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Abstract

Ubiquitination is a dynamic and reversible process of a specific modification of target pro-

teins catalyzed by a series of ubiquitination enzymes. Because of the extensive range of

substrates, ubiquitination plays a crucial role in the localization, metabolism, regulation, and

degradation of proteins. Although the treatment of glioma has been improved, the survival

rate of patients is still not satisfactory. Therefore, we explore the role of ubiquitin proteasome

in glioma. Survival-related ubiquitination related genes (URGs) were obtained through anal-

ysis of the Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA).

Cox analysis was performed to construct risk model. The accuracy of risk model is verified

by survival, Receiver operating characteristic (ROC) and Cox analysis. We obtained 36 dif-

ferentially expressed URGs and found that 25 URGs were related to patient prognosis. We

used the 25 URGs to construct a model containing 8 URGs to predict glioma patient risk by

Cox analysis. ROC showed that the accuracy rate of this model is 85.3%. Cox analysis

found that this model can be used as an independent prognostic factor. We also found that

this model is related to molecular typing markers. Patients in the high-risk group were

enriched in multiple tumor-related signaling pathways. In addition, we predicted TFs that

may regulate the risk model URGs and found that the risk model is related to B cells, CD4 T

cells, and neutrophils.

Introduction

The ubiquitination pathway is a highly conserved post-translational modification process reg-

ulated by a series of enzymes [1, 2]. It plays a leading role in the degradation of most proteins

in eukaryotic cells. Owing to the wide range of substrates that are targeted by ubiquitination,

the ubiquitination pathway participates in multiple cellular events, some of which underlie
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cancer development [3, 4]. The 76-amino acid ubiquitin is activated by the E1 ubiquitin acti-

vating enzyme. Activated ubiquitin binds to the E2 ubiquitin binding enzyme through a trans-

thioesterification reaction, and the E3 ubiquitin ligase, which interacts with substrates, binds

to the E2 and transfers ubiquitin to the target substrate. The above process requires the cataly-

sis of more than 100 E3 ligases to give substrate specificity [3, 5, 6]. Deubiquitinating enzymes

can uncouple ubiquitin or polyubiquitin chains from target proteins, thereby playing the

opposite role in negatively regulating the ubiquitin-mediated degradation of proteins [5, 7].

Ubiquitination has been the subject of increasing attention, as research has shown that ubi-

quitination dysfunction is related to the occurrence and development of many cancers [8–11].

For example, many E3 ubiquitin ligases are closely related to cell cycle progression, p53 activa-

tion, DNA damage repair, and tumor cell invasion and migration in tumors [8, 12–14]. In

addition, owing to the extensive substrates of the ubiquitination pathway and the regulation of

target protein levels, rather than biological activity, the ubiquitination pathway has become a

promising therapeutic direction for cancer. Regulating E3 ubiquitin ligases or deubiquitina-

tion enzymes may be a strategy to regulate key proteins involved in cancer development,

thereby treating cancer [15, 16]. At present, several drugs that regulate the ubiquitination path-

way are used clinically [17, 18].

Considering that the ubiquitin proteasome plays a major role in protein degradation and is

closely related to tumors, we decided to analyze the role of all known URGs in glioma. By con-

sulting relevant information, we obtained the ubiquitinated gene set, which includes 929 ubi-

quitin ligase genes and 95 deubiquitination-related genes [19]. By analyzing a comprehensive

list of 1024 URGs in 697 patients with glioma, we maximized the chance of scientific and clini-

cal discovery. We found not only to discover the regulatory mechanism of ubiquitin protea-

some in gliomas, but also we provide new evaluation criteria for the prognosis of gliomas and

new directions for drug development.

Materials and methods

Patient samples

MRNA files of glioma and control specimens were obtained from UCSC (https://xena.ucsc.

edu/). The GTEx dataset includes 1152 brain tissues that were healthy while alive. The TCGA

dataset contains 5 non-tumor brain tissues and 697 glioma tissues, which included 221 World

Health Organization (WHO) grade II gliomas, 244 WHO grade III gliomas, 166 grade WHO

IV gliomas, and 66 without tissue grade (Table 1). GSE108474 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi) contains 671 samples, which included 21 cases of non-tumor tissue, 2

WHO grade I gliomas, 99 WHO grade II gliomas, 84 WHO grade III gliomas, 134 grade

WHO IV gliomas, and 331 without tissue grade (Table 1). The WHO classification system was

used according to our previous descriptions [6, 20]. All data comes from public databases

(GTEx, TCGA, GSE108474) and is completely anonymous. The ethics committee of Xuzhou

Children’s Hospital approved the study protocol.

Identification of survival-related ubiquitination genes

By referring to the literature, we obtained ubiquitination-related genes (URGs), including 929

ubiquitin ligase genes and 95 deubiquitination enzyme genes (S1 Table). The authors obtained

the ubiquitination gene set through the Ubiquitin and Ubiquitin-like Conjugation Database

(UUCD, http://uucd.biocuckoo.org/) [19]. UUCD uses the ubiquitination protein sequence

and hidden Markov model (HMM) calculation methods to predict other possible ubiquitina-

tion enzymes and adaptors [19]. The ubiquitination gene set includes a total of 929 genes,

including E1 (8 genes, predicted 1), E2 (39 genes, predicted 2) and E3 (882 genes, predicted
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368) [19]. The author obtained 95 deubiquitination genes by consulting the literature [19].

Using the limma package of R software (https://www.r-project.org/), we analyzed the differen-

tial expression of non-tumor brain tissue and glioma tissue in the GTEx and TCGA databases,

and then we only retained the URGs in the differentially expressed genes (Table 2). URGs sat-

isfying FDR<0.05 and log2 |fold change|> 1 are considered statistically significant. Using the

R software survival package, we discovered URGs related to the prognosis of patients. A p-

value less than 0.05 was considered statistically significant.

Survival curve analysis and receiver operating characteristic (ROC) curve

analysis

We analyzed the relationship between differentially expressed URGs and the risk model with

patient prognosis using the survival package of R software. The results were analyzed by sur-

vival curves. The survival ROC package of R software was used to analyze the accuracy of

URGs and the risk model in predicting patient prognosis. P<0.05 (for survival curves) and

AUC>0.7 (for ROC curves) were considered to indicate statistical significance.

Univariate and multivariate Cox analysis

To analyze whether the URGs and the risk model were prognostic factors for glioma patients,

we analyzed the relationship between the individual factors and the survival of patients by uni-

variate Cox analysis. We used multivariate Cox to analyze whether the factors and model can

be used as prognostic factors for patients. The analyses were performed using R software.

Risk model of URGs and patient risk level calculations

We analyzed the correlation between differentially expressed URGs and survival through R

software, and obtained URGs related to survival. Then, we performed multivariate Cox

Table 1. Comprehensive demographic information of the patients.

TCGA GSE108474 GTEx

1 2 2 1 2

Gender Gender

Male 368 52.42 221 32.94 Male 792 68.75

Female 268 38.18 126 18.78 Female 360 31.25

Age (years) Body site

�65 549 78.21 Amygdala 69 5.99

>65 87 12.39 Anterior cingulate 83 7.20

WHO grade Basal ganglia 294 25.52

Non-tumor 5 0.71 21 3.13 Cerebellum 216 18.75

Grade I 2 0.30 Cortex 207 17.97

Grade II 221 31.48 99 14.75 Hippocampus 84 7.29

Grade III 244 34.76 84 12.52 Spinal cord 82 7.12

Grade IV 166 16.52 134 19.97 Substantia nigra 60 5.21

Survival status

Alive 432 61.54 82 12.22

Deceased 204 29.06 313 46.65

WHO = World Health Organization. 1 = Patient characteristics, 2 = No. patients (%). Blank space indicates that the corresponding database has no relevant

information.

https://doi.org/10.1371/journal.pone.0250239.t001
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regression analysis on survival-related URGs, excluded URGs that could complement survival

relationships, and constructed an optimal risk model for predicting patient prognosis. After

obtaining the risk model, we multiplied the risk model gene expression level of each patient by

the model coefficient to obtain the risk score of each patient. We divided patents into high-

and low-risk groups according to the median value of the risk score.

Gene Set Enrichment Analysis (GSEA) of risk model-enriched KEGG

pathways

We used GSEA (http://software.broadinstitute.org/gsea/index.jsp) to analyze the risk model-

enriched KEGG signaling pathways. We calculate the risk value of each patient according to

the risk model formula. According to the median risk value, patients were divided into high

and low risk groups. Then the KEGG signaling pathway enriched in the high- and low- risk

groups was analyzed by GSEA.

Correlation analysis between risk model and clinical markers

To explore the relationship between the risk model and common clinical traits, we analyzed

the relationship between the risk model and these common clinical traits, such as ATRX status,

Chr 19/20 co-gain, Chr 7 gain/Chr 10 loss, MGMT promoter status, 1P/19q co-deletion, IDH

status, mutation count, histology, gender, grade, age and fustat (state of existence) [20]. We

found that the risk model is related to all clinical traits except gender. ��p<0.01, ���p<0.001.

Table 2. The p value and AUC value of 36 differentially expressed URGs.

Survival curve ROC curve

Gene p value Gene p value Gene AUC Gene AUC

CDC20 0 KLHL1 0.002 CDC26 0.188 TRIM54 0.475

TRIM17 0 WDR72 0.006 TRIM17 0.213 USP50 0.521

UBE2C 0 DNAI1 0.018 CORO6 0.214 NEDD4 0.542

WDR62 1.11E-16 RNF148 0.025 RFPL4B 0.233 KLHL6 0.542

CORO6 3.33E-16 CDRT1 0.060 WDR87 0.238 SAG 0.559

HOXB4 3.33E-16 KLHL6 0.098 USP6 0.290 TRIM74 0.568

DTL 2.22E-15 DCAF4L2 0.127 ASB4 0.295 RNF133 0.570

CDC26 6.33E-15 TRIM74 0.139 TRIM55 0.308 UHRF1 0.575

WDR87 1.86E-13 UBE2NL 0.144 TRIM72 0.333 DCAF4L2 0.589

RFPL4B 5.40E-12 RNF133 0.144 DNAI1 0.374 WDR72 0.618

TRIM38 3.23E-10 USP50 0.183 KLHL1 0.375 RNF148 0.618

USP6 9.69E-09 SAG 0.193 RNF212 0.387 CCIN 0.637

TRIM55 1.42E-08 NEDD4 0.222 KLHL31 0.403 TRIM38 0.720

ASB4 1.07E-07 UHRF1 0.264 CDRT1 0.424 HOXB4 0.796

CCIN 3.97E-06 RNF151 0.576 UBE2NL 0.428 DTL 0.801

RNF212 7.22E-06 TRIM31 0.621 SH3RF2 0.431 WDR62 0.835

TRIM72 1.40E-05 SH3RF2 0.676 TRIM31 0.455 UBE2C 0.839

KLHL31 0.001 TRIM54 0.784 RNF151 0.470 CDC20 0.866

The bold genes are those with Survival curve p value less than 0.05 and ROC curve with AUC value greater than 0.7. The italic genes in ROC are down-regulated genes,

and the rest are up-regulated genes.

https://doi.org/10.1371/journal.pone.0250239.t002
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Analysis of transcription factors (TFs) regulating URGs in the risk model

Cistrome Cancer contains a regulatory link between TFs and the transcriptome, which is con-

structed by TCGA tumor molecules, 23,000 ChIP-seq and chromatin [21]. The Cistrome Can-

cer database contains 318 TFs. We used clinically relevant TFs to construct regulatory

networks of TFs and URGs. A P-value<0.001 was considered statistically significant.

Analysis of the correlation between the risk model and immune cells

We used TIMER (Tumor Immune Estimation Resource) to analyze the numbers of six sub-

types of tumor-infiltrating immune cells, including B cells, CD4 T cells, CD8T cells, dendritic

cells, macrophages, and neutrophils of tumor-infiltrating immune cells, in 10,897 samples

from 32 cancers of TCGA [22]. We downloaded the level of glioma immune infiltration by

TIMER (https://cistrome.shinyapps.io/timer/) and analyzed the relationship between the risk

score obtained and immune cell infiltration.

Statistical analysis

R software was used for statistical analyses. The differentially expressed URGs were obtained

by Wilcoxon test. Statistical significance was defined as a two-tailed P value< 0.05. GSEA was

performed using GSEA software, where |NES (normalized enrichment score)| > 1, NOM p-

value < 0.05, and FDR q-value < 0.25 were considered to indicate statistical significance.

Results

Identification of differentially expressed URGs and survival-related

ubiquitination genes

By referring to the literature, we obtained ubiquitination-related genes (URGs), including 929

ubiquitin ligase genes and 95 deubiquitination enzyme genes. To determine whether URGs

can be used as markers to judge the prognosis of glioma patients, we first obtained 36 differen-

tially expressed URGs, including 19 downregulated genes and 17 upregulated genes, by com-

paring 1157 non-tumor brain tissues with 697 glioma tissues (Table 2). Cox analysis showed

that 25 of these URGs were associated with patient survival (Fig 1). Among the 25 URGs, 11

were high-risk genes and 14 were low-risk genes. Survival analysis of CDC20, UBE2C, WDR62,

DTL, HOXB4 and TRIM38 were statistically significant, and the AUC value was greater than

0.7 (Figs 2 and 3). We performed univariate and multivariate Cox analyses to determine the

impact of individual genes on patient prognosis. Univariate analysis found that the six genes

and more clinical traits (age, grade, histology, IDH status, 1p/19q co-deletion, MGMT pro-

moter status, Chr 7 gain/Chr 10 loss, Chr 19/20 co-gain, ATRX status) are related to the prog-

nosis of the patient without the influence of other factors (Fig 4A, Table 3). However,

multivariate Cox analysis found that only age, IDH status and Chr 19/20 co-gain were inde-

pendent factors for patient prognosis (Fig 4B, Table 3).

Construction of a clinical prognostic model for URG evaluation

Cox analysis found no independent prognostic factors among the survival-related URGs.

Therefore, R software was used to analyze the relationship between the 25 differentially

expressed URGs and the prognosis of patients and remove the URGs that can be correlated.

We obtained an optimized risk model for predicting the prognosis of glioma patients

(Table 4). Through multivariate Cox regression analysis, glioma patients were divided into

high- and-low risk groups according to the median value of the risk value, and the risk value
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was calculated according to the risk model formula. A model was constructed to predict

patient prognosis (Fig 5, Table 4). The formula is as follows: [CDC20 expression level × (0.343)

+ CDC26 expression level × (-0.308) + CORO6 expression level × (-0.253) + HOXB4 expres-

sion level × (0.173) + RFPL4B expression level × (-0.662) + RNF212 expression level × (-0.361)

+ TRIM38 expression level × (0.250) + UBE2NL expression level × (-0.381)]. Survival analysis

showed that the 3-year and 5-year survival rates of patients in the high-risk group were 32.2%

and 22.4%, respectively, and those in the low-risk group were 92.4% and 78.5%, respectively

(Fig 6A). ROC curve analysis found that the model accuracy rate was 85.3% (Fig 6B). The

model we constructed is expressed by riskScore, and univariate and multivariate Cox analyses

showed that age, grade, IDH status, Chr 19/20 co-gain and riskScore can be used as indepen-

dent prognostic factors (Fig 7, Table 5). In addition, we also constructed prognostic models for

low-level and high-level groups, survival analysis and ROC analysis for verification in the

TCGA and GSE108474 databases (Tables 6 and 7, S1 and S2 Figs).

Fig 1. Identification of differentially expressed ubiquitination related genes (URGs) related to prognosis. Through joint analysis of

TCGA (Including 697 specimens of glioma and 5 cases of non-tumor brain tissue) and GTEx (Containing 1152 healthy brain specimens

before death) datasets, we identified 25 URGs related to survival. The line with a green dot indicates low risk factors, and the line with a red

dot indicates high risk factors. P<0.05 are statistically significant.

https://doi.org/10.1371/journal.pone.0250239.g001
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Fig 2. Survival curves of URGs related to the prognosis of patients. Survival analysis obtained URGs related to patient prognosis. Here we

only showed the genes that also satisfy the true positive rate greater than 0.7 in ROC curve analysis: CDC20 (A), UBE2C (B), WDR62 (C),

DTL (D), HOXB4 (E) and TRIM38 (F).

https://doi.org/10.1371/journal.pone.0250239.g002

Fig 3. ROC curves for URGs related to patient prognosis. ROC curve analysis identified 6 genes with AUC greater than 0.7: CDC20 (A),

UBE2C (B), WDR62 (C), DTL (D), HOXB4 (E) and TRIM38 (F).

https://doi.org/10.1371/journal.pone.0250239.g003
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The relationship between the risk model and clinical traits, signaling

pathways, TFs and immune cells

We analyzed the relationship between the risk model and multiple clinical molecular markers

and found that the risk model is related to ATRX status, Chr 19/20 co-gain, Chr 7 gain/Chr 10

loss, MGMT promoter status, 1P/19q co-deletion, IDH status, mutation count, histology,

grade, and age (Fig 8). GSEA analysis revealed that the high-risk group is enriched in ECM-

receptor interaction, focal adhesion, homologous recombination, Jak-STAT signaling path-

way, leukocyte transendothelial migration, mismatch repair, and the Toll-like receptor signal-

ing pathway (Fig 9A). However, no meaningful enrichment was found in the low-risk group.

Cancer is caused by aberrant gene regulation. TFs are important molecules that directly regu-

late gene expression. To explore potential molecular mechanisms corresponding to the URGs

in the risk model, we thus explored the potential TFs that may function in regulating the

URGs in the risk model. Cytoscape was used to display TFs that regulate risk model genes (Fig

9B). GSEA analysis found that the risk score was related to leukocyte transendothelial

Fig 4. Cox analysis of the relationship of URGs with glioma patient prognosis. (A) Univariate Cox analysis found that except for gender and

mutation count, they were all related to patient prognosis. (B) Multivariate Cox analysis found that only age, IDH status, and Chr 19/20 co-gain

were independent factors for patient prognosis. The line with a green dot indicates low risk factors, and the line with a red dot indicates high

risk factors.

https://doi.org/10.1371/journal.pone.0250239.g004
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migration. Since immune cell infiltration is very important in tumor progression, we next

examined the relationship between the risk score and immune cells and found that it was

related to B cells, CD4 T cells, and neutrophils (Fig 10).

Discussion

By analyzing 929 ubiquitination ligase genes and 95 deubiquitination genes in the TCGA and

GTEx databases, we obtained 36 differentially expressed URGs. Our results showed that 25 of

the differentially expressed URGs were related to survival in glioma patients; six genes,

CDC20, UBE3C, WDR62, DTL, HOXB4, and TRIM38, were statistically significant with an

AUC value greater than 0.7. However, none of the six genes were independent prognostic fac-

tors for glioma patients. We constructed a model using the URGs that predicts the prognosis

Table 3. Univariate analysis and multivariate analysis of the correlation of the expression of CDC20, UBE2C, WDR62, DTL, HOXB4 and TRIM38 with OS among

glioma patients.

Parameter Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Age (Increasing years) 1.082 1.067−1.097 2.12E-29 1.054 1.037−1.071 2.94E-10

Gender (Male vs female) 0.932 0.664−1.308 0.685 0.949 0.653−1.379 0.785

Grade (Increasing tumor grade) 4.957 3.734−6.582 1.76E-28 1.357 0.907−2.030 0.137

Histology (oligodendroglioma vs oligoastrocytoma vs glioblastoma vs astrocytoma) 0.733 0.640−0.839 6.89E-06 0.868 0.701−1.075 0.194

Mutation Count (Increasing number) 1.000 0.999−1.000 0.346 0.997 0.988−1.007 0.531

IDH status (Mutation vs wild) 0.100 0.068−0.145 4.17E-33 0.126 0.045−0.352 7.84E-05

lp/19q co-deletion (Yes vs no) 0.223 0.126−0.396 2.91E-07 1.339 0.404−4.431 0.633

MGMT promoter status (Methylated vs unmethylated) 0.337 0.238−0.479 1.20E-09 1.166 0.755−1.801 0.487

Chr 7 gain/Chr 10 loss (Yes vs no) 8.978 6.041−13.342 1.81E-27 0.964 0.586−1.584 0.885

Chr 19/20 co-gain (Yes vs no) 3.123 1.673−5.830 0.000 0.428 0.209−0.877 0.020

ATRX status (Mutation vs wild) 0.478 0.324−0.705 0.000 1.924 0.772−4.796 0.160

CDC20 (lncreasing number) 6.535 4.480−9.534 2.01E-22 1.637 0.440−6.087 0.462

UBE2C (Increasing number) 4.257 3.006−6.026 3.21E-16 1.677 0.685−4.107 0.258

WDR62 (Increasing number) 4.852 3.344−7.040 9.17E-17 0.932 0.391−2.224 0.874

DTL (Increasing number) 4.326 2.906−6.440 5.42E-13 0.642 0.213−1.930 0.430

HOXB4 (Increasing number) 1.318 1.188−1.463 2.09E-07 1.028 0.952−1.109 0.481

TRIM38 (Increasing number) 10.441 5.495−19.838 7.92E-13 1.223 0.542−2.756 0.628

Bold values indicate P<0.05. HR, hazard ratio; OS, overall survival; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0250239.t003

Table 4. A model for predicting patient prognosis constructed with URGs.

Gene coef HR HR.95L HR.95H pvalue

CDC20 0.343 1.410 1.222 1.626 2.40E-06

CDC26 -0.308 0.735 0.612 0.882 0.001

CORO6 -0.253 0.776 0.63 0.957 0.018

HOXB4 0.173 1.188 1.062 1.330 0.003

RFPL4B -0.662 0.516 0.349 0.763 0.001

RNF212 -0.361 0.697 0.583 0.833 7.28E-05

TRIM38 0.250 1.285 0.986 1.673 0.063

UBE2NL -0.381 0.683 0.466 1.002 0.051

Coef, coefficient; HR, hazard ratio; HR.95L, hazard ratio. 95% low; HR.95H, hazard ratio. 95% high.

https://doi.org/10.1371/journal.pone.0250239.t004
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Fig 5. Patient prognosis based on the model constructed using URGs. (A) Patient prognosis risk score and

distribution. (B) The survival time and status of patients with different risk scores. (C) Heatmap of URG expression

profiles.

https://doi.org/10.1371/journal.pone.0250239.g005

Fig 6. The prognostic value of the risk model. (A) Number of events and patient survival rate in high- and low-risk groups over time. (B) ROC

curve analysis of the accuracy of the risk model. The true positive rate was 0.853.

https://doi.org/10.1371/journal.pone.0250239.g006
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Fig 7. Analysis of risk model in predicting patient prognosis. (A) Univariate Cox analysis of the value of common clinical molecular markers

and the risk model in predicting patient prognosis. Gender and mutation count showed no statistical significance with patient prognosis. (B)

Multivariate Cox analysis of common clinical molecular markers and the risk model as independent prognostic factors. Age, grade, IDH status,

Chr 19/20 co-gain and the risk model were independent prognostic factors. Parameters with green dots indicate low risk factors, and those with

red dots indicate high risk factors.

https://doi.org/10.1371/journal.pone.0250239.g007

Table 5. Univariate analysis and multivariate analysis of the correlation of the expression of riskScore with OS among glioma patients.

Gene coef HR HR.95L HR.95H pvalue

ASB4 -1.915 1.473 0.022 0.972 0.047

CCIN 2.358 10.575 0.930 120.310 0.057

CDRT1 -1.376 0.253 0.045 1.408 0.116

DCAF4L2 -2.074 0.126 0.028 0.570 0.007

DTL -5.875 0.003 0.000 0.050 6.58E-05

RNF148 -2.301 0.100 0.006 1.603 0.104

TRIM31 2.062 7.862 0.655 94.415 0.104

TRIM54 -2.249 0.106 0.025 0.448 0.002

WDR62 6.996 1092.750 38.060 31374.461 4.42E-05

WDR72 1.220 3.387 1.251 9.169 0.016

Coef, coefficient; HR, hazard ratio; HR.95L, hazard ratio. 95% low; HR.95H, hazard ratio. 95% high.

https://doi.org/10.1371/journal.pone.0250239.t005
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of glioma patients. Patients were stratified into high- and low-risk groups using the model,

and the 5-year survival rates of the patients in the high- and low-risk groups were 22.4% and

78.5%, respectively, with a true positive rate of 0.853. Cox analysis showed that the risk model

was independent factor for patient prognosis, in addition to age, grade, IDH status, and Chr

19/20 co-gain. The risk model was related to multiple factors such as ATRX status, Chr 19/20

co-gain, Chr 7 gain/Chr 10 loss, MGMT promoter status, 1P/19q co-deletion, IDH status, and

mutation count, among other factors. GSEA found that the high-risk group was enriched in

ECM-receptor interaction, focal adhesion, homologous recombination, Jak-STAT signaling

pathway, leukocyte transendothelial migration, mismatch repair, and Toll-like receptor signal-

ing pathway. In addition, we identified TFs that may regulate these genes and were related to B

cells, CD4 T cells and neutrophils.

The degradation of intracellular proteins is mainly accomplished by the ubiquitin-protea-

some system, and the ubiquitin-proteasome have strong selectivity for protein degradation

[23]. Studies have shown that the ubiquitination pathway is closely related to the occurrence

and development of tumors [1, 2, 8, 9, 19]. Here we identified six differentially expressed

Table 6. A model for predicting grade II patient prognosis constructed with URGs.

Gene coef HR HR.95L HR.95H pvalue

CCIN 0.283 1.328 0.909 1.940 0.142

CDC20 0.303 1.354 1.160 1.581 0.000

CDC26 -0.272 0.762 0.634 0.915 0.004

HOXB4 0.162 1.176 1.048 1.319 0.006

KLHL1 0.323 1.381 1.033 1.845 0.029

RNF212 -0.451 0.637 0.518 0.783 1.77E-05

TRIM17 -0.215 0.806 0.597 1.089 0.160

TRIM38 0.274 1.315 0.977 1.771 0.071

TRIM72 -1.062 0.346 0.139 0.859 0.022

UBE2NL -0.467 0.626 0.419 0.938 0.023

Coef, coefficient; HR, hazard ratio; HR.95L, hazard ratio. 95% low; HR.95H, hazard ratio. 95% high.

https://doi.org/10.1371/journal.pone.0250239.t006

Table 7. A model for predicting grade III and IV patient prognosis constructed with URGs.

Parameter Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Age (Increasing years) 1.080 1.066−1.095 1.42E-28 1.051 1.034−1.069 1.69E-09

Gender (Male vs female) 0.933 0.665−1.309 0.686 0.904 0.628−1.302 0.588

Grade (Increasing tumor grade) 4.976 3.749−6.605 1.17E-28 1.594 1.111−2.288 0.011

Histology (oligodendroglioma vs oligoastrocytoma vs glioblastoma vs astrocytoma) 0.719 0.601−0.861 0.000 0.826 0.633−1.078 0.159

Mutation Count (Increasing number) 1.000 0.999−1.000 0.345 0.996 0.986−1.007 0.485

IDH status (Mutation vs wild) 0.095 0.065−0.139 4.70E-34 0.160 0.064−0.397 7.92E-05

lp/19q co-deletion (Yes vs no) 0.224 0.126−0.398 3.15E-07 0.938 0.338−2.606 0.903

MGMT promoter status (Methylated vs unmethylated) 0.329 0.232−0.468 5.73E-10 1.039 0.678−1.592 0.859

Chr 7 gain/Chr 10 loss (Yes vs no) 9.898 6.590−14.866 2.29E-28 1.350 0.838−2.172 0.217

Chr 19/20 co-gain (Yes vs no) 3.121 1.672−5.825 0.000 0.489 0.247−0.967 0.040

ATRX status (Mutation vs wild) 0.476 0.322−0.702 0.000 2.072 0.900−4.771 0.087

riskScore (lncreasing number) 1.240 1.199−1.282 5.56E-36 1.089 1.032−1.150 0.002

Bold values indicate P<0.05. HR, hazard ratio; OS, overall survival; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0250239.t007
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URGs that were related to survival in glioma patients. CDC20 drives the aggressiveness and

self-renewal of gliomas and is associated with genomic instability [24, 25]. CDC26 is a compo-

nent of the late cell cycle anaphase promotion complex, which is activated by CDC20 to regu-

late the cell cycle [26]. CORO6 is a member of the coronin family and is an actin-binding

protein [27, 28]. HOXB4 is associated with the prognosis of ovarian cancer patients, leukemia

resistance, and renal cancer [29–31]. RNF212 is associated with postoperative survival rate and

TMZ chemoradiation response in GBM patients as well as mammalian meiosis [32, 33].

TRIM38 is associated with innate immunity and inflammation [34, 35]. Few studies have

Fig 8. Relationship between risk groups and clinical traits. Analysis of the relationship between high and low risk groups and

common clinical traits, including ATRX status, Chr 19/20 co-gain, Chr 7 gain/Chr 10 loss, MGMT promoter status, 1P/19q co-deletion,

IDH status, mutation count, histology, grade, gender, age, and fustat. Gender and risk groups showed no correlation. TRIM38, CDC20,

HOXB4 and other genes are the genes for constructing risk models. Red represents high expression, green represents low expression,

and white represents intermediate expression. ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0250239.g008
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Fig 9. Enriched signaling pathways and TFs related to risk model genes. (A) GSEA enrichment analysis found that high-risk groups were

enriched in ECM-receptor interaction, focal adhesion, homologous recombination, Jak-STAT signaling pathway, leukocyte transendothelial

migration, mismatch repair, and the Toll-like receptor signaling pathway. (B) TFs that regulate risk model genes. Yellow triangles indicate TFs.

Red ellipses and green quadrilaterals represent URGs; red ellipses indicate high-risk genes, and green quadrilaterals represent low-risk genes.

The red line indicates a positive regulatory relationship, and the green line indicates a negative regulatory relationship.

https://doi.org/10.1371/journal.pone.0250239.g009

Fig 10. Relationship between risk score and immune cells. The risk score was related to B cells (A), CD4 T cells (B), and neutrophils (F).

However, it showed no statistical correlation with CD8 T cells (C), dendritic cells (D) and macrophages (E).

https://doi.org/10.1371/journal.pone.0250239.g010
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examined RFPL4B and UBE2NL. Our constructed model of URGs can be used as an indepen-

dent prognostic factor to predict the prognosis of glioma patients.

With the completion of the Human Genome Project, some gene mutations have been

shown to be aberrant in patients with gliomas and can be used for diagnosis and treatment of

gliomas, such as IDH status, MGMT promoter status, and 1P/19q co-deletion etc [36–38]. We

analyzed the relationship between the score of the risk model and these molecular markers of

glioma and found that the risk score was closely related to the above molecular markers, which

proves the reliability of the model. GSEA identified multiple tumor signaling pathways that

may lead to disease progression in high-risk groups. Previous studies showed that the ubiquiti-

nation pathway regulates tumor progression through an immune response [1, 39]. GSEA

found that the high-risk group was enriched for leukocyte transendothelial migration, and cor-

relation analysis found that the risk score is related to the number of B cells, CD4 T cells and

neutrophils.

In summary, we built a model of URGs to predict prognosis in glioma patients. GSEA

results may have identified a possible mechanism in the patients with poor prognosis. Our

results may provide new targets for the prognosis and treatment of glioma patients.
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