B cell activa-
tion, is a critical feature in SLE [174, 175] and is correlatedwith
demethylated CpG DNA, LL-37, and other NET contents, all
of which upregulate type I IFN expression by plasmacytoid
dendritic cells (pDC) [176]. These processes initiate a progres-
sive cycle to inducemoreNETs that stimulatemore type I IFN
production and exacerbated chronic inflammation and B cell
activation and autoantibody production. The inhibition of
FcgRII, NADPH (nicotinamide adenine dinucleotide phos-
phate) oxidase, or TLR7 are inhibitors ofNETs [177]. All these
findings have provided new insights into the role of neutro-
phils andNETosis in the generation of the type I IFN signature
in SLE. As such, neutrophils andNETosis are potential targets
for future therapeutics.

9.3. NETs in Cancer.NETs are per se a double-edged sword.
NETs could induce the proliferation and malignant trans-
formation of B cells toward malignant lymphoma via NF-κB
signaling [178], and in addition, some NET-induced cyto-
kines reveal a relationship between NETs and tumor devel-
opment. IL-8 has been demonstrated to play a role in both
NET generation and angiogenesis as well as tumor progres-
sion [179, 180], and granulocyte colony-stimulating growth
factor (G-CSF) was also demonstrated to be associated with
tumor generation [181]. Notably, NETs may play a crucial
role in hematogenous metastasis. It has been verified that
metastatic breast cancer cells induced neutrophils to form
NETs, which enhanced tumor cell growth in target organs
[182]. Kanamaru et al. found that CD66+ mature LDNs were
observed to cluster in the peritoneal cavity within patients
who underwent laparotomy due to gastric cancer. These
LDNs released NETs with the typical features of threadlike
structures positive for nucleic acid staining, histones, and
myeloperoxidase [183]. In vitro experiments indicated that
tumor cells attached to NETs did not die but continued to
proliferate. Additionally, it was verified that NETs helped
upregulate the level of MMP-9 to degrade extracellular
matrix, which facilitated tumor invasion [1]. These findings
support the conclusion that NETs may enhance the cluster-
ing and growth of free tumor cells.

Recently, intriguing discoveries of an association between
cancer thrombosis and NETs have drawn attention. It has
been reported that NETosis was associated with microcircu-
latory thrombosis [184] leading to thromboembolic compli-
cations in cancer. Spontaneous intestinal tumorigenesis was
verified to correlate with the accumulation of N2 phenotype
LDGs, as well as NET formation and hypercoagulation. The
potential mechanism was inferred that stimuli such as circu-
lating LPS could upregulate complement C3a receptor on
neutrophils. C3aR plays an important role in NETosis [185]
since C3a-activated neutrophils become more susceptible to
NETosis. This process aggravated thrombus formation,
which induced a N2 phenotype in the neutrophils. These
neutrophils underwent spontaneous NETosis, further exac-
erbating hypercoagulation and initiating a progressive cycle
[186]. In another way, NETs could cooperate with tumor-
derived exosomes to induce the establishment of venous
and arterial thrombus formation in breast cancer [187]
through the stimulation of platelet aggregation, activation
of contact pathways, and degradation of natural coagulation
inhibitors [188, 189]. More detailed research on these associ-
ated mechanisms is still on the exploratory stage.

10. Conclusion

The brand-new discoveries of neutrophil plasticity in various
conditions broaden the horizon that neutrophils are not just
simple reproductions. They display strong heterogeneity in
morphology and function in both healthy and disease
circumstances including infection, tumorigenesis, tumor
immunity, and autoimmunity. Even though some
researchers hold the view that several characteristic classes
of neutrophils, such as LDGs and N1/N2 TANs, are bona
fide, independent subpopulations based upon a host of
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supporting evidence, others interpret the heterogeneity of
form and function as just manifestations of differential acti-
vation. Researches have elucidated distinct functions of neu-
trophils with up- or downregulated membrane molecules in
various contexts, but further relation and mechanism that
correlate those phenotypic differences are still being revealed.
The interaction of phenotype and function in neutrophils
will continue to be worthy of attention in the future. There
is a reason to consider neutrophils as highly malleable cells
and most type features can be acquired at specific sites after
stimuli, but the variations occurring in the early immature
stage or the late mature stage are still poorly understood.
We expect more valuable studies to expand existing recogni-
tion of neutrophils’ multiple roles.
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