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Abstract

Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority
of the world population currently without access to such care. In this study, we show that non-invasive electrical
measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive
tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to
distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical
measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were
transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The
results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the
tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to
produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote
non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of
biopsy samples in vitro.
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Introduction

Telemedicine, the use of telecommunication in medicine, is

becoming an increasingly important branch of medicine. A recent

review of different wireless and networking technologies and their

use to promote the ultimate goal of global health by means of

deployment of a telemedicine paradigm is found in [1].

Telemedicine finds applications in almost every aspect of

medicine. For instance, sampling signals from sensors on patients

and transmits digital data over a Bluetooth link to a mobile

telephone was discussed in [2]. The use of wireless technologies,

such as wireless LAN and sensor networks, for remote cardiac

patient monitoring (telecardiology) was discussed in [3]. A

comprehensive 3G universal mobile telecommunications system

(UMTS) solution for the delivery of voice, real-time video, ECG

signals, and medical scans information from an ambulance to a

hospital was presented in [4].The use of medical imaging through

a telecommunication network for minimally invasive surgery was

introduced in 2004 [5,6].

Recently, our group has expanded on our previous work in

telemedicine [5,6] and introduced the design of a conceptually

new device technology in which the data processor site and the

data acquisition site are geographically separated, and a cellular

phone is used as a conduit of raw and processed data between the

two distant sites [7]. One possible application of this technology is

for the majority of the world population currently without access

to medical imaging [7]. In another recent paper [8], we

introduced the use of classifier technology for tissue characteriza-

tion in X-ray mammography. Conventional mammography can

identify areas of suspicious tissue, and often invasive needle biopsy

is used to determine if the suspicious tissue is benign or malignant.

We proposed a new way to characterize the suspicious tissue

without the use of needle biopsies. The method works by

combining knowledge of the location and size of the tissue sample

of interest from X-ray mammography with multi-frequency

electrical measurements made on the breast surface (in a

configuration similar to the mammogram, as in [9]) and with

Support Vector Machine (SVM) classifier techniques. The

classifying capability is due to the fact that malignant tumors

have different electrical properties from benign tumors [9–14].

The study was theoretical and demonstrated the feasibility of the

concept.

In this study, we combine the cellular phone technology of [7]

with the classifier technique of [8] for a new method of tissue

characterization through the cellular phone. This study has

experimental and theoretical aspects. The main aim of the study

is to produce the first experimental demonstration of the feasibility

of the theoretical concept introduced in [8]. The experimental

study was done with tissue samples in vitro. This particular

experimental technique may also have immediate use for the

characterization of tissues from biopsies. Tissue biopsies are a

standard diagnostic tool. In major hospitals, experts in histology

can perform the tissue analysis on site, immediately after the

biopsies are taken. However, biopsy samples taken at smaller

clinics and by private physicians are usually sent out for

histological analysis. This is a lengthy process which inconve-

niences patients and increases the cost of the treatment. The

technique shown in this study could be used for biopsy tissue

characterization at the site where it is taken, from a distance

through the cellular phone.

This paper is presented in two parts. In the first, we introduce

the experimental procedure, the data acquisition device (DAD)
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electrical hardware, and the classifier software and demonstrate

how we train the classifier to distinguish between tissue types. In

the second part, we introduce the use of the cellular phone to

connect between the DAD at a remote data sampling site and the

trained classifier at a central location.

Materials and Methods

Biological Samples and Electrical Measurements
All procedures complied with the National Institute of Health

Guide for the care and use of Laboratory Animals and were

approved by the Institutional Animal Care and Use Committee of

the Hebrew University, Jerusalem, Israel.

Animal procedures
Male Sprague-Dawley rats, weighing 250–300 grams, were

obtained from Harlan Laboratories in Jerusalem, Israel. On the

day of the procedure, the rats were anesthetized using a ketamine/

xylasine combination (40 mg/kg and 10 mg/kg, respectively). Fifteen

hearts and 24 kidneys were taken from 15 different rats. (To minimize

animal use, the organs were taken from animals that were used for

other studies immediately after the animals were sacrificed). The

average weights of the organs are listed in Table 1. It should be noted

that the heart and kidney tissues had similar weights. After removal,

the fresh organs were placed in saline with heparin and refrigerated at

10uC until the measurements were performed. All the measurements

were done within three hours of each rat’s sacrifice, and the order of

the measurements followed the order in which the animals were

sacrificed. However, the order in which the measurements were done

for the different organs was random.

The measurement device is shown in Figure 1. Sixteen holes,

equally distributed on a 6 cm-diameter circle, were made in the cover

of a 9 cm-diameter Petri dish. Needles (1.10638 mm) were inserted

through the holes, as exhibited in Figure 1. For each measurement,

the organ was positioned in the center of the 9 cm-diameter Petri dish

in 25 ml of saline and covered as described above. An image of the

organ in the Petri dish can be seen in Figure 2.

All impedance measurements were performed using a custom-

developed impedance analyzer embedded in a single Printed

Circuit Board (PCB). The impedance analyzer architecture is

described in [15]. A total of 11 different frequencies, ranging from

1 kHz to 400 kHz, were measured. Using a manual switchboard, 12

different electrode configurations were employed. In each config-

uration, four electrodes were used, with two opposite electrodes for

current injection and two opposite electrodes for voltage measure-

Table 1. Average weight.

Mean Std

Rat 281.47 gr. 8.76

Kidney 1.65 gr. 0.153

Heart 1.42 gr. 0.149

doi:10.1371/journal.pone.0005178.t001

Figure 1. Measurement configuration. The kidney is placed in the center of a 9 cm-diameter Petri dish and covered with 25 ml of saline. Sixteen
holes, equally distributed on a 6 cm-diameter circle, were made in the cover of the Petri dish. The electrodes were placed through these holes.
doi:10.1371/journal.pone.0005178.g001
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ment. The different configurations are depicted in Figure 3. The

data from each configuration were collected for five seconds.

Support Vector Machines
Support Vector Machines are a group of supervised learning

methods belonging to the family of generalized linear classifiers

[16,17]. The fundamental principle is to map the input vectors, x,

into a high-dimensional feature space, z, through some nonlinear

mapping chosen a priori. An optimal separating hyperplane is then

constructed in this space as a method for characterization [18].

SVMs have numerous uses, ranging from general applications, such

as object recognition [19], speaker identification [20], face detection

[21], and text categorization [22], to applications that are more

relevant to this study, such as mammogram classification [23,24].

For the convenience of readers in life sciences, we state here the

classical formulation of a classifier problem. A more intuitive

explanation can be found in Appendix S1, and a more complete

tutorial can be found in [16,17], as well as in machine learning

textbooks, such as [25]. Briefly, the problem solved using SVMs is

as follows: We want to separate the set of training vectors

belonging to two different classes:

x1,y1ð Þ, . . . , xm,ymð Þf g,x[Rn,y[ {1,1f g ð1Þ

Using the hyperplane:

Sw,xTzb~0 where w[H,b[R ð2Þ

The decision function corresponding to this is:

f xð Þ~sign Sw,xTzbð Þ ð3Þ

This leads us to the minimization problem:

min
w[H,b[R

t wð Þ~ 1

2
wk k2

subject to yi Sw,xTzbð Þ§1 for all i~1,::,m

ð4Þ

In order to solve this problem, we can use Lagrange multipliers

ai$0 and a Lagrangian

L w,b,að Þ~ 1

2
wk k2{

Xm

i~1

ai yi Sxi,wTzbð Þ{1ð Þ ð5Þ

L has to be: a) minimized with respect to the primal variables w,

and b) maximized with respect to the dual variables ai (in other

words, we are looking for a saddle point). The vectors xi for which

ai?0 will be called support vectors.

Since the derivatives of L with respect to the primal variables

must vanish, we get:

L
Lb

L w,b,að Þ~0 and
L

Lw
L w,b,að Þ~0 ð6Þ

Leading to:

Xm

i~1

aiyi~0 and w~
Xm

i~1

aiyixi ð7Þ

The dual problem will take the form:

max
a[Rm

W að Þ~
Xm

i~1

ai{
1

2

Xm

i,j~1

aiajyiyjSxi,xjT

subject to ai§0 for all i~1,::,m and
Xm

i~1

aiyi~0

ð8Þ

We will use a kernel k(x,x9) in order to map from the input space

to a feature space.

Since a separating hyperplane may not exist, we will relax the

constraints:

yi Sw,xTzbð Þ§1{ji for all i~1,::,m

ji§0 for all i~1,::,m
ð9Þ

Figure 2. Organ placement. a) Heart; and b) Kidney.
doi:10.1371/journal.pone.0005178.g002
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Figure 3. Electrode combinations. Red electrodes are used for current injunction, and green electrodes are used for voltage measurement. The
combinations can be divided into four groups: I) Combinations 1–4, adjacent electrodes; II) Combinations 5–7, only one electrode away; III)
Combinations 8–10, two electrodes away; and IV) Combinations 11–12, three electrodes away.
doi:10.1371/journal.pone.0005178.g003
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The objective function will change too:

min
w[H,b[R

t w,jð Þ~ 1

2
wk k2

zC
Xm

i~1

ji ð10Þ

Leading us to our final optimization problem of:

max
a[Rm

W að Þ~
Xm

i~1

ai{
1

2

Xm

i,j~1

aiajyiyjk xi,xj

� �

subject to 0ƒaiƒC for all i~1,::,m and
Xm

i~1

aiyi~0

ð11Þ

And our decision function will be:

f xð Þ~sign
Xm

i~1

yiaik x,xið Þzb

 
ð12Þ

In the present case, each entry in the vector x is a voltage value

(amplitude or phase) measured for a different electrical excitation

frequency. Since 11 frequencies were used, then n = 11. yi

corresponds to the tissue type, yi~1 for a kidney and yi~{1
for a heart. The index: i~1::mf g is one index for each different

organ, meaning m~15heartsz24kidneys~39.

SVM Classifier Training
The SVM was trained using svmLight [26]. Two types of inputs

were examined: the voltage magnitude and the voltage phase. The

magnitude data were normalized in the following way:

Vnormalized,j~
Vmeasured,j

Vmean
ð13Þ

Where Vmeasured,j

��j~1:: n
� �

are a set of measurements (n

frequencies) for a specific electrode configuration and

Vmean~
1
n

Pn
j~1 Vmeasured,j. The phase data were not changed.

It should be noted that the tissue samples had a similar geometry

and shape and were placed in similar locations relative to the

measurement electrodes. This information is part of the information

on which the classifier operates. The equivalent of this information

for in vivo use of classifiers are the size and location of the unknown

tissues in the body relative to the measurement electrodes, which in

clinical practice will be obtained from mammography or other

imaging techniques (see [8]). As mentioned earlier, 12 different

electrode combinations were examined. Given that only opposite

electrodes were used, the different combinations can be divided into

four groups according to the distance between the electrodes,

namely adjacent electrodes and electrodes separated by one, two, or

three electrodes, (see Figure 3).

In the first stage, classifiers were trained for all of the

combinations. Then each classifier was given a binary score (1

for kidney and 21 for heart), and the classifiers were summed.

Since better classification results were obtained from the

configurations where the current electrodes were close to the

voltage electrodes, the final classifier used only two groups:

adjacent electrodes (configurations 1–4 in Figure 3) and electrodes

separated by only one other electrode (configurations 5–7 in

Figure 3). Thus, the final classifier was constructed from seven

electrode configurations. This method of summing several

classifiers of different electrode combinations has shown better

stability than using just one electrode combination.

Cellular Phone Technology
The hardware (data acquisition device – DAD) was separated

from the computer that processed the data for classification. The

DAD was connected to a low-end computer, which only averaged

and saved the electrical data measurements and then sent them

through Bluetooth to the cellular phone. We used a low-end

computer because of subjective cost considerations. However, in a

real application of this technology, the board that makes the DAD

can be upgraded, relatively inexpensively, in order to connect

directly to the cellular phone using USB or Bluetooth. Therefore, a

real application would not necessitate a computer at the patient

site. The cellular phone used was a Nokia N95, and the local

cellular phone service used was Orange TM.

In order to test the cellular phone concept, the data were

arranged in a text file containing about 1200 bytes and sent via e-

mail from the cellular phone to the remote computer. Each File

had seven lines, one for each different electrode configuration.

Each line consisted of eleven complex numbers, one for each

frequency. Once the file was received on the remote computer

(AMD Athlon 64 X2 Dual Core Processor 5000+, 2.61 GHz, 2

GB RAM, Microsoft Windows XP), the SVM classifier program

was applied to the data and a classifier score was calculated.

Accordingly, the tissue was classified as either kidney or heart. The

remote computer then sent an email reply to the DAD site with

the word heart or the word kidney. The process is demonstrated in

Figure 4.

Results

Separate classifiers were trained for all electrode combinations,

using the voltage amplitude data and the phase data, with the

method developed in [8]. The training error was calculated using

the leave-one-out cross-validation method [27]. The results

summary can be seen in Table 2. The table presents the results

for 12 different classifiers that operated using the voltage

magnitude data of the 12 electrode configurations, as well as 12

classifiers that operated using the voltage phase data. It also

includes the results of two final classifiers that were constructed

using a combination of the previous classifiers, one from the

magnitude data and one from the phase data. For the construction

of the final classifier, seven electrode configurations were used.

They were each given a binary score (21, 1) and were summed to

obtain the final two classifiers. The SVM final score can be seen in

Figure 5.

Discussion

Classifiers were trained for all 12 electrode configurations so as

to be divided into four groups of configurations in accordance with

the distances between the electrodes. It can be seen in Table 2 that

the configurations in which the current electrodes and voltage

electrodes were closer to each other gave better results. Since the

classifier results for electrodes that are farther away from each

other are still above the random score of 50%, they can be used in

order to improve the final classifier. It can also be seen in Table 2

that although configurations 1–4 and configurations 5–7 are

respectively symmetrical, there are differences in the classifier

results. The combination of several measurements for the final

classifier is more stable to noise and produces better results.

Non-Invasive Tissue Classifier
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Figure 4. Implementation of classifier using the cellular phone. a) Measured rat heart data sent; b) Heart result received; c) Measured rat
kidney data sent; and d) Kidney result received.
doi:10.1371/journal.pone.0005178.g004
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More complex methods can be employed, such as giving

different weights to different configurations. For example, closer

electrodes (i.e., configurations 1–4) can be given higher weights

than farther electrodes (i.e., configurations 8–10). This may allow

the utilization of more electrodes, such as configurations 8–10,

which failed to improve the results and thus were not included in

the final classifier. However, for purposes of this preliminary study,

using the majority method seemed sufficient.

Two types of datasets were used for the ex-vivo biological model

classifier, one using the amplitude data and the other using the

phase data. It can be seen that both classifiers gave about 90%

correct classification. We have not tried to optimize the classifier

developed here for any particular performance. However, it

should be possible to design a classifier that can be biased to

produce only false positive so as not to miss malignant tissue at the

expense of a higher level of false positive result.

The classifier based on amplitude measurements yielded slightly

better results than that based on phase data, but the database is too

small to reach any final conclusions. The potential advantage in

the phase data is its inherent normalization [28], rendering it less

subject to influence by tumor size, which was less of an issue in this

study. Furthermore, it has been shown that for some tissue types,

the main discriminator will be the phase data rather than the

magnitude [29].

The study presented here has demonstrated the feasibility of the

classifier concept for tissue identification using heart and kidney

tissue. These tissues were chosen to demonstrate the concept

because they were available from another study and our research

strategy is to minimize the use of animals in research. However,

the concept developed in this study is general and is relevant to

distinguishing between any types of tissue with different electrical

properties in a range of frequencies. To illustrate this point we

bring here tables 3 and 4. The tables give the electromagnetic

properties of heart and kidney tissue as a function of frequency

[30,31]. In addition the table gives the ratio between the properties

of the heart and kidney at the same frequency. Obviously the

Figure 5. Classification of kidneys and hearts. a) The SVM score of the final classifier, using the magnitude data; and b) the SVM score of the
final classifier, using the phase data.
doi:10.1371/journal.pone.0005178.g005
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greater the difference between two tissue properties the easier it is

to distinguish between them. The tables also give the electromag-

netic properties of breast carcinoma and breast fibroadenoma

[11,12]. An important use of this technique would be to distinguish

between a benign and malignant breast tumor from biopsies. The

table shows that the ratio between the electromagnetic properties

of these two types of breast tumors is significant and even larger

than between heart and kidney. This suggests that the classifier

technique introduced here could be used to distinguish between

tissues in clinical situations of importance

In our previous work, we suggested using the mammogram image

for localizing the tumor and estimating its size. In this study, the

tissues were placed approximately in the center of the Petri dish.

The location of the tissue of interest is important information used

by the classifiers. This information can be provided by X-rays for

the classification of tissues and can be obtained visually when tissue

samples are placed in a test system, such as in a Petri dish in vitro.

Obviously the technique developed here for tissue character-

ization with classifiers does not require cellular phone technology.

If a sufficiently powerful computer and data base are available at

the patient site the technology can be made self sufficient.

However, the use of the cellular phone provides here, as with

medical imaging, other advantages. The use of cellular phone

technology with classifiers is simple and straightforward. This is

particularly important in applications designated for developing

areas, where the personnel might be less trained and technical

support less available. Another advantage of using electrical

impedance measurements is their relatively low price and robust

implementation. We believe that the separation of the classifier

location from the measurement location can help in providing an

updated and accurate classifier while benefiting cost, ease and

simplicity of use. A more complete system should receive the new

measured data from the remote site and only later (after a period

of several months) receive the ground truth results. This can

provide a good follow-up mechanism and help in updating and

improving the classifier.

Table 2. Classifier results.

Electrode
Combination Magnitude Data Phase Data

Sensitivity Specificity Sensitivity Specificity

1 83.3% 73.3% 83.3% 80%

2 95.8% 86.7% 91.7% 73.3%

3 79.1% 80% 87.5% 73%

4 91.6% 86.7% 91.7% 80%

5 87.5% 86.7% 87.5% 73.3%

6 91.6% 80% 66.7% 80%

7 91.6% 80% 91.7% 66.7%

8 83.3% 73.3% 87.5% 86.7%

9 83.3% 60% 79.2% 53.3%

10 83.3% 66.7% 83.3% 93.3%

11 66.7% 60% 50% 33.3%

12 58.3% 73.3% 62.5% 66.7%

Final Classifier 95.8% 93.3% 91.7% 80%

The electrode combinations refer to the combinations shown in Figure 3. The
final classifier is the majority score of the first seven single electrode
combination classifiers. Combinations 1–4 are for adjacent electrodes, and
combinations 5–7 are for electrodes separated by only one other electrode.
doi:10.1371/journal.pone.0005178.t002

Table 3. Magnitude of impedance (given in Vcm). CA(Carcinoma) - malignant tumors; FA (Fibroadenoma) - benign tumors of the
breast.

Frequency(Hz) 977 1950 3910 7810 15630 31250 62500 1.25E+05 2.50E+05

CA 369 363 357 350 342 331 319 305 290

FA 244 242 239 235 231 225 221 216 212

Ratio 1.51 1.5 1.49 1.49 1.48 1.47 1.44 1.41 1.37

Heart 927.47 841.03 740.95 654.79 586.7 531.07 482.01 435.68 388.82

Kidney 883.24 841 786.98 734.54 687.88 644.74 600.33 548.47 482.56

Ratio 1.05 1.00 0.94 0.89 0.85 0.82 0.80 0.79 0.81

Values for breast taken from [12], definitions taken from [11]. The values for kidney and heart were computed using the model and values in [30], also described in [31].
doi:10.1371/journal.pone.0005178.t003

Table 4. Phase of impedance.

Frequency(Hz) 977 1950 3910 7810 15630 31250 62500 1.25E+05 2.50E+05

CA 1.5 2.1 2.7 3.3 4 4.8 6.1 8 10.1

FA 0.7 1.2 1.8 2.5 2.8 3.3 3.5 4.3 4.9

Ratio 2.14 1.75 1.5 1.32 1.42 1.45 1.74 1.86 2.06

Heart 210.36 213.19 214.54 214.3 213.7 213.4 213.74 214.65 216.21

Kidney 25.95 27.34 28.33 28.77 29.19 210.1 212 215.07 219.12

Ratio 1.74 1.80 1.74 1.64 1.50 1.33 1.14 0.97 0.85

Source of values as in table 3.
doi:10.1371/journal.pone.0005178.t004
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Conclusion
In this study, we continued working toward the two goals

presented in our previous studies: 1) developing a non-invasive

method for tissue classification; and 2) using cellular technology in

order to make these methods more accessible in developing

countries. The first goal was examined by an ex-vivo biological

model. The results agree with the simulations presented in our

previous study and demonstrate with experimental data that using

electrical impedance measurements and machine learning meth-

ods, such as SVMs, can facilitate good tissue characterization in a

non-invasive way. We have also shown that the combination of

electrical impedance measurements with cellular phone technol-

ogy is feasible and can provide a viable and inexpensive alternative

to tissue classification and biopsy analysis in areas of the world that

currently have limited access to these types of technologies.

Supporting Information

Appendix S1 A SVM intuitive explanation

Found at: doi:10.1371/journal.pone.0005178.s001 (0.19 MB

PDF)
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