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Abstract: Strawberries are susceptible to mechanical damage. The detection of damaged strawberries
by their volatile organic compounds (VOCs) can avoid the deficiencies of manual observation and
spectral imaging technologies that cannot detect packaged fruits. In the present study, the detection
of strawberries with impact damage is investigated using electronic nose (e-nose) technology. The
results show that the e-nose technology can be used to detect strawberries that have suffered impact
damage. The best model for detecting the extent of impact damage had a residual predictive
deviation (RPD) value of 2.730, and the correct rate of the best model for identifying the damaged
strawberries was 97.5%. However, the accuracy of the prediction of the occurrence time of impact
was poor, and the RPD value of the best model was only 1.969. In addition, the gas chromatography–
mass spectrophotometry analysis further shows that the VOCs of the strawberries changed after
suffering impact damage, which was the reason why the e-nose technology could detect the damaged
fruit. The above results show that the mechanical force of impact caused changes in the VOCs of
strawberries and that it is possible to detect strawberries that have suffered impact damage using
e-nose technology.

Keywords: strawberry; impact damage; electronic-nose; GC-MS; volatile organic compound

1. Introduction

Strawberry is a fruit that is loved by a wide range of consumers due to its juicy taste,
unique tangy-sweet taste, and wealth of nutrients, vitamins, and minerals. Nevertheless,
strawberry is soft and, therefore, very vulnerable to mechanical damage during the post-
harvest supply chain. Impact, compression, and vibration are the main mechanical forces
that can cause fruit damage [1,2]. When fruit is mechanically damaged, its physiological
metabolism becomes abnormal, such as quick softening [3], water losses [4], and oxidation
browning [5]. Moreover, the mechanically damaged fruit is also more susceptible to
infection by bacteria and fungi, which can easily cause fruit decay and affect fruit safety [6].
Therefore, mechanically damaged fruit is not suitable for further storage and sale, which,
in turn, leads to a significant decline in the market value of the product.

In a competitive market, accurate and timely detection of whether the fruit is damaged
by mechanical forces or not is important to provide information for post-harvest storage,
transportation, and retail sale to optimize storage, transportation, and sales strategies.
Retailers, sellers, and consumers usually identify the damaged fruit with the naked eye.
For inspection purposes, digital vernier calipers are often used to measure the bruised
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area of fruits. Nevertheless, both visual inspection and the evaluation with digital verniers
are inefficient, subjective, tedious, labor-intensive, and selected [7,8]. On the other hand,
compared with manual inspection, spectroscopic and imaging technologies such as visible
and near-infrared spectroscopy and hyperspectral imaging are non-invasive and allow for
more rapid detection and have been used to detect the mechanical damage of fruits [9,10].
Nevertheless, the fruits are usually packaged in cardboard boxes or plastic boxes and then
placed in a dark environment during supply chains, and, in some cases, the fruits are even
wrapped with paper or foam nets, resulting in the inability to detect mechanical damage
by spectroscopic and imaging methods. Moreover, when the fruit is damaged by impact,
there might be no apparent bruise on the surface of the fruit immediately; when the bruise
becomes evident, in most cases, the fruit is already placed in the packages, which makes
the visual or imaging detection impossible.

Volatile organic compounds (VOCs) are a key indicator for fruit quality assessment
and are also an important consideration for customers [11]. Previous studies have shown
that VOCs of fruit can change after the fruit is damaged [12,13]. Therefore, analyzing
the VOCs of fruit provides a possible way to detect the fruit with mechanical damage.
The electronic nose (e-nose) is a widely used bionic olfactory system and a widely used
technology for detecting VOCs [14–16]. It has obtained much attention because of its
advantages of rapid and straightforward operation, non-destructive detecting, and cost-
effectiveness. Previously, the e-nose systems have been used to classify fruit grades and
predict fruit quality in peach [17], apple [18], apricot [19], mandarin [20], Goji berries [21],
sweet cherries [22], and mango [23]. Especially for strawberries, the e-nose shows its
capability of determining the freshness of strawberries [24], detecting fungal disease in
strawberries in the early stage [25], and characterizing processed strawberry juices [26].
However, to the best of our knowledge, e-nose technology is seldom used to study the
detection of mechanical damage to fruits. Moreover, it should be noted that many previous
works on investigating fruit quality using e-nose technology are based on a destructive
process of sampling, in which the fruit was cut or sliced to obtain more VOCs [27,28].
However, in the actual fruit supply chain, the detection of VOCs must be carried out on the
intact fruit, and no destructive sampling can be carried out.

The main objective of this study is to use e-nose technology to achieve rapid and
non-destructive detection of damaged strawberries and investigate the characteristic VOCs
of strawberries after suffering from impact damage. The outcome of the study is meant to
remove the damaged strawberries and further optimize post-harvest strategies and reduce
economic losses.

2. Materials and Methods
2.1. Sample Preparation

Fresh strawberries (Fragaria × ananassa Duch.) were obtained from a local fruit store
nearby the laboratory at the Institute of Fruit Science, Zhejiang University, and transported
to the laboratory immediately. The fruit was harvested in the morning on the day of
purchase. In order to ensure that the extent of mechanical damage to the fruit is controllable,
strawberries with a uniform commercial maturity and no mechanical damage or disease
were selected for further experimental detection. The strawberries were randomly divided
into four groups (I, II, III, and IV), and each group contained 24 samples. Group I was
used as the control group (no impact treatment). To obtain different extents of impact
damage, the fruits of Group II, III, and IV were subject to free-fall onto a steel plate from the
heights of 20, 40, and 60 cm, respectively. These heights are all settings of the three heights
commonly used in studies to simulate the extent of fruit impact damage [29–31]. Each fruit
was impacted on its side. All impact treatments were carried out at 15 ◦C and a humidity of
90–95% in the afternoon on the day of harvest. After the treatment, the strawberries were
stored in cold storage at 15 ◦C and 90–95% humidity to simulate the storage environment
in practice. It should be noted that the samples in the control group were used for model
calibration as well as the samples in the other groups. This is because, in the supply chain,
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not every fruit will suffer mechanical damage. Therefore, to calibrate the detection models
of mechanical damage, it is necessary to consider those fruits that did not suffer mechanical
damage in the sample set used for model calibration.

2.2. E-Nose Instrument and Data Measurement

The e-nose system used was FOX 4000 (Alpha MOS, Toulouse, France), which is
equipped with 18 metallic oxide gas sensors in three sensor chambers. VOCs of strawberries
in each group were acquired at 0 h (before impact) and 4, 8, and 24 h after impact. Before
extracting VOCs, each fruit sample was placed in a 100 mL glass beaker. Parafilm PM996
(Pechiney Plastic Packaging, Menasha, WI, USA) was used to seal the beaker for 1 h to
equilibrate the headspace inside. The whole process of generating headspace gas was
carried out at 15 ◦C to simulate the actual condition in practice. For the acquisition of VOCs,
2 mL of headspace gas was injected into the Fox 4000 system. The gas was then pumped
into the sensor array with a constant rate of 150 mL·min−1. The entire detection progress
of each sample lasted 6 min, including 120 s for the measurement phase and 240 s for the
clean phase.

2.3. Sample Sets and Feature Matrix

In order to verify whether the e-nose technology could be used to detect strawberries
that have suffered mechanical damage due to impact, a total of three types of models was
developed in the present study. The first type of model was the one for the prediction of
the extent of impact damage to strawberries falling from different heights, including 0, 20,
40, and 60 cm. Therefore, the dependent variable for modeling was the extent of impact
damage, which included: 0, 20, 40, and 60 cm. The second type of model was the one for
the identification of strawberries with impact damage. In this type of model, there were
two types of samples, i.e., fruits that have suffered impact damage and fruits that have
not suffered impact damage. Therefore, the dependent variable for modeling was whether
the fruits have suffered impact damage, including: yes (1) and no (−1). The third type of
model was the one for the prediction of the time of occurrence of the impact on the fruit.
In the present study, the time between impact occurrence and e-nose data measurement
(the time after the occurrence of the impact on the fruit) was used to represent the time
of occurrence of the impact on the fruit. Specifically, there were four kinds of times to be
predicted, which were 0, 4, 8, and 24 h after impact. Since the VOCs of the fruit will change
after being mechanically damaged, the present work analyzed the VOCs of the strawberry
fruit and established quantitative models between the VOC data and the time between
impact occurrence and e-nose data measurement so as to predict when the strawberry was
impacted. Therefore, the dependent variable for modeling was the time of the occurrence
of the impact on the fruit, including: 0, 4, 8, and 24 h. For a specific impact extent and a
specific post-impact storage time, there were 24 samples. For each model sample set, 75%
of the samples were randomly selected as the calibration set, and 25% of the samples were
selected as the prediction set.

A total of two major categories of variable sets were used as inputs to establish the
chemometric models in this study. One category included all 18 sensors, each measuring
121 s (121 variables), so there were 2178 variables in total (ENAll). The other category
included some characteristic variables of the 18 sensors, such as the response data at the
10th, 20th, 40th, 60th, 80th, 100th, and 120th seconds, which were called EN10, EN20, EN40,
EN60, EN80, EN100, and EN120, respectively; the sum of the response curve values, which
was called ENSum; the maximum value of the response curve, which was called ENMax;
the minimum value of the response curve, which was called ENMin; and the difference
between the maximum and minimum values of the response curve, which was called
ENDiff. Extracting the signal at different time points of the e-nose signal acquisition process
is a commonly used method to select the e-nose signal for modeling. Additionally, ENSum,
ENMax, ENMin, and ENDiff are frequently used for the modeling of e-nose data, including
in studies such as the prediction of the ripeness of kiwifruit [32] and the detection of the
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quality of pecans [33]. The above-mentioned variables were used separately to establish
the models to determine the best characteristic variable. Only one characteristic variable
was used in each model, and because there were 18 sensors, there were 18 variables in total
for each model, based on the characteristic variable. In general, for all types of modeling,
both ENAll and characteristic variables were used separately.

2.4. Multivariate Data Analysis and Model Evaluation

The regression models were established using partial least squares regression (PLSR)
and least squares support vector machine (LS-SVM) algorithms, respectively. PLSR is
a multivariate statistics-based linear regression method that is widely used to establish
regression models [34,35]. The main principle of PLSR is to extract orthogonal factors of
latent variables (LVs) and to establish regression relationships between the data set and the
corresponding reference values. LVs are obtained by decomposing both independent and
response variables. LS-SVM is a classical non-linear regression method for the computation
of small sample data [36,37]. It uses a radial basis function kernel to map the input features
into a high-dimensional feature space, thus converting a linear non-differentiable problem
into a constrained quadratic programming problem. LS-SVM can search for potential
patterns in the data and use the found patterns to predict the unknown data. On the other
hand, for the establishment of classification models, the present study did not use the PLSR
algorithm but the partial least squares discriminant analysis (PLS-DA) algorithm. The
PLS-DA algorithm encodes the dependent variables of PLSR by means of dummy variables,
thus enabling the description of different categories. The reference values of the dependent
variables were set to -1 and 1 for intact and impact-damaged strawberries, respectively.
For the LS-SVM algorithm, it also used −1 and 1 to represent intact and impact-damaged
strawberries, respectively, and then built the classification models. The specific needs
for building regression and classification models can be achieved by choosing different
functions for the LS-SVM calculation.

For the accuracy of all regression models in this study, including the prediction of
the extent of impact damage and the time of occurrence of the impact, they were evalu-
ated mainly by the correlation coefficient of calibration (Rc), root-mean-square error of
calibration (RMSEC), correlation coefficient of prediction (Rp), root-mean-square error of
prediction (RMSEP), residual predictive deviation (RPD), and the absolute difference be-
tween RMSEC and RMSEP (AB_RMSE). Additionally, for the accuracy of the classification
models, which was the identification of strawberries with impact damage, it was mainly
evaluated by the correct rate, which was the ratio of the number of correctly identified
samples to the total number of samples in the model. The best model and its corresponding
best characteristic variable were determined based on the above indicators. All calcula-
tions for the multivariate data analysis were performed on MATLAB 2017b software (The
MathWorks Inc., Natick, MA, USA).

2.5. Gas Chromatography-Mass Spectrophotometry (GC–MS) Analysis of VOCs

Strawberry samples (whole fruit) with different impact extents and storage times
in three duplicates were analyzed by headspace solid-phase microextraction coupled to
gas chromatography–mass spectrometry (HS–SPME/GC–MS). The GC–MS analysis was
carried out using a 7890A gas chromatograph coupled to an Agilent 5975C mass spec-
trometer (Agilent Technologies, Santa Clara, CA, USA). Same as the e-nose measurement,
before extracting VOCs, strawberry fruits were placed in a 100 mL glass beaker sealed by
Parafilm PM996 for 30 min at 15 ◦C. Subsequently, the SPME fiber coated with 65 µm of
polydimethylsiloxane and divinylbenzene (PDMS-DVB) (Supelco, Bellefonte, PA, USA)
was inserted into the beaker to collect the VOCs. After 30 min of extraction, we inserted
the VOC-adsorbed fiber into the injection pore, and it was desorbed at 240 ◦C for 5 min for
the GC-MS measurement. Then, the VOCs were separated on a DB-WAX capillary column
(30 m × 0.25 mm × 0.25 µm, J&W Scientific, Folsom, CA, USA). The main parameters were:
high-purity helium as the carrier gas, with a flow rate of 1.0 mL/min; the initial column
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temperature was 40 ◦C, then increased to 100 ◦C at a rate of 3 ◦C/min, and then increased
to 245 ◦C at a rate of 5 ◦C/min.

3. Results
3.1. Strawberries with Impact Damage

Figure 1 shows the strawberries with different damage extents and post-impact storage
times. As can be seen, it is difficult to tell from the pictures whether a strawberry has
been mechanically damaged or not and to determine the extent of the damage. Even for
strawberries with an impact extent of 60 cm, stored for 24 h after the impact, the damage
was not easily detectable in appearance, except by very close observation or by pressing
the wound by hand to feel the change in fruit firmness. Therefore, the next step was
to investigate whether the VOCs of the strawberries had changed after the impact and
whether they could be used for damage detection.

Figure 1. Strawberries with different damage extents and post-impact storage times.

3.2. E-Nose Response of Strawberry

Figure 2 shows the average response data of the e-nose signal for strawberries that
have suffered different extents of impact and have been stored for different times after the
occurrence of the impact. In Figure 2, 18 e-nose sensors are represented by 18 angles from
0◦ to 340◦, respectively. The spacing between each sensor is 20◦. Specifically, the vectors
with radii of angles 0◦ and 340◦ in Figure 2 represent Sensor 1 and Sensor 18, respectively.
The upper left corner of the polar plot shows the scale of the sensor responses. Among
them, Sensors 2, 3, 7, 9, 11, 12, and 13 had high response values. It can be seen that there are
differences between the e-nose signals of the strawberries when they have been subjected
to different extents of impact damage and stored for different periods of time, but these
differences are difficult to distinguish by the naked eye in the figure. On the other hand,
it should be noted that when more samples of e-nose data are displayed in the polar plot,
there will be a serious overlap between the data, which makes it more difficult to perform
direct visual analysis. Therefore, multivariate algorithms were used next to build models
to achieve the detection of strawberry fruits that have suffered impact damage.
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Figure 2. Polar plot of the average response data of the e-nose signal for strawberries that have
suffered different extents of impact and have been stored for different times after the occurrence of
the impact.

3.3. Prediction of the Extent of Impact Damage to Strawberries Falling from Different Heights
3.3.1. Prediction of the Extent of Impact Damage in Strawberries at Different Times after
Being Impacted

Predictive models for the extent of impact damage were developed based on ENAll
and 11 characteristic variables of strawberries at different times (4, 8, 24 h) after suffering
the impact, respectively. For the models established based on each time, there were a total
of 96 samples: 72 samples for calibration and 24 samples for prediction. Since there are
many models built based on different input variables, Table 1 only shows the best results
obtained based on the two calibration algorithms. The RPD values for the PLSR models
based on strawberry samples at 4 and 8 h after exposure to impact were 3.007 and 2.983,
respectively. Nevertheless, the RPD value for the PLSR models was 1.377 for strawberry
samples 24 h after impact, whose accuracy was worse than the models based on strawberry
samples 4 and 8 h after impact.

Table 1. Best models for the prediction of the extent of impact damage in strawberries at different
storage times (4, 8, and 24 h) after being impacted and all kinds of storage times. Correlation
coefficient of calibration (Rc), root-mean-square error of calibration (RMSEC), correlation coefficient
of prediction (Rp), root-mean-square error of prediction (RMSEP), residual predictive deviation
(RPD), and the absolute difference between RMSEC and RMSEP (AB_RMSE).

Time
Feature

Variables
Calibration

Method

Calibration Prediction
AB_RMSE

Rc Rc2 RMSEC Rp Rp2 RMSEP RPD

4 h ENSum PLSR 0.944 0.892 0.372 0.944 0.858 0.426 3.007 0.053
4 h EN60 LS-SVM 0.995 0.989 0.117 0.960 0.918 0.323 3.548 0.206
8 h ENAll PLSR 0.936 0.876 0.388 0.945 0.873 0.407 2.983 0.019
8 h ENAll LS-SVM 0.986 0.972 0.185 0.964 0.929 0.304 3.764 0.119

24 h EN100 PLSR 0.837 0.701 0.634 0.688 0.434 0.821 1.377 0.187
24 h ENSum LS-SVM 0.990 0.980 0.165 0.962 0.920 0.309 3.614 0.144
All ENAll PLSR 0.648 0.420 0.858 0.510 0.250 0.982 1.156 0.124
All ENAll LS-SVM 0.993 0.984 0.143 0.931 0.858 0.428 2.730 0.285

The LS-SVM models obtained higher RPD values compared to the PLSR models. The
average RPD value of all LS-SVM models was 3.642, which was 48.31% higher than that of
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the PLSR model (2.456). Particularly, the RPD value of the LS-SVM model, based on the
samples 24 h after impact, was 2.6 times higher than that of the PLSR model. This illustrates
that the LS-SVM algorithm was more suitable for the analysis of e-nose data in the present
work, especially for the detection of strawberries that have been stored for a relatively long
time after suffering an impact. The reason why it was more difficult to predict the extent of
damage of the samples 24 h after the impact than the samples 4 and 8 h after the impact
might be that strawberries with different extents of impact damage may change VOCs after
storage for a period of time, and the difference in VOCs due to the impact becomes less
obvious, so it will cause difficulty in predicting the extent of damage if the storage time
after the impact is longer.

3.3.2. Prediction of the Extent of Impact Damage in Strawberries at All Storage Times after
Being Impacted

In practice, when e-nose technology is used to detect damaged strawberries, it is
difficult to know how much time has passed since the damage occurred. Therefore, the
models developed respectively based on strawberries at different storage times after the
onset of impact can only be applied to some cases where it is known when the impact
occurred. Therefore, other PLSR and LS-SVM models were established for the prediction
of the extent of impact damage based on the strawberries at all storage times after being
impacted, which means strawberries with different storage times after impact were all used
for modeling. For the models established based all three times, there were a total of 288
samples: 216 samples for calibration and 72 samples for prediction. The results are also
shown in Table 1.

When the PLSR algorithm was used to establish prediction models, the prediction
results for both ENAll and the 11 characteristic variables were poor and could not be used
for practical applications (data not shown). When the LS-SVM algorithm was used to
establish prediction models, their prediction results were significantly better than the PLSR
algorithm, except for the model based on the ENDiff variable (data not shown). The best
LS-SVM model achieved an RPD value of 2.730, which was 136.16% higher than the best
PLSR model (1.156). Although the AB_RMSE values of the LS-SVM models were higher
than those of the PLSR models, they did not exceed 0.3, except for the LS-SVM-ENDiff model
(data not shown), indicating that the robustness of the LS-SVM models was acceptable.

By comparing the model based on a certain storage time with the model based on
all storage times, it can be seen that the models in the former had a significantly higher
prediction accuracy. This suggests that models based on samples from different storage
times obtained better prediction results than models based on strawberries from all storage
times. The reason for this can be assumed to be that both the different extents of impact
and the storage time after impact could cause changes in the VOCs of strawberries. For
example, the change in VOCs of strawberries with a lighter impact extent after a long
storage period may be similar to the change in VOCs of strawberries with a severe impact
extent but a shorter storage period after the impact. Therefore, when strawberries with
different storage times after impact were all placed in the same calibration sample set for
calculation, it was more difficult than modeling strawberries based on different storage
times after impact separately. The results of some previous studies also showed that it is
more difficult to predict the extent of mechanical damage in fruits based on all storage
times after suffering mechanical damage [38,39]. However, such difficulties could be
compensated by using the LS-SVM algorithm to calibrate the prediction model. Especially
considering that it is impossible to know the time of occurrence of the damage suffered
by the fruit in the actual supply chain, the LS-SVM models developed in Table 1 are more
suitable for practical applications.

3.4. Identification of Strawberries with Impact Damage

In practical applications, it is often not necessary to know the extent of mechanical
damage suffered by the fruit, but only to determine whether the fruit has suffered mechani-
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cal damage during the supply chain. Therefore, a study was carried out to classify whether
strawberries suffered impact damage based on their e-nose data. Discriminant models for
mechanical damage detection were developed based on strawberries stored for 4, 8, and
24 h after impact and for all storage times, respectively. For the models established based
on each time, there were a total of 96 samples: 72 samples for calibration and 24 samples
for prediction. For the models established based all three times, there were a total of
288 samples: 216 samples for calibration and 72 samples for prediction. Models were built
based on different input variables using PLS-DA and LS-SVM algorithms, respectively.

For strawberries at 4 h after impact, the correct rates of the discriminant models were
basically above 90%, except for the LS-SVM-ENDiff model. Among them, the LS-SVM-
ENAll, LS-SVM-EN10, and LS-SVM-EN80 models achieved 100% correct rates for both the
calibration and prediction sets. For the strawberries at 8 h after impact, the results were
similar to those of the models at 4 h after impact. The LS-SVM-ENMax, LS-SVM-ENSum,
LS-SVM-EN60, LS-SVM-EN100, and LS-SVM-EN120 models achieved 100% correct rates
for both the calibration and prediction sets. For the strawberries at 24 h after impact,
the accuracy of the discriminative models was lower than those of the models at 4 and
8 h after impact, when the PLS-DA algorithm was used for the calculation. However,
when the LS-SVM algorithm was used for the calculation, the accuracy of the models
was basically similar to those of the models for the first two time points. In addition,
the LS-SVM-ENMax and LS-SVM-ENSum models achieved 100% correct rates for both the
calibration and prediction sets. When strawberries from all storage time points were used to
establish the discriminant models, the average correct rate of the calibration and prediction
sets for the PLS-DA models was 80.42%, while that of the LS-SVM models was 97.67%
(excluding the LS-SVM-ENDiff model). In addition, the best models were LS-SVM-ENMin,
LS-SVM-ENSum, and LS-SVM-EN10, which had the same correct rates of 100% and 97.50%
for calibration and prediction sets, respectively. Table 2 shows only the best results based
on two calibration algorithms.

Table 2. Best models for identification of strawberries with impact damage.

Feature
Variables

Calibration
Method

4 h 8 h 24 h all

Calibration Prediction Calibration Prediction Calibration Prediction Calibration Prediction

ENAll PLS-DA 98.3% 100.0% 95.0% 94.1% 95.0% 85.3% 96.1% 92.1%
ENSum LS-SVM 100.0% 97.0% 100.0% 100.0% 100.0% 100.0% 100.0% 97.5%

Analyzing the results of the models built based on different input variables, it can be
found that for the models developed at the three time points, the numbers of models with
100% correct rates in both the calibration and prediction sets were 3, 6, and 2, respectively,
which indicates that it is more favorable to discern whether the strawberry has suffered
impact damage around 8 h after the impact, while it is more difficult to detect after 24 h.
Nevertheless, when the LS-SVM algorithm was used to perform the calculation, the best
models at all three time points achieved 100% correct rates (data not shown), indicating
that if we only need to determine whether the strawberry is damaged by impact, then at
least 4 h after the impact is sufficient for the detection.

When all three time points were used to build the discrimination models, no models
reached 100% correct rates in the prediction set, which, again, indicates that detection
would be more difficult if fruits with different storage times after suffering an impact are
used for modeling. However, when the LS-SVM algorithm was used, the accuracy of the
best model built based on all time points was already close to those of the models built
based on individual time points. This shows a promising application of e-nose technology
to detect whether strawberries have suffered mechanical damage during the supply chain.
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3.5. Prediction of the Time of Occurrence of the Impact on the Fruit

Predicting when the fruit was impacted is important for both determining the cause
of the impact and optimizing the supply chain process. Predictive models for the time of
occurrence of the impact on the fruit were developed based on ENAll and 11 characteristic
variables of strawberries at different impact extents (20, 40, and 60 cm), respectively. Both
PLSR and LS-SVM algorithms were used to build models based on different input variables,
respectively. For the models established based on each impact extent, there were a total
of 96 samples: 72 samples for calibration and 24 samples for prediction. For the models
established based on all impact extents, there were a total of 288 samples: 216 samples for
calibration and 72 samples for prediction. Table 3 only shows the best results obtained
based on two calibration algorithms.

Table 3. Best models for the prediction of the time of occurrence of the impact on the fruit.

High Feature
Variables Calibration

Calibration Prediction
AB_RMSE

Rc Rc2 RMSEC Rp Rp2 RMSEP RPD

20 cm EN100 PLSR 0.967 0.935 2.183 0.945 0.892 2.903 3.056 0.720
20 cm ENMax LS-SVM 1.000 1.000 0.000 0.996 0.991 0.823 10.743 0.823
40 cm ENMin PLSR 0.883 0.779 4.069 0.925 0.792 3.667 2.508 0.402
40 cm ENAll LS-SVM 1.000 1.000 0.101 0.995 0.983 1.056 8.704 0.955
60 cm ENAll PLSR 0.993 0.986 1.035 0.991 0.982 1.135 7.487 0.100
60 cm ENSum LS-SVM 1.000 1.000 0.000 0.998 0.995 0.609 13.944 0.609

all ENsum PLSR 0.799 0.638 4.692 0.755 0.568 5.456 1.523 0.764
all ENAll LS-SVM 0.932 0.856 2.957 0.876 0.733 4.294 1.969 1.337

The RMSEP values of the best PLSR models for strawberries subjected to impacts
of 20 and 40 cm in height were around 3, which means that the model errors were, on
average, 3 h; this is too large for practical applications. The RMSEP value of the best PLSR
model for strawberries that suffered an impact of 60 cm in height was 1.135, which is
an acceptable error for practical applications. Moreover, for the LS-SVM algorithm, the
RMSEP of the best models based on different impact heights were all around 1, which is
also acceptable. However, when all samples of all impact heights were used to build the
PLSR and LS-SVM models, the RMSEP values increased substantially to 5.456 and 4.294,
respectively, which means that the error of the models was, on average, 5 h. Considering
the practical application is unable to know the specific extent of impact damage, the models
based on all impact heights in Table 3 are more suitable for practical applications, and their
results indicate that e-nose technology can only be used roughly to determine the time of
impact occurrence.

3.6. GC-MS Analysis

GC-MS technology was used to analyze the changes of VOCs obtained in a non-
destructive way after strawberries were damaged by impact. Analyzing the GC-MS data of
nine groups of strawberry fruits with three extents of impact damage and three storage
times after impact, 35 types of VOCs were identified, including 18 types of esters, 6 types
of alkanes, 3 types of terpenes, 3 alcohols, and 5 other substances.

The relationship among the content of each VOC, the impact extent, and the storage
time were further analyzed, and it was found that different impact damage extents and
different storage times after impact caused some regular changes in the content of some
VOCs. There were five VOCs whose relative content was related to the extent of impact
damage suffered by the fruit (Figure 3), including acetic acid, hexyl ester, 1-hexanol, 2-
hexen-1-ol, acetate, (E)-, dodecane, and decane. These VOCs were not detected when the
impact height was 20 cm but were detected when the impact heights were 40 and 60 cm;
the higher the impact height, the higher the substance content. However, some of them
could be detected 4 and 8 h after impact but not detected at 24 h. This shows that these
VOCs could be accumulated after the fruit is damaged by impact, but as the storage time
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increased after the impact, their content decreased, which may be related to the metabolic
degradation of these VOCs in the fruit.

Figure 3. Five volatile organic compounds (VOCs) whose relative content was related to the extent
of impact damage suffered by the fruit. Different letters (a, b, c, d) indicate significant differences
(p < 0.05).

Moreover, there were another six VOCs whose relative content increased with the stor-
age time after impact (Figure 4), including ethyl acetate, D-limonene, butanoic acid, ethyl es-
ter, hexanoic acid, ethyl ester, butanoic acid, 3-methyl-, ethyl ester, butanoic acid, 2-methyl-,
and ethyl ester. Meanwhile, as shown in Figure 5, there were four VOCs, namely, acetic acid,
butyl ester, octanoic acid, methyl ester, 1,4-cyclohexadiene, 1-methyl-4-(1-methylethyl)-,
and naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl)-, which
were not detected at 4 and 8 h after the impact but were detected as the storage time
increased to 24 h.

In addition, Figure 6 illustrates five VOCs whose relative contents decreased with
increasing storage time after impact onset, including hexanoic acid, methyl ester; butylated
hydroxytoluene; 1,6-octadien-3-ol, 3,7-dimethyl-; butanoic acid, methyl ester; and acetic
acid, hexyl ester. There were two other VOCs among them whose content changed in
relation to the extent of impact damage the fruit suffered. Butanoic acid, methyl ester
accumulated significantly more at the impact height of 20 cm than those at 40 and 60 cm,
while acetic acid, hexyl ester accumulated significantly more at the impact heights of 40
and 60 cm than at 20 cm.
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Figure 4. Six VOCs whose relative contents increased with the storage time after impact. Different
letters (a, b, c, d) indicate significant differences (p < 0.05).

Figure 5. Four VOCs detected only in the later stage of storage after the fruit had been impacted.
Different letters (a, b, c, d) indicate significant differences (p < 0.05).
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Figure 6. Five VOCs whose relative contents decreased with increasing storage time after impact
onset. Different letters (a, b, c, d) indicate significant differences (p < 0.05).

4. Discussion

Accurate detection of whether the fruit is damaged by mechanical forces or not could
avoid the problem of reduced merchantability of the fruit product due to the inclusion
of damaged fruit and also could prevent the damaged fruit from infecting other fruits
around it. Therefore, the selection of strawberries that have suffered mechanical damage is
important to guide distributors, retailers, and sellers to better decision-making on storage,
transportation, and sales strategies. Particularly, since the packaging of fruits during
the supply chain is commonly not completely sealed, a probe for detecting VOCs can be
inserted into the packaging to collect VOCs from the fruits or detect VOCs at some openings
of the packaging to determine whether the fruits have suffered mechanical damage based
on VOCs.

Therefore, the detection of VOCs in the fruit is expected to enable the identification
of those packaged strawberries that have suffered mechanical damage during the sup-
ply chain, resulting in good application prospects. Nevertheless, there are only a few
studies using e-nose technology to detect mechanically damaged horticultural products.
Demir et al. [40] used e-nose technology to detect blueberries with repeated impact; the
correct classification rates ranged from 80% to 100%, and the cross-validation rates ranged
from 75% to 100%. In another work, Ren et al. [41] classified the impact damage of ap-
ples using e-nose technology coupled with multivariate statistical analyses. The present
work not only investigated whether e-nose technology could detect strawberries that have
suffered impact damage but also further established and compared the results of models
based on samples with different storage times after impact and samples with all storage
times, thus making the developed models more realistic. However, the VOCs in fruits
subjected to mechanical damage changed with longer storage times lead to greater diffi-
culty in modeling based on samples with all storage times after impact. This is also well
illustrated by the results in the present study. Meanwhile, in order to provide users with
more data about the extent of damage to the fruit, the detection models for damage extent
were also established through e-nose technology and obtained good prediction accuracy,
which makes it possible to inform users of the specific extent of damage in addition to
whether the fruit has suffered mechanical damage. Moreover, the present study evaluated
whether e-nose technology could be used to predict when the impact damage had occurred.
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To our knowledge, relatively little work has been done for this purpose. The results will
help us to know when the fruit suffers impact damage and determine why the impact
occurred, which, in turn, will help to further optimize the fruit supply chain. In addition, it
should be noted that the measurement process of e-nose signals of VOCs in the present
study did not need us to destroy the strawberry fruits but was applied in a non-destructive
way, so it is more suitable for application in the actual fruit supply chain process.

From the modeling results, it can be seen that when the impact occurred for 4 h, it was
possible to determine the strawberry that has suffered impact damage and also to predict
the extent of the damage. Of course, the detection was also possible when the impact
occurred 8 and 24 h before. Further research is needed regarding the shortest detection
time after the impact occurs. It should be noted, however, that if the time after the impact is
too short to start the detection, the VOCs in the strawberry may not have changed enough
to be detected.

In order to explain why the detection of VOCs by e-nose technology can be used
to detect strawberries that have suffered mechanical damage from impact forces and to
further investigate which VOCs were changed by the impact damage, this study further
analyzed the VOCs of strawberries with impact damage using a non-destructive GC-MS
technology. The results show that impact damage caused various changes in VOCs in
strawberries. In particular, the relative contents of ethyl acetate and D-limonene were
found to be increased with the increase of storage time after impact damage. Our previous
research also found that the relative content of ethyl acetate in yellow peaches [39] and
apples [42] was increased after being subjected to compression damage. It is proposed that
ethyl acetate can be considered a potential volatile biomarker to detect damaged apples [42].
Regarding D-limonene, Chalupowicz et al. [43] indicated that limonene was a promising
biomarker for the pathogen activity of citrus. Therefore, in the present study, ethyl acetate
and D-limonene may be two important indicators for the detection of impact damage to
strawberries. Studies on the VOCs changes in strawberries subjected to impact damage
allow e-nose technology to detect damaged strawberries. Further research is needed to
understand the biological mechanism underlying changes in certain VOCs in strawberries
subjected to mechanical damage. In addition, to study the VOCs released by the whole
fruit instead of the tissue homogenate, a non-destructive GC-MS method was applied to
analyze the VOCs signals in the present study. The characteristic VOCs obtained by such
non-destructive GC-MS analysis are more suitable for practical applications. It should be
noted that the use of GC-MS technology was not considered in the present study to detect
the damaged fruit in practical applications but to understand which VOCs of the fruit were
changed as a result of the impact. Nevertheless, if the portability of the GC-MS detection
instruments can be improved, then it may be possible to be applied in practice in the future
as well.

There is still some work to be done if the fruit is to be judged by its VOCs in practical
applications to determine whether it has suffered mechanical damage. The first is that the
fruit will suffer from the synergistic effects of multiple mechanical damages during the
supply chain, such as vibration, extrusion, impact, and friction. These mechanical damages
lead to possible differences in the characteristic VOCs. Additionally, it is unknown whether
there is a synergistic effect between multiple mechanical forces on the change of VOCs.
Therefore, it is necessary to further investigate the characteristic VOCs of other mechanical
forces and determine the best characteristic VOCs for the detection. The second is that
there are many factors that affect VOCs in fruits, such as variety, cultivation environment
and method, harvest year, and storage conditions. Therefore, it is necessary to collect more
comprehensive sample information to build into the detection model. The third is the need
to research and screen some characteristic VOCs of mechanical damage and develop their
sensors so as to find the damaged fruit more accurately. The fourth is that the detection
equipment must be miniaturized. Large-scale e-nose instruments used in laboratories are
not suitable for practical industrial applications. Some portable or small e-nose instruments
have been developed [44,45]. They are expected to be applied to the detection of VOCs
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in fruits in practice in the future. The fifth is that the cold chain is a common method in
the fruit supply chains. However, low temperatures will slow down the release of VOCs
from the fruit. Therefore, in the cold chain environment, more powerful VOC analysis
technology is needed to detect damaged fruits.

5. Conclusions

The results of the present study show that the use of e-nose technology to measure the
VOCs in strawberries can be used to detect the fruits damaged by impact force. For example,
it is possible to directly detect impact-damaged strawberry fruits. Even when the models
were calibrated based on all strawberries at 4, 8, and 24 h after the impact, the correct rate of
the prediction set could still be up to 97.5%, while 100% correct rates were achieved when
the modeling was based on strawberries at different times after the impact. Additionally,
e-nose technology can further predict the extent of impact damage. The highest RPD
values of 3.548, 3.764, and 3.614 were achieved for samples stored for 4, 8, and 24 h after
impact, respectively, while the highest RPD of 2.730 was obtained for all samples stored
after the impact, thus demonstrating the powerful ability of e-nose technology to detect
mechanical damage to strawberries. In addition, the present study evaluated whether the
e-nose technology could be used to predict the time of impact on strawberries. The results
show that if strawberries with different impact extents were considered separately, then
the models could predict the time after impact. However, if strawberries with different
impact extents were used together in the modeling, then the time prediction was difficult.
Moreover, the results show that the LS-SVM algorithm was more suitable for modeling
than the PLSR algorithm in detecting strawberries that have suffered impact damage. In
addition to e-nose technology, this study further analyzed the main characteristic VOCs
that have changed due to impact force through GC-MS technology, which is the basis for
the detection of damaged fruits by e-nose technology. This study provides a new method
for the rapid detection of mechanical damage to fruits during the supply chain through the
use of technologies that can non-destructively detect VOCs in fruits, such as e-noses.
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