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Abstract
Pharmacogenomics aims to tailor pharmacological treatment to each individual by considering associations between genetic
polymorphisms and adverse drug effects (ADEs). With technological advances, pharmacogenomic research has evolved
from candidate gene analyses to genome-wide association studies. Here, we integrate deep whole-genome sequencing
(WGS) information with drug prescription and ADE data from Estonian electronic health record (EHR) databases to evaluate
genome- and pharmacome-wide associations on an unprecedented scale. We leveraged WGS data of 2240 Estonian Biobank
participants and imputed all single-nucleotide variants (SNVs) with allele counts over 2 for 13,986 genotyped participants.
Overall, we identified 41 (10 novel) loss-of-function and 567 (134 novel) missense variants in 64 very important
pharmacogenes. The majority of the detected variants were very rare with frequencies below 0.05%, and 6 of the novel loss-
of-function and 99 of the missense variants were only detected as single alleles (allele count= 1). We also validated
documented pharmacogenetic associations and detected new independent variants in known gene-drug pairs. Specifically,
we found that CTNNA3 was associated with myositis and myopathies among individuals taking nonsteroidal anti-
inflammatory oxicams and replicated this finding in an extended cohort of 706 individuals. These findings illustrate that
population-based WGS-coupled EHRs are a useful tool for biomarker discovery.

Introduction

Variability in drug response constitutes a major public
health concern, accounting for 2.5–10.6% of all hospital
admissions [1]. Direct healthcare costs per case of hospi-
talization due to adverse drug effects (ADE) range from
€943.40 to €7192.36 [2]. Around 30% of novel therapeutics
will eventually be affected by ADEs that are not identified
in clinical trials [3]. Genetic variations affecting the
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) of drugs cause an estimated 20–30% of the
variability in drug response between individuals [4].
Mechanistic associations between drug response and phar-
macogenetic variants in genomic coding regions are well
understood, but sparse functional information is available
for noncoding regions, with studies failing to identify or
replicate significant results [5]. Uncovering associations
between pharmacogenes and drugs increasingly relies on
large-scale initiatives that organize and produce knowledge
of variants in different populations and highlight actionable
variants that can be clinically implemented to improve
health outcomes [6–8]. Electronically collected medical
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information on treatment courses, methods, and outcomes
linked with genetic data is an invaluable resource for studies
of genotype-phenotype relationships. However, studies in
which these data sets are systematically integrated have
been lacking.

Here, we applied the whole-genome sequencing (WGS)
data of more than 2200 Estonian Biobank participants and
imputed genotypes of more than 16,000 participants [9], as
well as corresponding longitudinal drug prescription data
and extensive electronic health records (EHRs) from
sequenced individuals. Leveraging these data, we present a
comprehensive hypothesis-free discovery study of
genotype-drug response associations on a population scale
[10].

Materials and methods

WGS variant calling, quality control, and genotype
imputation

The 2284 WGS samples were sequenced at the Genomics
Platform of the Broad Institute. Sequenced data were
jointly variant-called and quality controlled as outlined in
Supplementary Methods and in Guo et al. [11]. The
resulting WGS data was used to construct the Estonian
reference panel of 16.5 × 106 SNVs [9]. This was used to
impute genotypes of individuals genotyped at the Core
Facility of the Estonian Genome Center with Infinium
CoreExome-24 BeadChips (n= 6396), Illumina
HumanCNV370-Duo BeadChips (n= 2658), or Illumina
HumanOmniExpress Beadchips (n= 8138). Imputed
variants were required to pass the WGS quality control,
and have a call rate greater than 0.95 and minor allele
count greater than 2. Summary level statistics of detected
genetic variation have been submitted to dbSNP (build
152; accession number: 1063012), linked to BioProject
(https://www.ncbi.nlm.nih.gov/bioproject; accession:
PRJNA489787), and included among gnomAD data sets
(r2.0.2, http://gnomad.broadinstitute.org). Additional
details regarding imputation are provided in the Supple-
mentary Methods.

Electronic health records

Clinical information for Biobank participants was obtained
from various EHR databases: Health Insurance Fund
Treatment Bills (from 2004), Tartu University Hospital
(from 2008), North Estonia Medical Center (from 2005)
[10]. These were thereafter mined for multiple patient and
drug prescription attributes as outlined in Supplementary
Methods.

Adverse drug effects

We used EHRs to assess ADE occurrence among study
participants. To identify the diagnosed case as an ADE,
we used a list of 79 ICD10 codes for possible drug-
induced diagnoses and diagnoses described as “due to
drugs” or “unspecified”. To confirm the association with
drugs for ICD10 codes that did not have a direct rela-
tionship with the drug in the diagnosis description (e.g.,
Myositis, unspecified—M60.9), we manually searched the
NDHRD medical records for affirmative comments from
the treating physician about the link between the disease
and the drug. This process was followed to examine
possible ADE cases among 2240 Biobank participants
who had WGS data (at the time of the study, medical
records were not available for other participants). All
ADEs that were self-reported by Biobank participants at
the time of recruitment were included in the final list of
possible ADE cases. For added insight, we regrouped the
79 codes of possible ADE diagnoses into 12 diagnostic
groups according to the leading pathophysiological
mechanism/process and the main affected organ/organ
system (Supplementary Table 1).

Targeted pharmacogenetic variation

We compiled a list of 64 pharmacogenes that have been
shown to be important in drug responses, using the core
gene list from PharmaADME [12] and very important
pharmacogenes from Pharmacogenomics Knowledgebase
[13] (Supplementary Table 2). Effects of all variants called
within pharmacogenetic genes were annotated by VEP [14]
and subsequently filtered (Supplementary Methods). The
novelty of called SNVs in pharmacogenes was determined
by VEP 84 (dbSNP144) annotations.

Functionality of targeted pharmacogenetic
variations

Definitions for LoF variants were adapted from MacArthur
et al. [15]. We used annotations from VEP and the LOFTEE
plugin of VEP to identify predicted stop-gain, frameshift, or
essential splice-site variants, and excluded ancestral alleles
and variants located in the last 5% of the transcript. All non-
LoF variants, whose effects were predicted by VEP as
moderate-to-high under the Sequence Ontology term, were
classified as missense.

To define potential variation in promoter regions, we
studied regulatory regions within 5000 base-pairs
upstream of all pharmacogene 5’ ends. We used the
UCSC Table Browser to extract Fasta-formatted reads for
these regions, which we used as input for the prediction
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tool Match (v9.0) [16] to extract transcription factor
binding sites. This tool uses the TransFac [17] transcrip-
tion factor library for binding motifs. We only retained
variants with HepG2 ChIP-seq data published by the
HudsonAlpha Institute, Broad Institute, and Sydney
Genomics Collaborative program made available through
ENCODE [18].

Validation of CYP2D6 variant calls

The chromosome 22 portion of CYP2D6
(NM_001025161.2) is entirely located in a region annotated
as a segmental duplication. We compared CYP2D6 CNV
estimates and k-mer counts of the corresponding region as a
proxy for validating CYP2D6 variant calls. Specifics of
CNV and k-mer discovery / filtering have been outlined in
Supplementary Methods.

CYP2D6 star allele and HLA-haplotype calling

To determine the CYP2D6 star alleles, we used the Con-
stellation tool (v0.5) [19] and all called variants within 5000
base-pairs up- and downstream of CYP2D6. Each individual
was assigned a CYP2D6 star allele haplotype and diplotype.
For 6-digit-precision HLA-haplotype calling, we used the
SNP2HLA tool [20] in the major histocompatibility com-
plex region for individuals with available WGS data (n=
2240). Observed HLA-B haplotypes were tabulated with R
software (v3.2.0) [21].

Validation of known pharmacogenetic associations

We selected all drug/variant associations curated with high
confidence in PharmGKB (level of evidence 1 A, 1B, 2 A
2B) [13] to test their relevance in the joint data set of WGS
and genotyped samples. We tested all allele/variant and
drug combinations with a logistic regression (LR) model,
after excluding drug/variant combinations having fewer
than 500 participants with associated drug prescriptions,
genes lacking alternative variant carriers, and drugs without
recorded ADE diagnoses among participants (Supplemen-
tary Methods).

For CYP2D6 and HLA-B alleles, we used the allele
estimates from Constellation and SNP2HLA. For all other
multi-SNV alleles, an individual was assigned as an allele
carrier if at least one allele variant was heterozygous or
homozygous at a variable site. We again used a LR model
to test the relationship between ADE occurrence with
genotype among participants with drug prescription using
the following co-variates: BMI, sex, age, four PCs, and
genotyping platform (WGS or genotype chip). Analysis was
performed in Plink v1.9 [22] with a nominal p-value
threshold of 0.05.

Effect of pharmacogenetic variation on ADE
occurrence

To examine the role of pharmacogenomic variants (n=
1314) in PharmGKB gene-drug associations, we extracted
associations from PharmGKB (level of evidence 1–4) and
evaluated ADE occurrences among participants with pre-
scriptions of drugs that had been associated with any variant
in the tested pharmacogenomic variant’s gene. Genotypic
effects of ADE prevalence differences among individuals
with some drug prescriptions were tested with a LR model
with the same co-variates as described in “Validation of
known pharmacogenetic associations”. Variants that were
missing from imputation panels were only tested based on
WGS data. All associations with a p-value lower than 0.05
were then, if available, conditioned on all other significant
gene variants reported in PharmGKB for tested gene-drug
association. Co-occurrences of genetic variants, drugs, and
ADEs were visualized as a Sankey flow diagram.

Genome-wide association studies

We conducted a single-variant association analysis to
identify, at the whole-genome level, variations that were
associated with ADE occurrences among participants with
specific drug prescriptions. Data from imputed genotyping
assays and whole genomes were merged into a single VCF
formatted file using bcftools. To obtain the optimal number
of phenotypes and to increase association power, we
grouped active pharmaceutic ingredients into subgroups of
the fourth-level ATC classification system [23]. One sub-
group of drugs was included in the GWAS analysis as one
phenotype when drugs were prescribed to at least 1000
Biobank participants, resulting in selection of 43 pheno-
types for analysis (Supplementary Table 3). For each phe-
notype, we included only participants that had drug
prescriptions in the corresponding ATC group, and we
studied the prevalence of ADE relative to the genotype.
Analysis was performed with Plink (v1.9) on variants with
an AF of at least 1% using an additive genetic logistic
model. Associations were corrected for the same co-variates
as in previous analyses.

Variant selection for replication

After filtering GWAS results using a suggestive genome-
wide significance level p-value threshold of <10−6, we
evaluated remaining loci based on associated genes and
phenotype (active pharmaceutic ingredient) using different
sources of background information (Supplementary
Table 4; sheet 1). Various databases were reviewed to
evaluate biological plausibility of tentative variants (Sup-
plementary Methods). All selected loci were visualized by
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LocusZoom plots with 1000 G data (v0.4.8, 03.2012, hg19
assembly) and LD information from the European popula-
tion [24]. Variants were filtered for MAF greater than 5%.

GWAS replication

As discussed in “ADEs”, all ADE incidences were
regrouped into 12 diagnostic groups (Supplementary
Table 1). To refine ADE phenotypes further, we reanalyzed
significant associations in the GWAS with the LR model,
defining participants with ADEs in a specific diagnostic
group as cases and individuals without any ADEs as con-
trols. At the time of the study, there were participants in the
Estonian Biobank for whom no genotyping or sequencing
data were available. Therefore, we were able to draw ana-
lysis samples from the same population as the discovery set
to perform replication analysis in an independent data set
from the Biobank (Supplementary Table 5). In this way, we
ensured that the samples used in the replication analysis
were broadly similar to those used in the initial study [25]
(Supplementary Methods).

Three of the five replicated SNVs identified using
methods from “Variant selection for replication”, were
genotyped with predesigned TaqMan assays. For two
SNVs, we genotyped different SNVs in LD because the
regions that covered the SNVs were not suitable for Taq-
man assay design (Supplementary Table 4; sheet 2). Gen-
otype effects were tested by an additive LR model,
corrected by age, BMI, and sex. Replication results were
significant if the independent Bonferroni correction p-value
for five tests was less than 0.01. p-values for the meta-
analyses of discovery and replication sets were obtained by
using the sum-of-z method in the R package metap (v0.8)
[26].

Analysis of the CTNNA3 locus

Several additional analyses were performed to investigate
the unveiled association between c.1047+29179 T>C
(rs75495219) in CTNNA3 (NM_001127384.2) with the
occurrence of myopathy-related ADEs among individuals
who had been prescribed oxicams. First, we tested for an
association between SNV rs75495219 in 387 unique cases
of myopathy/myositis regardless of drug intake to rule out
variant association with muscle pain and inflammation.
Next, we conditionally adjusted for variant c.1047
+201065 C>G (rs61866214) that peaked (p= 1.3 × 10−5)
in a previously tested rs75495219 association. We applied
VEP to examine if any other CTNNA3 gene variants in LD
with rs75495219 are exonic or significantly affect gene
function. Gene expression influences were examined
through regulatory elements by using GTEx portal and
RegulomeDB [27]. Properties of CTNNA3 and oxicams

were analyzed in the same way as described in “Variant
selection for replication”. Interactions of CTNNA3 with
other genes were evaluated by using the Con-
sensusPathDB database [28].

Results

By analyzing the WGS data of 2240 individuals from the
Estonian Biobank, we identified 29.1 × 106 novel variants.
Most of these variants (73.1%) were rare (minor allele
frequency [MAF] < 1%), with 18.6% of variants having an
Estonian population MAF greater than 5%. To study
clinically relevant variations in the sequenced genomes, we
established a set of 1314 loss-of-function (LoF), missense,
and putative high-impact variants in promoter regions of 64
candidate genes prominently involved in drug pharmaco-
kinetics and pharmacodynamics (Supplementary Table 2)
[13]. Of these variants, 12.5% were common (MAF ≥ 5%),
80.3% were rare (MAF < 1%), 42.6% were singletons, and
20.6% were novel (Table 1). The high proportion of rare
variants in pharmacogenes indicates the need for
sequencing-based approaches in studying pharmacogeneti-
cally important variation [29, 30]. Around 3% (n= 41) of
ADMET variants were stop-gained or essential splice site
(Supplementary File 1: Extended Table 1). Using the Var-
iant Effect Predictor (VEP) tool, we annotated putative LoF
variants in 25 of the 64 selected pharmacogenes, detected in
727 of the 2240 genomes from sequenced Biobank parti-
cipants (Supplementary Table 6). In all, 58.5% of LoF
variants were singletons or doubletons (MAF < 0.05%)
(Supplementary File 1: Extended Table 2). Moreover,
32.5% of the participants carried at least one LoF variant in
ADMET genes, with 3.5% of individuals being homo-
zygous for at least one inactivated pharmacogene.

Due to the complexity of the genome in these regions,
we called variants of HLA-B and CYP2D6 [31, 32] using
specifically purposed calling tools [Constellation [19] and
SNP2HLA [20]]. Highly polymorphic HLA-B exhibited 23
different alleles, with an allele frequency (AF) greater than
0.5% in 2,240 participants. The most frequently observed
allele was HLA-B*07:02:01 with 15.6% (Supplementary
File 1: Supplementary Figure 1). Detection frequency of the
HLA-B*57:01:01 allele was 2.3%. This allele has been
associated with abacavir-induced hypersensitivity reactions
[33] and its frequency was within range of other European
populations [34]. For CYP2D6, we used two independent
methods for calling copy number variations (CNVs) within
the gene. Copy numbers called with GenomeStrip [35]
correlated well (R2=0.64) with results called by a k-mer-
based approach (Supplementary File 1: Supplementary
Figure 2). CNV analysis revealed that 4.93% of assessed
Estonian individuals were heterozygous for the CYP2D6
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deletion allele CYP2D6*5, and one participant was
homozygous.

To explore the underlying genetics of ADEs, we over-
lapped data from national EHR databases with genetic
variations of 64 highly pharmacogenetically relevant genes
(Fig. 1). Within the period from January 2004 to August
2015 for which EHR data were available, 11,364 (70%) of
the studied Biobank participants were prescribed drugs
designated as high-risk for specific genotype carriers

(“high-risk drug prescriptions”). Among them, 7997 indi-
viduals (70.3%) had putative high-impact polymorphisms in
genes associated with the prescribed drugs.

We extracted ADEs from EHRs using a list of 79 ICD10
codes combined with self-reported incidences of adverse
effects (Supplementary Table 1). ADEs ranged from very
specific (drug-induced allergic dermatitis, ICD10 code:
L23.3) to broader and less certain definitions (Myositis,
unspecified, ICD10 code: M60.9) [36]. The discovery set of
16,226 Biobank participants included 1187 individuals with
possible ADE diagnoses. The top 20 most common ADEs
identified among participants are listed in Extended Table 3
(Supplementary File 1). Overall, 805 Biobank participants
showed (i) putative high-impact polymorphisms in 56 of the
64 pharmacogenes, (ii) were prescribed at least one drug
associated with the polymorphic gene, and (iii) experienced
at least one ADE (Fig. 1).

To validate our approach of combining population scale
sequencing data with EHR information, we set out to test
337 previously described high-confidence associations in
the selected 64 pharmacogenes (Supplementary Table 7).
Many associations could not be tested, due to absence of the
respective variant in the Estonian cohort (n= 74), missing
drug prescription information (n= 129), no known ADE
diagnosis (n= 16), or missing variant carriers among indi-
viduals with the drug prescription (n= 18). For statistical
power considerations, we excluded all associations for
which we could interrogate fewer than 500 individuals (n=
63) [37]. Importantly, we were able to replicate high-
confidence relationships between the CYP2D6*6 allele and
ADEs related to tramadol (p= 0.035; odds ratio [OR]=
2.67) and amitriptyline (p= 0.02; OR= 6.0) (Table 2).

Following from this validation approach, we aimed to
identify novel variants in pharmacogenes affecting drug
response. We examined ADE occurrences among individuals
with putative high-impact variants (n= 1314) and drug pre-
scriptions that have been associated with the respective genes.
We discovered 19 variant associations, most of which were
related to CYP genes, which are genetically highly poly-
morphic [38]. Nine independent signals remained significant
after correction for known gene-drug variants (Table 2,
Supplementary File 1: Supplementary Figure 3). Four addi-
tional associations replicated reported low-evidence (level 3)
variant-drug associations (Table 2). To identify novel genetic
factors underlying ADEs, we conducted a genome-wide
association study (GWAS) among 16,226 subjects consider-
ing 43 different drugs that had each been prescribed to at least
1000 Biobank participants (Supplementary Table 3). For each
drug, we tested for differences in AFs of 16.5 × 106 single-
nucleotide variants (SNVs) among individuals with ADEs
compared to controls.

Next, we filtered the genome-wide significant loci (Sup-
plementary Table 8), and based on literature survey,

Table 1 Single-nucleotide variation (SNV) characteristics in whole-
genome sequences from Estonian Biobank participants

(a) Variants in the Estonian Biobank
discovery set

Whole genome ADMET
genes (n=
64)

n % n %

Genes with variants 18,468 56

Unique variants 29,108,287 1314

Variant carriers 2240 2240

Novel variants 11,508,281 39.5 267 20.3

Known variants 17,600,006 60.5 1047 79.7

MAF > 5% 5,403,215 18.6 164 12.5

1% ≤MAF < 5% 2,444,670 8.4 95 7.2

0.5% ≤MAF < 1 % 1,211,084 4.2 45 3.4

0.05% ≤MAF < 0.5% 6,460,248 22.2 285 21.7

MAF < 0.05 % 13,589,070 46.7 725 55.2

AC= 1 10,617,607 36.5 560 42.6

AC= 2 2,971,463 10.2 165 12.6

(b) Loss-of-
function

Missense Promoter
region

n % n % n %

Unique variants 41 567 706

MAF > 5% 1 2.4 39 6.8 124 17.6

1% <MAF < 5% 0 0 38 6.7 57 8.1

0.5% <=MAF < 1 % 1 2.4 16 2.8 28 3.9

0.05% <=MAF < 0.5% 15 36.6 113 19.9 157 22.2

MAF < 0.05 % 24 58.5 361 63.6 340 48.1

AC= 1 21 51.2 279 49.2 260 36.8

AC= 2 3 7.3 82 14.5 80 11.3

Novel variants 10 24.3 134 23.6 123 17.4

Novel variants AC= 1 6 14.6 99 17.5 50 7.1

Known variants 31 75.6 433 76.4 583 82.5

Known variants AC= 1 15 36.6 180 31.7 210 29.7

AC allele count, MAF Minor allele frequency, ADMET absorption,
distribution, metabolism, excretion, and toxicity, n number of variants

(a) Numbers and frequencies of detected variants in whole-genome
sequences and targeted pharmacogenes

(b) Characterization of targeted pharmacogenetic variations in loss of
function (LoF), missense, and regulatory (transcription factor binding
sites in liver 5-kb upstream of gene start site) regions
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functional and pathway analyses (Supplementary Table 4;
sheet 1), we obtained five putative novel SNV-ADE asso-
ciations (Supplementary File 1: Supplementary Figure 4). To
determine the most relevant ADE type, we divided the pooled
ADEs into 12 groups based on the physiological pathways
and mechanistic properties of the 79 ADE ICD10 codes. We
tested the five genotypes against each subset ADE group.
Only the subset yielding the lowest p-value among the 12
groups (Supplementary Table 1) was used in SNV replica-
tions. We replicated the analysis in an independent set of

Estonian Biobank samples (634 < n < 760) and used Taqman
assays for distinct genotyping of the hit SNVs in the five loci.
We tested these associations in cases and controls from
among individuals who had been prescribed the specific drugs
(Supplementary Table 5), using a Bonferroni correction
threshold of p < 0.01 for the five tests.

Figure 2 illustrates the ORs and 95% confidence intervals
of the five most promising associations from the GWAS in
the discovery and replication cohorts. We replicated the
association between rs75495219 (replication p= 6 × 10−4;

Fig. 1 Overview of genetic variation, drug consumption, and adverse
drug effect (ADE) data in electronic health records (EHRs). a Outline
of pharmacogenomic variation, high-risk drug prescriptions, and
ADEs. Drug prescriptions and medical histories in EHRs were com-
bined with whole-genome sequencing data and imputed genotypes to
investigate effects of genetic variation in 64 pharmacogenetically
important genes on prevalence of ADEs among people with specific

drug prescriptions. b Numbers of Estonian Biobank participants with
variations in pharmacogenes (light gray bars), filled prescriptions of
high-risk drugs with known genetic associations (dark gray bars), and
diagnosed ADEs (black bars). c Flowchart visualizing co-occurrences
of genetic variants, drug prescriptions, and ADEs among Estonian
Biobank participants. Line thickness reflects the number of individuals
with a given feature (minimum n= 10)
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meta-analysis p= 2.47 × 10−7) in the seventh intron of the
catenin alpha 3 (CTNNA3) gene with the occurrence of
myopathy-related ADEs among individuals taking oxicams,
a class of nonsteroidal anti-inflammatory and anti-rheumatic
drugs (Fig. 3). CTNNA3 has a role in cell adhesion and is
mainly expressed in the brain, heart, and muscle cells

(Supplementary Table 4; sheet 1; line 46). To rule out a
confounding association with inflammation, we tested for a
direct association between SNV rs75495219 and 387
unique cases of myopathy/myositis regardless of drug
intake in the 16,226 genotyped individuals (logistic
regression [LR], p= 0.1) (Supplementary File 1:

Fig. 2 Top five significant findings from genome-wide association
analysis (GWAS). a Variants selected for replication with odds ratios
(squares) and 95% confidence intervals (CI, horizontal lines). Dis-
covery associations with the most significant ADE group are shown in
blue and in the replication cohort in purple. The plot is annotated with
p-values from the discovery (pd), replication (pr), and combined meta-
analyses (pm). b–f Regional association plots for five replicated loci:

NM_001127384.2:c.1047+ 29179 T > C (rs75495219); chr11:
g.139896164 A >G (rs7390154); NM_020132.4:c.*7617 G > A
(rs8133463); NM_018557.2:c.1014-42068 T > C (rs1882642);
NM_001136534.1:c.186+ 7589 A >G (rs4767831). Color-coded dots
display linkage disequilibrium values for surrounding single-
nucleotide variations calculated from the 1000 Genomes Project
release of 2012 (EUR population) and human hg19 assembly
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Supplementary Figure 5). A nearby variant (rs61866214)
appeared to be significantly associated (p= 1.3 × 10−5) with
myopathy/myositis regardless of drug intake. The CTNNA3

association remained significant after we adjusted the ori-
ginal rs75495219 association with rs61866214 (p= 5.0 ×
10−5). This result suggests an independent association.

Fig. 3 Regional association plots around c.1047+ 29179 T > C
(rs75495219) in CTNNA3 (NM_001127384.2) for adverse drug effects
(ADEs) among individuals with oxicam prescriptions. Color-coded
dots display linkage disequilibrium values for surrounding single-

nucleotide variations calculated from the 1000 Genomes Project
release of 2012 (EUR population) and human hg19 assembly. a ADEs
defined as a set of 79 ICD10 codes. b ADEs restricted to a subset of
myopathy-related ICD10 codes from a
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Discussion

This study is the first to combine EHR and WGS data to
investigate ADEs on a population scale. In this proof-of-
concept approach, we overlapped three independent sources
of data to test the effects of genetic polymorphisms on
ADEs among subjects taking specific drugs. Previous stu-
dies demonstrated that gene-drug response associations do
not require extensive sample sizes for significance due to
large effect sizes [39]. In our experience, the intersection of
individual medical diagnoses, drug prescriptions, and gen-
otypic alleles are sufficient for population-based inference.
Unlike targeted studies, population-based studies identify
markers outside specific targeted regions or pathways.

Improvements in quality, quantity, and access to EHR
data along with the mass adoption of sequencing-based
technologies will provide exciting developments for future
studies. The increase in population-specific imputation
panels and EHR systems can lead to new associations that
use more heterogeneous sources of complex data from
various input layers to uncover hypothesis-free relationships
and guide research in novel directions. One of the largest
ongoing programs for the implementation of pharmacoge-
nomics in the clinic, eMERGE-PGx, is piloting the inte-
gration of pharmacogenetic genotypes into the electronic
health records and one of their other objectives is to develop
a repository of pharmacogenetic variants for further dis-
covery [40]. Their targeted sequencing study of genetic
variation in 82 pharmacogenes revealed that 96% of all
samples had one or more actionable variants and that 49%
of the variants were novel. This highlights the scope of
genetic variation in relevant pharmacogenes showing that
using sequencing technologies will reveal large numbers of
rare variants, and further studies may establish their
potential to impact pharmacogenomic traits [41]. With the
current study, we highlight the population scale variability
in pharmacogenes and demonstrate the possibilities of
testing genotype-drug response associations using electro-
nic health records and drug prescription data, thereby pro-
viding more resources for validation and further
pharmacogenetics discoveries.

We reported that 80% of the variants in the pharmaco-
genes (n= 64) were rare (MAF < 1%). Rare variant fre-
quencies reported in several other studies highlight the
complexities in making between-study estimates compar-
able. For instance, the data set used in Lakiotaki et al.
consisted of 2,504 individuals from 26 different populations
and 5 ancestral groups (1000 G Project Phase III) [42]. This
study selected 501 PGx variants and identified that the
proportion of variants in the lowest reported frequency
category, MAF < 5%, varied between 35.8% and 51.2%
between-study populations. In contrast, Ingelman-Sundberg
et al. aggregated information of 60,000 individuals in the

ExAC database from 17 large-scale sequencing projects and
reported 98.5% of variants with MAF < 1% [43]. In another
study, Mizzi et al. analyzed whole genomes of 482 indivi-
duals revealing 408,964 variants in 231 pharmacogenes
[44]. Around 58.5% of the variants were singletons and
9.4% were more frequent than AF 20% demonstrating
prevalence of rare variants between estimates reported by
Lakiotaki et al. and Ingelman-Sundberg et al. Therefore, the
reported figures are to be interpreted in consideration of
several factors. In larger sample sizes common variants are
shared between individuals as rare variation adds to the
non-overlapping part [43]. High population stratification
increases observed population-specific variants and com-
parability is also hampered by variable selection of phar-
macogenetics variants.

By overlapping the different layers of data, we replicated
six and identified nine independent, novel, and putatively
high-impact genetic-marker associations with ADEs among
groups of individuals stratified by drug prescription
(Table 2). Among individuals prescribed metformin we
identified a novel association between c.-3775G >A
(rs145259190) in a Dnase I hypersensitivity site in the
promoter region of SLC22A2 (NM_003058.3) (encoding
OCT2) and ADEs. This finding aligns with previous stu-
dies, which demonstrated effects of genetic variation in
OCT2 with decreased renal clearance and increased plasma
concentrations of metformin [45, 46], and incentivizes
further mechanistic validations.

Three of the other identified associations involved pro-
tective effects against ADEs. For example, we observed an
association between simvastatin and an upstream variant c.-
1023G >A (rs7910642) in ABCC2 (NM_000392.4), which
encodes an important efflux pump of endogenous and exo-
genous compounds [47]. The effect of this SNP on ABCC2
promoter activity in vitro has been studied before, but no
association with ABCC2 mRNA levels was found [48].
Nevertheless, because ABCC2 is involved in metabolite
efflux [49], and studies have indicated the role of ABCC2
variants in ADEs or cases of strong reductions in cholesterol
levels among patients using simvastatin, this protective effect
might be explained by higher elimination of toxic metabo-
lites. Similar assumptions can be made for the association of
side-effects from mirtazapine and a non-synonymous variant
c.941 G >A (rs1058172) in CYP2D6 which encodes the
primary metabolizer of mirtazapine [50]. Ji et al. previously
found this variant to be associated with S-
didesmethylcitalopram concentrations, a citalopram metabo-
lite which is converted by CYP2D6 [51]. This hints at
increased levels of CYP2D6, which might further explain the
protective effect of this variant seen in the current study due
to the increased inactivation of mirtazapine by CYP2D6 [52].
Further investigations are also needed to understand the
protective effects found for the c.-91-1825A > T
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(rs56104268) variant in the COMT (NM_007310.2) promoter
region among individuals taking venlafaxine. According to
previous studies, a missense variant c.322 G > A (rs4680) in
COMT also appears to affect venlafaxine response despite the
small sample sizes of the studies [53, 54].

Previous reports on the relationship between CTNNA3
variants and drug response described two intronic SNVs,
although not at the level of genome-wide significance,
which were associated with response to antidepressants
resulting in treatment-emergent suicidal ideation [55, 56].
However, these SNVs (c.1733-17064C > T, c.1281+
21535 A > G) do not appear to be in linkage disequilibrium
(LD) (R2 < 0.005, Estonian population; R2 < 0.01, EUR
population) with rs75495219 or rs61866214. In addition,
none of the significant intronic SNVs of CTNNA3 that we
studied appear to be in LD with exonic SNVs of CTNNA3.
To determine causality, we searched for expression quan-
titative trait loci (eQTL) signals for rs75495219 in different
tissues using the GTEx data set but did not find any sig-
nificant cis-eQTLs. Poor efficacy of meloxicam has been
associated with a variant in another catenin, CTNNB1 [57,
58]. As shown previously, explaining biological insight for
ADE-associated noncoding variants remains challenging
[5], and the specific pathways leading to the association
between CTNNA3 and the occurrence of myositis need
further functional investigation.

In summary, we identified novel and very rare loss-of-
function and missense variants in very important pharma-
cogenes, and investigated several ADE phenotypes using
databases of digitalized health records combined with
genome-wide testing, replicating several previously docu-
mented variant-drug associations and identifying novel
independent signals. The discovery of a new relationship
between CTNNA3 and myositis among individuals treated
with oxicams warrants further studies of its mechanistic
pathways. We conclude that population-based studies have
sufficient statistical power to find new associations, and that
EHRs could be successfully applied along with genotype
information as a methodology for elucidating relationships
between drug responses and genetic variation.

Availability of data and materials
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