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The optimal b value distributions were estimated to be 
brain500,1000, kidney300,1000, and liver200,1000.
Conclusion  IVIM parameters can be estimated using a 
rapid DW-MRI protocol, where the optimal b value distri-
bution depends on tissue characteristics and compromise 
between bias and variability.

Keywords  Diffusion weighted magnetic resonance 
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Introduction

The acquisition of multi-b value diffusion-weighted mag-
netic resonance (DW-MRI) data and the bi-exponential 
signal decay observed in biological tissue have led to an 
increased number of studies using the intravoxel incoher-
ent motion (IVIM) model [1, 2]. The IVIM model can be 
used to investigate the underlying tissue microenvironment 
and is based on the simultaneous assessment of two diffu-
sion components. These correspond to the molecular diffu-
sion in tissue (D) and diffusion affected by perfusion in the 
microcapillary network, often described as pseudo-diffusion 
(D*). The model also determines the fraction of signal aris-
ing from the microvascular network (f), known as perfusion 
fraction, which is thought to describe the vascularity of the 
tissue [1]. The IVIM model parameters have shown clinical 
value in the imaging of many different tumour types [3–5], 
as well as stroke [6, 7] and liver cirrhosis [8, 9]. The use of 
multi-b value DW-MRI has the potential to provide a single 
acquisition protocol for the non-invasive assessment of dif-
fusion and perfusion in tissue.

The clinical adoption of the IVIM model has been hin-
dered by practical issues and lack of consensus such as 
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the number and choice of b values and requirements for a 
sufficient signal-to-noise ratio (SNR) level for accurate 
and reproducible post-processing [10–12]. Previous stud-
ies have demonstrated promising reproducibility for IVIM 
parameters D and f [3, 13], including a multi-centre brain 
study [14], whereas greater variability has been shown for 
the D* parameter. The application of the IVIM model has 
been well established in abdominal organs such as liver 
[11] and kidney [15], but applications in the brain [4, 16] 
have been more challenging due to the relatively low per-
fusion. However, recent studies have suggested that the 
use of the IVIM model, and the D and f parameters, has 
potential in brain tumour grading [4, 17] and stroke imag-
ing [6, 18]. While these studies imply the clinical value of 
IVIM in the brain, the reported f values have been incon-
clusive with high variability, potentially owing to the dif-
ferent b value distributions used in the data acquisitions.

The translation of IVIM to clinical practice requires 
a DW-MRI protocol with a short acquisition time. One 
way to reduce the scanning time is to decrease the num-
ber of b values. Previously, a constrained (also known 
as segmented) IVIM fitting approach has been shown to 
provide the most robust IVIM parameters in many tis-
sue types [10, 13, 19]. Using this methodology, the D 
and f parameters can be computed using high b values 
and b = 0 s/mm2. Additional low b values are required 
for the computation of the D* parameter. However, the 
challenges with the accuracy and reproducibility of D* 
in both brain and body, suggest that further evaluation is 
required to demonstrate its clinical value in terms of its 
reliability [12, 19–21]. Therefore, if only D and f are of 
clinical interest, the IVIM could be performed using a set 
of high b values, thereby minimising the time required for 
data acquisition.

The constrained fitting was recently used in a study by 
Conklin et al. [18], where the IVIM f parameter was esti-
mated with a series of high b value combinations for brain 
tumour and stroke patients. The recommended b value 
distribution was chosen by comparison to the more com-
monly used fitting method (2-parameter fitting method 
[13]) in the brain. Although the similarity of the two fit-
ting methods can indicate how many b values are required 
for comparable results, it is unable to assess the accuracy 
of the estimated IVIM parameters. Therefore, the purpose 
of this study was to use a minimum number of b values 
to minimise the scan duration and to assess the reliabil-
ity of the estimated D and f parameters with different b 
value distributions, using simulated models with known 
ground truth values, and compare these results to IVIM 
data collected in vivo.

Materials and methods

Data simulations

All simulations and data analysis were implemented in 
MATLAB (MathWorks, Natick, MA, USA, v.2016b). The 
model data signal values were generated with Eq. 1 using a 
b value distribution: 0, 200, 300, 400, 500, 600, 700, 800, 
900, 1000 s/mm2, as described in Fig. 1.

Signal data sets were generated using a range of f values 
(0.06–0.30 in increments of 0.02) and three different D*/D 
ratios corresponding to previously reported ratios observed 
in the brain, kidney and liver (10, 20, and 70, respectively) 
[12]. The D parameter was fixed at 0.7 × 10−3 mm2/s 
and D* parameters used were brain: 7 × 10−3, kidney: 
14 × 10−3 and liver 49 × 10−3 mm2/s. In this study, these 
models are also referred to as low-, medium-, and high-
perfusion models, respectively.

Signal data for the different diffusion models and 
a series of f values is presented in Fig. 1b, c. Gaussian 
noise was introduced to the modelled data to simulate the 
Rician distribution of noise found in MR images using 
the in-built MATLAB function (Communications System 
toolbox). The Gaussian approximation is sufficient for the 
signal-to-noise ratio (SNR) levels of 40, 55, and 80, which 
were used to study the influence of noise on the estimated 
parameters [22]. SNR = 40 was chosen based on previ-
ous on-site measurements of diffusion-weighted MRI data 
[13] and the in vivo data presented here. The higher SNR 
levels 55 and 80 corresponded to approximately increas-
ing the number of signal averages (NSA) from one to two 
and four, respectively. The same SNR level was used for 
all data points at different b values. The data simulations 
were performed using N = 1,000 random data iterations 
for each set of IVIM parameters.

Volunteer population

A cohort of healthy young adult volunteers (n = 16, age 
25–30, mean age 26 years) was scanned using a multi-b 
value diffusion-weighted imaging and T1-weighted imag-
ing protocols. The protocols for this retrospective study 
were approved by the East Midlands – Derby Research 
Ethics Committee (REC 04/MRE04/41) operating under 
the rules of Declaration of Helsinki 1975 (and as revised 
in 1983), and informed consent was obtained from all 
volunteers.

(1)S(b)∕S(0) = f ⋅ exp (−bD∗) + (1 − f ) ⋅ exp(−bD)
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MR imaging

All MR imaging was performed on a Philips Achieva 3.0 
Tesla (T) TX (Philips Healthcare, Best, the Netherlands) 
MRI scanner with a 32-multichannel receive head coil at 
Birmingham Children’s Hospital.

The diffusion-weighted MR protocol used a sensitiv-
ity-encoded (SENSE) approach with single-shot, spin-
echo (EPI) sequence, with diffusion-weighted gradients 
applied in three orthogonal directions, of which an aver-
age diffusion-weighted image was derived. The protocol 
used TR/TE  =  4000/91  ms, contiguous 3.5  mm thick 
axial slices, field-of-view (FOV) 240  ×  240  mm and 
matrix size 96 × 96, which resulted in in-plane resolu-
tion of 2.5 × 2.5 mm. The b value distribution included 
values of 0, 300, 500, 1000 s/mm2 which were used in 
the IVIM analysis (full b value distribution: 0, 20, 40, 80, 
110, 140, 170, 200, 300, 500, 1000 s/mm2). The scan dura-
tion was 2.12 min. The T1-weighted scan was performed 
with a spin-echo sequence with FOV 240  ×  240  mm, 
matrix size 240 × 240, slice thickness 3.5 mm and TR/
TE = 675/10 ms.

Additionally, four of the volunteer cases (n = 4) were 
scanned twice with the above DW-MRI protocol to assess the 
IVIM parameter repeatability.

Data analysis

The data fitting was performed with the previously [13] 
reported constrained fitting method, shown in Fig. 1a. The 
fitting of the simulated diffusion-weighted signal was per-
formed with b value distributions: [200,1000], [300,1000], 
[400,1000], [500,1000], [600,1000], [700,1000], [800,1000], 
and [900,1000]. Using the assumption that no IVIM effect is 
observed at high b values [23], the method allows the compu-
tation of D and f using the mono-exponential equation:

The f can be measured from the mono-exponential fit by 
extrapolating it to the y-intercept S(int) and taking the dif-
ference to the signal from S(0):

(2)S(b)∕S(0) = exp(−bD)

(3)f = 1 − S(int)∕S(0)

(a) (b)

(c)

Fig. 1   Description of a the mono-exponential fitting of the high b 
value diffusion signal to derive the IVIM D and f parameters from 
the fit gradient and off-set of the intercept to S(0) (signal at b = 0), 

respectively, and b the data signal decay at varying f values for the 
low-perfusion model (brain) and c comparison of the signals for dif-
ferent perfusion scenarios, respectively
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The in vivo DW-MRI data (n = 16) was fitted using b value 
distributions [300,1000] and [500,1000], including the scans 
acquired for repeatability measurements. SNR levels of the 
data were determined using the standard NEMA method 
based on a difference image of two acquisitions, which is 
the recommended method for computing SNR when parallel 
imaging such as SENSE acceleration is used [24]. The SNR 
at b = 1000 s/mm2 was found to be in the range of 45 ± 8 
and was similar across the brain.

The in vivo grey matter masks were created for each 
volunteer case with the brain extraction tool (BET) and 
FMRIB’s automated segmentation tool (FAST) in FMRIB 
Software Library package (Analysis Group, FMRIB, 
Oxford, UK, v. 5.0) using the T1-weighted images [25, 26]. 
The probabilistic tissue segmentation was performed for 
three classes, corresponding to grey matter, white matter, 
and cerebrospinal fluid (CSF). To assess the inclusion of 
only cortical grey matter and exclusion of sulcal CSF in 
the binary masks, partial volume tissue (PVE) segmentation 
was also performed for eight of the volunteer cases (n = 8). 
The PVE masks provided an estimation of the proportion 
of grey matter within the voxels (scale 0–1), and only vox-
els of value = 1 were included in the analysis, which cor-
responded to tissue fully representing grey matter with no 
partial volume of CSF or white matter. The T1-weighted 
images were acquired using the same spatial geometry as 
the DWI images, and both were visually inspected for any 
distortions. No further registration was performed at post-
processing. The masks were adjusted for the size of the 
acquired DWI images using bi-linear interpolation, and a 
threshold of T = 0.7 was applied to remove any blurring 
effects around the edges. This further minimised the number 
of pixels affected by partial volume effects. For the analysis, 
the IVIM D and f values were extracted using the grey matter 
masks from three slices above the lateral ventricles.

Based on the extracted grey matter values, average histo-
grams were computed for the IVIM parameters. The number 
of bins was based on the square root of the maximum num-
ber of data values extracted from the regions-of-interests 
(ROIs). The bin widths were computed for a range of zero 
to the maximum IVIM value. The same number of bins was 
used for all the cases and b value distributions, as well as for 
the IVIM values extracted with the PVE masks.

The same histogram methodology was applied to the 
simulated IVIM parameters.

The artwork in this manuscript was created with Micro-
soft Excel (Microsoft, Redmond, WA, USA, v.16.0) and 
Inkscape (GNU General Public Licence, v.0.91).

Statistical analysis

All statistical analysis was performed in SPSS Statistics 
(IBM, Chicago, IL, USA, v.22). The following statistics 

were calculated for the data simulations and the estimated 
D and f parameters. Relative bias was determined from the 
difference between the true parameter (used in signal data 
generation) and the estimated parameter (computed from 
fitting of the signal data), which was normalised to the true 
parameter value:

where i = number of iterations, xi = estimated parameter and 
X = true parameter. Relative error (σ) was computed as the 
root mean square of the distance between the true parameter 
to the estimated parameter:

Both relative bias and error were determined individually 
for each estimated parameter (D, f) rather than for the mean 
values over all data iterations. The overall relative error was 
computed from the individual parameter errors for each b 
value distribution using σD+f = σD + σf. The overall error 
was used to make recommendations for the simulated tissue 
regions based on the smallest overall relative error.

The reproducibility of the estimated parameters was 
determined as a coefficient of variation from the ratio of the 
standard deviation to the mean of the estimated parameters:

where x̄ is the mean of the estimated parameter D or f.
For the in  vivo data (n  =  16), correlation analysis 

(Pearson correlation coefficient, r) was performed for the 
mean IVIM parameters in grey matter, to determine how 
the values were related between the b value distribu-
tions [300,1000] and [500,1000]. An analysis of variance 
(ANOVA) was performed to test if the estimated parameters 
differed significantly (P < 0.05). Bland–Altman analysis was 
used to determine the bias between the b value distribu-
tions. The repeatability of the IVIM parameters was tested 
using within-subject coefficient of variation (wCV%), which 
was the recommended statistic by the quantitative imaging 
biomarkers alliance [27] and has been applied in previous 
studies [3, 11, 19]. The wCV was computed with the root 
mean square method [28], using the paired DW-MRI data 
measurements (n = 4) and 4 × 4 ROIs (two from each meas-
urement pair) of the same grey matter regions as used in the 
above analysis. To assess whether the IVIM values were 
influenced by CSF partial volume, ANOVA was performed 
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for the IVIM histogram parameters derived with the proba-
bilistic and PVE masks (n = 8) to determine any significant 
difference (P > 0.05).

Results

Model data

The relative bias results for the estimated D and f parameters 
from the low-, medium-, and high-perfusion tissue models 
are presented in Fig. 2 for the different b value distributions 
and noise levels. Noise was found to influence the bias at 
SNR = 40 for high b values, whereas results at SNR = 55 
and 80 resembled one another in magnitude and behaviour 
for all tissue models. The direction of bias was different for 

D and f, with positive and negative bias shown, respectively. 
At the higher SNR levels (55 and 80), the magnitude of the 
simulated f value was found to not affect the bias in estima-
tion of f. However, at SNR = 40, noise influenced the simu-
lated f values to a different extent at higher b values. The 
similarity of biases at SNR = 55 and 80, suggest that these 
present the intrinsic magnitude of biases from the fitting of 
the tissue models. Higher biases were observed for the lower 
perfusion models with lower D*/D ratio equating to lower 
degree of bi-exponential behaviour.

The choice of b value had a noticeable influence on the 
observed bias. The intrinsic bias of the models and estimated 
parameters was higher at low b value distributions, whereas 
noise affected the high b value distributions, although only 
for the f parameter. The bias of f for the low-perfusion 
model at SNR = 40 was −21.6 ± 0.27, −8.63 ± 0.8, and 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2   Relative bias results for a–c low-, d–f medium-, and g–i high-perfusion models at SNR levels 40, 55, and 80 as a function of b value. 
Results are presented for simulated f values of 0.1, 0.2, and 0.3 for both D and f. Bias = 0 is indicated by the black dashed line
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−5.77 ± 15.0% for [300,1000], [500,1000], and [800,1000] 
distributions, respectively. At SNR = 55 the biases were sim-
ilar, but with reduced variability: −21.7 ± 0.07, 8.48 ± 0.05, 
and −2.62  ±  0.32%. Similarly for the D parameter at 
SNR = 40, the bias was 6.82 ± 3.31%, 2.72 ± 1.34%, and 
0.61 ± 0.65% for [300,1000], [500,1000], and [800,1000] 
distributions, respectively. For the higher perfusion models, 
the bias was < 10% for f, apart from the high b value distri-
butions (b = 700–900 s/mm2) at SNR = 40. The bias for the 
D parameter was < 6% for both higher perfusion models.

The reproducibility results for D and f parameters and the 
different tissue models are presented in Figs. 3 and 4, respec-
tively. The variability of the estimated IVIM parameters was 
largely influenced by noise and dependent on the SNR level. 
The increase from SNR = 40 to SNR = 55 (NSA = 1 to 
NSA = 2) resulted in a noticeable improvement in the repro-
ducibility of D and f, with a smaller improvement observed 
with the increase to SNR = 80. The coefficient of varia-
tion (%) of f for the low-perfusion model at SNR = 40 was 
12.4 ± 7.4%, 17.6 ± 10.0, and 41.7 ± 12.6% for [300,1000], 
[500,1000], and [800,1000] distributions, respectively. At 
SNR = 55 these were reduced to: 2.23 ± 1.34, 3.14 ± 1.88, 
and 9.83 ± 6.04%. The different tissue models did not differ 

to a great extent in terms of their reproducibility for the f 
parameter, but the D parameter was found to be more repro-
ducible with the low-perfusion model. Lower variability of 
D and f was observed with the use of lower b value distri-
butions and the higher f values had better reproducibility 
compared to the low f values.

The overall relative errors based on both D and f errors 
are summarised in Table 1 and presented visually in Fig. 5 
for the f parameter. The overall error was largely influenced 
by the relative error of f with small contribution from the 
relative error of D. The relative error of f was greater than 
D in all cases. At SNR = 80 for low- and medium-perfusion 
models, the relative errors were higher at low b value dis-
tributions because of the bias, whereas negligible bias was 
observed with the high-perfusion model. At SNR = 40, 
noise had a larger influence on the estimated values com-
pared to bias, resulting in higher relative errors at high b 
values. At SNR = 55, similar magnitude of contribution 
from bias and noise were seen for the low-perfusion model, 
whereas noise was the dominant contributor for the higher 
perfusion models. 

Based on the minimal overall and f relative errors, sug-
gestions for optimal b value distributions were derived. 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3   Reproducibility of diffusion coefficient, D, in low- (a–c), medium- (d–f), and high-perfusion (g–i) models at SNR levels 40, 55, and 80 
for simulated f values: 0.1, 0.2, and 0.3
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The optimal b value distributions are listed in Table 2 for 
each perfusion model. At SNR = 40, the optimal b value 
distributions were [500,1000], [300,1000], and [200,1000] 
for the low-, medium-, and high-perfusion models, respec-
tively. The relative errors of the estimated f parameters for 
these b value distributions were < 20% at SNR = 40, and 
< 10% for SNR = 55 and 80. The b value distribution for 

the low-perfusion model was higher because of the greater 
relative bias at the lower b values.

Volunteer data

The b value distributions [300,1000] and [500,1000] 
were investigated retrospectively for the volunteer 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4   Reproducibility of perfusion fraction, f, in low- (a–c), medium- (d–f), and high-perfusion (g–i) models at SNR levels 40, 55, and 80 as a 
function of b-value for simulated f values: 0.1, 0.2, and 0.3

Table 1   Overall relative error (± standard deviation) of the estimated D and f parameters

Lowest relative errors are highlighted in bold for each SNR level and perfusion model

b values Low-perfusion (brain) Medium-perfusion (kidney) High-perfusion (liver)

SNR = 40 SNR = 55 SNR = 80 SNR = 40 SNR = 55 SNR = 80 SNR = 40 SNR = 55 SNR = 80

[200,1000] 0.49 ± 0.04 0.47 ± 0.05 0.47 ± 0.05 0.22 ± 0.05 0.12 ± 0.01 0.12 ± 0.01 0.17 ± 0.06 0.03 ± 0.01 0.001 ± 0.0005
[300,1000] 0.32 ± 0.02 0.29 ± 0.03 0.29 ± 0.03 0.21 ± 0.08 0.05 ± 0.01 0.04 ± 0.004 0.21 ± 0.08 0.04 ± 0.01 0.001 ± 0.0006
[400,1000] 0.26 ± 0.05 0.18 ± 0.02 0.18 ± 0.02 0.26 ± 0.10 0.05 ± 0.02 0.01 ± 0.001 0.26 ± 0.09 0.05 ± 0.02 0.002 ± 0.0007
[500,1000] 0.25 ± 0.08 0.12 ± 0.01 0.11 ± 0.01 0.34 ± 0.13 0.06 ± 0.02 0.004 ± 0.0004 0.34 ± 0.13 0.06 ± 0.02 0.002 ± 0.001
[600,1000] 0.30 ± 0.12 0.09 ± 0.01 0.07 ± 0.01 0.45 ± 0.16 0.08 ± 0.03 0.003 ± 0.002 0.45 ± 0.17 0.08 ± 0.3 0.003 ± 0.001
[700,1000] 0.40 ± 0.15 0.09 ± 0.03 0.05 ± 0.01 0.61 ± 0.19 0.12 ± 0.05 0.004 ± 0.002 0.64 ± 0.23 0.12 ± 0.05 0.004 ± 0.002
[800,1000] 0.62 ± 0.23 0.13 ± 0.06 0.03 ± 0.003 0.92 ± 0.33 0.19 ± 0.08 0.007 ± 0.003 0.99 ± 0.33 0.19 ± 0.08 0.007 ± 0.003
[900,1000] 1.20 ± 0.52 0.26 ± 0.12 0.03 ± 0.003 1.78 ± 0.74 0.40 ± 0.15 0.01 ± 0.007 1.91 ± 0.67 0.41 ± 0.16 0.010 ± 0.007
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cohort. The average values of D and f in the grey mat-
ter were 0.865 ± 0.05 (× 10−3 mm2/s) and 0.141 ± 0.02 
with [500,1000], and 0.912 ± 0.05 (× 10−3 mm2/s) and 
0.104 ± 0.01 with [300,1000], respectively. The higher 

f values and lower D values derived with the [500,1000] 
distribution agreed with the results from the low-perfusion 
model simulations.

(a) (b)

(c) (d)

(e) (f)

Fig. 5   Contour plots of the relative error of perfusion fraction, f, with different b value distribution at SNR = 40 (a, c, e) and SNR = 80 (b, d, f) 
for the low- (a–b), medium- (c–d), and high-perfusion (e–f) models
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Table 2   Recommended b value 
distributions for computation of 
IVIM perfusion fraction, based 
on relative error of < 10%

a Lowest relative error

Model SNR b value distribution Relative error of f (%) Overall rela-
tive error (%)

Low-perfusion 40 [500,1000] 18.7 ± 5.5a 24.8 ± 7.6a

55 [600,1000], [700,1000] < 10 < 10
80 [500,1000] < 10 < 10

Medium-perfusion 40 [300,1000] 15.3 ± 8.3a 21.3 ± 7.8a

55 [300,1000] to [600,1000] < 10 < 10
80 ≥ [300,1000] < 10 < 10

High-perfusion 40 [200,1000] 12.1 ± 6.8a 17.2 ± 6.4a

55 [200,1000] to [600,1000] < 10 < 10
80 [200,1000] < 10 < 10

(a) (b)

(c) (d)

Fig. 6   Correlation (a, c) and Bland–Altman (b, d) plots for D and f 
parameters in grey matter with b value distributions [500,1000] and 
[300,1000] for the volunteer cohort (n = 16). The red lines in the BA 

plots describe the mean difference of the values and the dashed lines 
the agreement range (95% confidence intervals)
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The correlation and Bland–Altman analysis for the 
estimated D and f parameters are presented in Fig. 6. Sig-
nificant correlations were established between both IVIM 
parameters derived with the different b value distributions, 
which indicated an existence of a linear relationship. Cor-
relation of r = 0.724 (P = 0.002) was derived between 
the D parameters, and r = 0.770 (P < 0.001) between the 
f parameters. However, the estimation of D (P = 0.029) 
and f (P < 0.001) were significantly different between the 
[500,1000] and [300,1000] distributions. The agreement of 
methods, described by the Bland–Altman plots, showed a 
bias of 0.048 (× 10−3 mm2/s) and -0.037 for D and f param-
eters respectively. However, this only indicated the bias of 
estimating the IVIM parameters with [300,1000] in com-
parison to [500,1000]. The bias was smaller at the lower 
f values and greater towards the higher f values. In com-
parison to the simulated f = 0.1 value for the low-perfusion 
model at SNR = 40, the differences between the mean values 
for [300,1000] and [500,1000] were 0.015 (× 10−3 mm2/s) 
and −0.013 for D and f parameters, respectively. At f = 0.2, 
the differences were increased to 0.030 (× 10−3 mm2/s) and 
−0.025, although the relative bias remained the same.

The average grey matter histograms for the IVIM 
parameters are presented in Fig. 7, together with histo-
grams for the low-perfused brain model (where f = 0.1 at 

SNR = 40). Similar behaviour was observed between the 
in vivo and simulated data IVIM parameter histograms. 
The f histogram based on the [500,1000] distribution was 
shifted to higher f values compared to the [300,1000] dis-
tribution, with narrower distributions observed for the 
[300,1000] distribution.

The wCV was used to assess the repeatability of the IVIM 
parameters, which for the [500,1000] and [300,1000] distri-
butions was 6.32 and 3.99% for D, and 15.3 and 10.8% for 
f, respectively. The values were similar to the ones depicted 
by the low-perfusion model at SNR = 40 (Figs. 3, 4), with 
small improvements seen with the use of [300,1000] over 
the [500,1000] distribution.

The IVIM parameter histograms were compared to the 
ones derived with PVE masks for eight volunteer cases 
(n = 8). No significant differences were found between the 
mean, median, 10th and 90th percentiles of the IVIM param-
eters derived with the different masks for either [300,1000] 
or [500,1000] distributions. Example grey matter masks and 
IVIM parameter maps derived with b value distributions 
[300,1000] and [500,1000] are presented in Fig. 8 for a vol-
unteer case. The overlaid regions on Fig. 8a showed that the 
sulcal CSF was successfully removed with the binary grey 
matter mask. The f maps derived with the [300,1000] and 
[500,1000] distributions were qualitatively similar, although 

(a) (c)

(b) (d)

Fig. 7   Histograms of IVIM diffusion coefficient and perfusion frac-
tion for in vivo (a–b) and simulated (c–d) data with b value distribu-
tions [500,1000] and [300,1000]. The in vivo histograms are the aver-

age histograms derived for the grey matter regions of the volunteer 
cohort and the simulated histograms correspond to the estimated val-
ues from the low-perfusion model at SNR = 40 and f = 0.1
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differences in the magnitude of values could be observed, as 
depicted by the in vivo and simulation results.

Discussion

The use of a simple fitting approach with a minimum num-
ber of b values was investigated to assess the feasibility of 
a rapid clinical application for determination of the IVIM 
perfusion fraction parameter. The accuracy and reliability 
of the IVIM parameters from different b value distributions 
were assessed using model simulations and confirmed using 
the in vivo image data. The model data simulations demon-
strated that the optimal b value distributions for different 
tissue regions are dependent on the SNR level and the degree 
of perfusion influencing the diffusion signal.

The simulated tissue models were influenced by bias and 
noise to a different extent. Bias was found to be the dominant 
cause of higher relative errors at the low D*/D ratio and the 
low b value distributions. A similar effect was seen in a study 

by Conklin et al. [18], who demonstrated a negative bias in 
estimating f values in the brain by using a b value distribu-
tion [300,900], compared to distributions including more 
intermediate b values. The other cause for the higher relative 
errors was noise, which affected the estimation of perfu-
sion fraction at higher b value distributions. This resulted in 
greater variability in extrapolating the linear fit back to the 
y-axis from the high b values. For the low-perfusion model, 
representing tissue perfusion of the brain, the effects of bias 
and noise were found to be minimised with the use of b 
value distribution [500,1000]. The intrinsic bias seen at the 
low perfusion meant that also at the higher SNR levels the 
recommended b value distribution was ≥ [500,1000].

The in vivo brain results indicated similar characteristics 
in the estimation of IVIM parameters as observed with the 
simulated model data. Higher f values were estimated with 
the [500,1000] distribution in comparison to the [300,1000] 
distribution, though the bias between the two b value dis-
tributions was higher in vivo compared to the simulated 
values where f = 0.1. However, this was expected with the 

Fig. 8   An example volunteer 
case with (a) T1-weighted 
image and overlaid binary grey 
matter mask regions showing 
the exclusion of CSF, (b) the 
binary mask, (c) the PVE mask, 
and (d) the extracted IVIM D 
(left) and f (right) parameter 
maps derived with the b value 
distributions [300,1000] and 
[500,1000]
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variations observed in the D*/D ratio in vivo. The contribu-
tions from any potential partial volume effects due to the 
presence of CSF were minimised with the exclusion of sulcal 
CSF. This was confirmed by the comparison of IVIM values 
derived with the binary and PVE masks, which showed no 
difference in the distribution of the extracted IVIM values. 
The PVE masks were strictly generated and no voxels pre-
senting tissue but grey matter were included. Nonetheless, 
the in vivo bias was within the observed range for the simu-
lated f values (0.06–0.3) for the low-perfusion model, and 
confirms the presence of bias in low-perfused brain tissues. 
Therefore, consideration should be given to the impact of 
bias when choosing the b value distribution for the IVIM 
analysis, in particular for low-perfused tissues such as the 
brain or breast [3, 29, 30].

The medium- and high-perfusion models, represent-
ing tissues found in the abdomen, resulted in a substan-
tial decrease in bias of estimating the perfusion fraction. 
Therefore, the more important factor for the optimal b value 
distribution was the variability arising from the noise. The 
estimation of f was found to be more sensitive to noise 
in comparison to D, although the increase in SNR level 
improved the reproducibility of both parameters considera-
bly. The smaller contribution from bias meant that the lower 
b value distributions had lower relative errors in contrast to 
the low-perfusion model, with the optimal b value distribu-
tions for the medium-and high-perfusion models suggested 
to be [300,1000] and [200,1000], respectively.

The recommended b values from this study can be used to 
inform analysis of pre-existing data of different tissue types. 
The constrained fitting approach uses a b value threshold for 
the first fitting step on evaluating D and f, where perfusion 
effects are assumed to be negligible. Previously, thresholds 
of b = 100 s/mm2 for abdominal organs [31] and 200 s/mm2 
for the brain [23] have been suggested, when using the con-
strained fitting. In our study, the use of b values < 500 s/
mm2 for the low-perfusion model demonstrated high biases 
in estimation of D and f parameters, resulting in higher inac-
curacies for any relatively low-perfused region. For higher 
perfused tissues, such as seen for the abdominal organs, the 
use of a lower b value threshold is reasonable due to the 
lower influence of bias. Although the b value recommenda-
tions were based on a relatively simple method of combining 
D and f errors, the aim was to provide b values that can guide 
the choice of b values, and minimise the intrinsic bias that 
arises from the fitting, even when using high quality data.

Previously reported IVIM parameters for different pathol-
ogies are listed in Table 3. For highly perfused tissues, such 
as reported for cirrhotic liver [8, 9, 32] hepatocellular car-
cinomas [5, 33], prostate cancer [34, 35] and many of the 
pancreas related pathologies [12, 36, 37], our results suggest 
that the use of a low b value can reduce the variability in 
estimating the perfusion fraction. In lower perfused tissues, 

such as reported for breast cancer [3, 29, 30], a higher b 
value can aid to reduce the bias.

The other low perfused region of clinical interest is the 
brain. Previous IVIM studies of brain gliomas have been 
inconclusive with the reported f values [4, 17, 38, 39]. A 
range of values were reported for low- (D* 2.15–11.4 × 10−3 
mm2/s, f 0.06–0.49) and high-grade (D* 2.7–41.6 10−3 
mm2/s, f 0.11–0.40) gliomas. Interestingly, the two stud-
ies [17, 39] including b values ≥ 1500 and up to 3500 s/
mm2, reported relatively high f values for the brain (≥ 0.29), 
whereas the studies including b values ≤ 1300 s/mm2 [4, 
38] reported much lower values (≤ 0.13). Tri-exponential 
fitting has been previously used for data with high b values 
(> 1000 s/mm2) in the brain [40], suggesting that using a 
bi-exponential fitting for higher b value data might result in 
under fitting and thus potential positive bias in estimation 
of the IVIM parameters. On the other hand, both the IVIM 
model and the tri-exponential model are unable to account 
for the non-Gaussian diffusion and noise observed at high b 
values [41]. An alternative method was introduced with the 
use of the IVIM kurtosis model, which can fully account for 
the non-Gaussian behaviour, as shown previously in a study 
by Iima et al. [29] investigating low-perfused breast tissue 
up to b values = 2500 s/mm2. Other challenges at the higher 
b values include the SNR level, which can be relatively low, 
and consequently increases the variability of the data, if not 
adjusted e.g. with the use of higher NSA. In the context of 
these issues, the use of the standard IVIM model at b val-
ues above 1000 s/mm2 might not be desirable. Overall, the 
differences in these studies make it challenging to assess 
the accuracy of the reported IVIM values, and therefore for 
studies in the relatively low perfused tissues, an estimate of 
the SNR level should be of importance as well as caution in 
the use of lower and higher b values, which can introduce 
bias to the results.

The increase of SNR by the increase in number of sig-
nal averages provided great improvements in the reliabil-
ity of the estimated IVIM parameters. The increase from 
SNR = 40 to SNR = 55, corresponding to approximately an 
acquisition with one and two signal averages, increased the 
reproducibility for all the b value distributions. The improve-
ment was less marked in going from an SNR = 55–80. 
Therefore, aiming for an SNR = 55 may be a reasonable 
compromise between reproducibility and length of acquisi-
tion, if the biological effects being investigated are large 
enough, such as seen between the low- and high-grade glio-
mas. Presence of small biological changes in tissue might 
require the use of higher SNR levels, where detection of the 
tissue properties can be improved with the better reproduc-
ibility of the f parameter.

Optimisation of b values for specific tissue regions with 
specific fitting methods have been reported previously 
[12, 42, 43]. The results from these studies include the D* 
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parameter in the computation of the overall errors, which 
means that most of the contribution is likely to come from 
the D* due to its poor reliability [12, 13, 44]. This results 
in optimised D* parameter, but the variation of f might not 
have been taken into consideration. In our study, only the D 
and f parameters were considered, with larger contribution 
coming from the relative error of the f parameter. The recent 
interest in the f parameter for various brain pathologies, as 
well as for many types of cancer, indicates that a simple, 
but reliable approach is required for the transfer of IVIM to 
clinical imaging [45, 46].

The most used diffusion parameter in clinical practice 
remains the apparent diffusion coefficient (ADC). However, 
the use of D has shown better diagnostic performance in 
comparison to ADC in recent studies [33, 47]. Therefore, a 
clinical protocol with three b values could provide the option 
for computation of ADC, as well as the IVIM parameters D 
and f. The method used in this study can be easily adapted 
for clinical use by the introduction of a b value to an already 
routine protocol with b values 0 and 1000 with a small cost 
in scan duration. However, as suggested by the model sim-
ulations, awareness of the image quality and hence SNR 

is critical for the assessment of reliability of the derived 
IVIM parameters. Additional stability in the fitting of IVIM 
parameters can be achieved by increasing the number of 
averages, which were shown to provide large improvements 
on the results.

This study had some limitations. First, only three sepa-
rate tissue models were investigated. While this provides a 
general guide on the use of optimal b values, variation in 
tissues creates a more complex scenario as indicated by the 
larger differences seen in vivo in comparison to the simu-
lated results. Pathologies in the abdomen and the surround-
ing tissue have been found relative high perfused, implying 
that the recommended b value is likely to perform well for 
the whole imaged region. However, imaging in the abdomen 
can be affected by respiratory and cardiac motions, which 
must be assessed to ensure sufficient image quality for IVIM 
analysis. The b value choice for the brain is more complex, 
where bias is likely to play a greater role, and therefore, 
the use of higher b values should be considered. A second 
limitation is the importance of the noise level for the selec-
tion of b values. As with any imaging modality, data quality 
is important and an estimate of the SNR level can provide 

Table 3   Previous IVIM studies 
of different pathologies and the 
reported IVIM parameters

a D* fixed at 20 × 10−3 mm2/s

Study Pathology No. of patients D*/D D* f

Bisdas et al. [38] Low-grade glioma 7 20.8 10.8 0.06
High-grade glioma 15 54.7 41.6 0.11

Federau et al. [4] Low-grade glioma 5 11.4 11.4 0.08
High-grade glioma 16 5.85 11.7 0.13

Hu et al. [17] Low-grade glioma 13 2.84 2.15 0.48
High-grade glioma 29 5.35 2.71 0.29

Lin et al. [39] Low-grade glioma 13 24.7 2.77 0.49
High-grade glioma 11 29.0 5.10 0.40

Suo et al. [6] Ischemic stroke 101 24.3 10.2 0.04
Cho et al. [3] Breast cancer 14 10.7 15.0 0.13
Sigmund et al. [30] Breast cancer 27 6.40 15.1 0.10
Hayashi et al. [32] Cirrhotic liver 29 28.7 25.0 0.24
Luciani et al. [8] Cirrhotic liver 12 51.2 61.0 0.30
Patel et al. [9] Cirrhotic liver 14 26.8 27.9 0.25
Kuru et al. [34] Prostate cancer 27 29.9 31.1 0.10
Ueda et al. [35] Prostate cancer 63 11.5 7.48 0.23
Hectors et al. [5] Hepatocellular carcinoma 25 47.1 64.1 0.18
Woo et al. [33] Low-grade hepatocellular carcinoma 24 31.1 36.6 0.22

High-grade hepatocellular carcinoma 18 32.5 32.3 0.19
Lemke et al. [12] Pancreatic adenocarcinoma 23 17.4a 20.0a 0.09
Kang et al. [36] Chronic pancreatitis 7 28.9 40.8 0.19

Neuroendocrine tumour 17 39.4 43.7 0.30
Pancreatic adenocarcinoma 39 19.6 22.3 0.12
Intraductal papillary mucinous neoplasm 37 5.49 15.6 0.10

Klauss et al. [37] Chronic pancreatitis 9 18.7a 20.0a 0.16
Pancreatic adenocarcinoma 15 18.7a 20.0a 0.08
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a good guidance on the reliability of the results and aid 
in choosing the optimal b values. Finally, a limitation of 
this study is the lack of availability of software for use in 
clinical practice, which is currently not offered on clinical 
workstations.

Conclusion

This study demonstrated that IVIM parameters D and f can 
be estimated reliably with three b values. We have shown 
using model simulations that the optimal b value distribu-
tion depends on the diffusion and perfusion characteristics of 
the tissue and the compromise between bias and variability, 
which were validated using in vivo IVIM measurements. 
Recommendations for b values were made based on the 
model simulations, which can be used as a guide in future 
studies or for pre-existing data. With different clinical cen-
tres utilising different b value distributions, the results from 
this study can also aid in interpretation of differences seen 
between IVIM parameters of similar tissues.
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