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ABSTRACT The issue of heterozygosity continues to be a challenge in the analysis of genome sequences. In this article, we describe the
use of allele ratios to distinguish biologically significant single-nucleotide variants from background noise. An application of this
approach is the identification of lethal mutations in Caenorhabditis elegans essential genes, which must be maintained by the presence
of a wild-type allele on a balancer. The h448 allele of let-504 is rescued by the duplication balancer sDp2. We readily identified the
extent of the duplication when the percentage of read support for the lesion was between 70 and 80%. Examination of the EMS-
induced changes throughout the genome revealed that these mutations exist in contiguous blocks. During early embryonic division in
self-fertilizing C. elegans, alkylated guanines pair with thymines. As a result, EMS-induced changes become fixed as either G/A or
C/T changes along the length of the chromosome. Thus, examination of the distribution of EMS-induced changes revealed the
mutational and recombinational history of the chromosome, even generations later. We identified the mutational change responsible
for the h448 mutation and sequenced PCR products for an additional four alleles, correlating let-504 with the DNA-coding region for
an ortholog of a NFkB-activating protein, NKAP. Our results confirm that whole-genome sequencing is an efficient and inexpensive
way of identifying nucleotide alterations responsible for lethal phenotypes and can be applied on a large scale to identify the molecular
basis of essential genes.

FORWARD genetics in model organisms, which involves
random mutation and isolation of a phenotype, laid the

foundation for characterization of gene function. The bottle-
neck of this process lies in the identification of the molecular
lesion responsible for the phenotype. The traditional ap-
proach for mutation identification involves three-factor map-
ping followed by several rounds of complementation testing
using deficiencies and duplications. To reduce the number of
candidate-coding regions, cosmids and fosmids are used to
attempt to rescue the lethal phenotype (Janke et al. 1997;
Simms and Baillie 2010). Finally, PCR analysis and DNA se-
quencing are used to confirm the molecular identity of the
gene. This approach is laborious, time-consuming, and has very
low throughput.

Technological advancements have provided methods to
speed up the process of mutation identification. Recently,
array comparative genomic hybridization (aCGH) was applied
to identify single-nucleotide variations (SNVs) in the genomes
of Saccharomyces cerevisiae (Gresham et al. 2006) and Carno-
rhabditis elegans (Maydan et al. 2009). This genome-wide
approach allows rapid identification of a region of interest
without mapping the mutation. Together with dense tiling
arrays, aCGH could narrow down a SNV to within 10 bp
(Maydan et al. 2009). However, this approach, which relies
on sensitive hybridization, is unable to detect heterozygous
mutations (Gresham et al. 2006; Maydan et al. 2009).

Whole-genome sequencing (WGS) is coming to the fore-
front as an attractive alternative for identifying molecular le-
sions (Cronn et al. 2008; Hobert 2010). Many researchers,
including ourselves, have successfully identified SNVs and large
genomic variations using WGS (Sarin et al. 2008, 2010; Shen
et al. 2008; Doitsidou et al. 2010; Flibotte et al. 2010; Maydan
et al. 2010; Rose et al. 2010). This approach has greatly facil-
itated the characterization of mutant phenotypes as well as
many natural variants (Hillier et al. 2008). WGS is particularly
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useful for identifying hard-to-map alleles and genes that can-
not be rescued by conventional transgenic fosmid or cosmid
libraries. Nevertheless, almost all of the studies to date have
focused on identifying homozygous mutations whereas iden-
tifying heterozygous mutations continues to be a challenge.
Identifying heterozygous SNVs is an important step in ge-
nome analysis for understanding genomic variations and is
generally relevant to many situations where allelic differ-
ences exist. In this report, we have developed a method
for effectively identifying heterozygous mutations in C. ele-
gans using lethal mutations as a model.

C. elegans is a self-fertilizing hermaphrodite whose ge-
nome becomes homozygous within a few generations. How-
ever, C. eleganswith lethal mutations cannot be maintained as
viable homozygous strains. This problem has been solved by
the use of “balancers” to isolate, maintain, and characterize
essential gene mutations (Edgley et al. 2006). In C. elegans,
two commonly used classes of balancer are translocations
(Rosenbluth and Baillie 1981) and duplications (Rose et al.
1984). Duplications that do not crossover with the normal
chromosomes provide a third allele that is wild type and can
rescue the lethal mutation, which is effectively maintained
as a homozygote. In the case of the duplication-rescued
strains, the allele frequency is 2:1 mutant:wild type. In this
article, we describe the first use of Illumina sequencing to
identify the DNA-coding region of an essential gene rescued
by the duplication sDp2 on chromosome I of C. elegans.

Materials and Methods

C. elegans strains

C. elegans is a self-fertilizing hermaphrodite and produces iso-
genic progeny within a few generations. Strains carrying ho-
mozygous mutations in let-504 rescued by the duplication
sDp2 were previously generated (Howell et al. 1987) and
complementation tested (Howell and Rose 1990). The
wild-type N2 (KR4848) is a derivative of a CGC N2 strain
maintained in the Rose laboratory. The strain carrying a het-
erozygous tm4719 allele was kindly provided by S. Mitani
(National Institute of Genetics, Mishima, Shizuoka, Japan).
The strain KR5173, which carries the tm4719 allele bal-
anced by hT2[bli-4(e937)] let-x (q782) qIs48] I; III, was
generated in this study. C. elegans strains were maintained
at 20� as previously described (Brenner 1974).

Genomic DNA preparation

KR772 and KR4848 worms were grown on five 10-cm agar
plates with Escherichia coli OP-50 until food was depleted
(�5 days at 20�). Worms were collected and pelleted by
washing the plate with M9 and centrifuged at 1500 · g
for 1 min at 4�. The worm pellet was washed three times
with M9, followed by 2–3 hr of incubation at room temper-
ature to allow bacteria digestion. The worms were pelleted
as before and finally resuspended in 0.5 ml of TE. The worms
were frozen in 220� and lysed in lysis solution (50 ml 5%
SDS, 2.5 ml 20 mg/ml Proteinase K) at 60� for 2 hr. Genomic

DNA was purified using phenol/chloroform extraction and
ethanol precipitation. The sample was treated with 4 ml of
5 mg/ml RNase A for 1 hr at 37�, followed by a second
round of phenol/chloroform extraction and ethanol precip-
itation. Approximately 10 mg of DNAwas sheared for 10 min
using Sonic Dismembrator 550 (cup horn, Fisher Scientific)
with a power setting of “7” for 30-sec pulses interspersed
with 30 sec of cooling and analyzed on a 8% PAGE gel. A
180- to 220-bp DNA fraction was excised and eluted from
the gel slice overnight at 4� in 300 ml of elution buffer [5:1,
LoTE buffer (3 mM Tris–HCl, pH 7.5, 0.2 mM EDTA):7.5 M
ammonium acetate] and was purified using a Spin-X Filter
Tube (Fisher Scientific) and by ethanol precipitation. The
whole genome shotgun sequencing library was prepared us-
ing a modified paired-end protocol supplied by Illumina. This
involved DNA end-repair, formation of 39 A overhangs using
Klenow fragment (39–59 exo minus), and ligation to Illumina
PE adapters. Adapter-ligated products were purified on Qia-
quick spin columns (Qiagen) and PCR-amplified using Phu-
sion DNA polymerase for 10 cycles using the PE primer 1.0
and 2.0 (Illumina). PCR products of the desired size range
were purified using a 8% PAGE gel. DNA quality and quantity
was assessed using an Agilent DNA 1000 series II assay and
Nanodrop 7500 spectrophotometer (Nanodrop), and DNA
was subsequently diluted to 10 nM. The final concentration
was confirmed using a Quant-iT dsDNA HS assay kit and
Qubit fluorometer (Invitrogen). For sequencing, clusters were
generated on the Illumina cluster station and paired end-
reads were generated using an Illumina GAII platform follow-
ing the manufacturer’s instructions. Image analysis, base call-
ing, and error calibration was performed using the V1.0
Illumina Genome Analyzer analysis pipeline.

Mutational density calculation

We collected coordinates of all the homozygous EMS changes.
The genome was divided into overlapping bins of 2 Mbp, and
we counted the number of EMS changes in each bin. The
mutational rate for each bin was derived by dividing the
number of EMS changes by the bin size. The value for each bin
was collected and used to plot Figure 4.

Whole-genome sequencing and analysis

The genomic sequence of KR772 was aligned to the annotated
sequence of C. elegans available at WormBase WS200 (http://
www.wormbase.org) using BWA at the default setting (Li and
Durbin 2009) and compared with the sequence of the wild-
type strain KR4848. Genome analysis and visualization were
done using Integrative Genomics Viewer (Robinson et al.
2011). The SNVs were called using VarScan (Koboldt et al.
2009) with the following parameters: –min-coverage 20–min-
avg-qual 20–min-var-frequation 0.2–p-value 0.1. Candidate
nucleotide differences for let-504 (h448) were further filtered
to satisfy the following three criteria: (1) mutations that fall
within genetic mapping range; (2) unique to mutant strain
compared to the N2 strain (KR4848); and (3) allelic ratio falls
between 60 and 90%.
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Fosmid transgenic rescue

The fosmid WRM0614bH01 was injected into dpy-5 her-
maphrodites to construct the transgenic strain BC8626, which
carries myo-2::GFP physically linked to dpy-5(+) and the fos-
mid. GFP males from BC8626 were mated to KR772, and in-
dividual GFP outcross hermaphrodites were isolated. The
progeny of individual GFP hermaphrodites were examined
for fertile GFP Unc animals, which could be (1) crossovers
between the let-504 and dpy-5, (2) carrying both the fosmid
and sDp2, or (3) fosmid rescues of let-504. In the third case,
GFP Unc animals would continue to segregate Uncs (all with
GFP) and arrested Dpy Uncs. The length of the GFP Uncs was
measured, and gonadal indexing was used to test for a shift in
the h448 phenotype.

Complementation test

We received a knockout allele of E01A2.4, tm4719, from
S. Mitani (National Institute of Genetics). Animals homozy-
gous for tm4719 are sterile as adults. From a mixed popula-
tion, animals heterozygous for the tm4719 deletion allele
were crossed with males heterozygous for hT2[bli-4(e937)]
let-x (q782) qIs48] I; III, which carries an insertion of myo-2::
GFP. GFP hermaphrodites were selected and tested for
tm4719 by PCR. One hermaphrodite carrying tm4719 was
used to establish a balanced strain. GFP tm4719 males from
the above cross were individually crossed to a single KR772
hermaphrodite [sDp2; let-504(h448) dpy-5(e61) unc-13
(e450)/let-504(h448) dpy-5(e61) unc-13(e450)]. The F1
progeny from these individual crosses were screened for ster-
ile non-Dpy non-Unc non-GFP adults. If h448 fails to comple-
ment tm4719, we would expect sterile adults segregating in
the outcross progeny. The tm4719 deletion in sterile non-Dpy
non-Unc non-GFP adults was tested with the PCR primers.

Results and Discussion

Mutant strain selection

Identification of the molecular basis of lethal mutations is
problematic for WGS because the animals cannot be grown
as homozygotes in large amounts for DNA production. In
selecting a mutant strain to characterize, we took into ac-
count how well-mapped the mutation was and the number
of alleles that failed to complement it. We chose the h448
mutation that is in the essential gene let-504. The h448
allele is maintained as a homozyogote by a rescuing wild-
type allele on the duplication sDp2. The free (unattached to
a normal chromosome) duplication, sDp2, covers �7.3 Mbp
of the left half of chromosome I (Howell et al. 1987). We
chose a deleted interval, hDf7, that is in the sDp2-balanced
region because it was mapped to a well-defined area of
�200 kbp and contained a small number of essential genes
(Figure 1). Of the six complementation groups mapping
within hDf7 (let-353, let-503, let-504, let-505, let-506, and
let-507), let-504 had the most alleles (Table 1) (Johnsen
et al. 2000). It was with these considerations in mind that

the strain KR772, which carries let-504 (h448), was se-
lected. Previous analysis showed that the phenotypes of
the let-504 alleles ranged from larval arrest to sterile adults
(Howell et al. 1987; Johnsen et al. 2000). Our strategy was
to identify the let-504-coding region by inspection of the
genome sequence in the hDf7 region and to validate its
identity using DNA sequencing of PCR products from the
additional alleles.

Nonrandom distribution of G/A and C/T changes

Genomic DNA of KR772 was prepared and sequenced using
Illumina sequencing. For comparison, we prepared and se-
quenced the genome of KR4828, a Bristol wild-type (N2)
strain from the Rose laboratory. In KR772, a total of
45,694,133 read pairs of 114 bp read length were gener-
ated. Approximately 87% of the reads were aligned to the
annotated C. elegans genome (WS200) using BWA (Li and
Durbin 2009). The number of reads provided �80-fold cov-
erage on average.

To better identify candidate mutations for let-504, we
first analyzed the general mutational load of KR772. We
compiled all the base-pair differences unique to KR772 using
Varscan (Koboldt et al. 2009) (Supporting Information,
Table S1). We observed 648 SNVs present with .90% read
support and, of these, 55% (357) were either G/A or C/T
changes (Figure S1), which are characteristic of EMS muta-
tions (Bautz and Freese 1960; Greene et al. 2003). Even
though the lethal mutation was induced using a relatively
low dose of 15 mM EMS (Howell et al. 1987), compared to
the 50-mM dose that is often used (Brenner 1974; Sulston
and Hodgkin 1988; Flibotte et al. 2010; Sarin et al. 2010),
there still appear to be a large number (357) of apparent
EMS-induced changes across the whole genome.

We analyzed the positions of the homozygous SNVs in
KR772 and found that these changes do not distribute
evenly across the genome. Figure 2 shows the positions of
G/A and C/T changes plotted separately along the chro-
mosome. Surprisingly, EMS-induced mutations clustered in
contiguous blocks of either G/A or C/T changes. In some
cases, the blocks spanned the entire chromosome. We ob-
served that on chromosomes II, V, and X, the changes are
predominantly G/A, whereas those on chromosome I are
predominantly C/T (Figure 2).

We explain our observations in the following way. The
affected gametes of the EMS-treated parent will have some
alkylated G’s. For simplicity, we consider only the alkylated
G’s in the sperm (Figure 3A). In the first round of replication
of embryonic cell division after fertilization, the alkylated
G’s will mis-pair with T’s (Figure 3B). In the second round
of replication, the T’s will pair with A’s (Figure 3C). This
results in EMS mutations becoming fixed such that the alky-
lated G’s have been replaced with A’s. The mutational
changes will be the same for the entire DNA strand. For
example, the alkylated G’s from the plus strand in the gam-
ete will be fixed as A’s, and the C’s (G’s from the minus
strand) will be fixed as T’s (Figure 3C). Only one of these
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possibilities will be segregated to the germ-line progenitor cell
(P-cell lineage) and passed onto the next generation. Thus,
the offspring will inherit either G/A changes or C/T
changes along the entire chromosome for any one affected
gamete. To test the generality of this observation, we exam-
ined available EMS-treated genomic sequences published by
Flibotte et al. (2010). In the strains RB5002, VC1923, and
VC1924, the G/A and C/T changes occur in long contigu-
ous blocks similar to our observation (Figure S2).

We also observed both in our data and in data from
Flibotte et al. (2010) that there is a shift from one block of
EMS type to another within a chromosome (Figure 2 and
Figure S2). For example, chromosome IV in KR772 has
a stretch of G/A changes and shifts to a stretch of C/T
changes. Similarly, we observed in chromosome V of
VC1924 (as an example) where the EMS mutations shift
from a block of C/T changes to a block of G/A changes
and then back to C/T changes. The shift between blocks
can be explained as a result of crossing over during meiosis
and subsequent homozygosis in the self-progeny of the her-
maphrodite. In these cases, the paternal chromosome may
have contained only G/A changes and the maternal chro-
mosome only C/T changes. Crossing over between the
homologs during meiosis would result in a chromosome
with a segment of G/A changes and another segment of
C/T changes. In summary, WGS of EMS-treated strains
provides a way of identifying the type of mutational change
along large stretches of the chromosome.

In addition to differences in SNV types, we also observed
differences in SNV density. A sparsely mutated chromosome
would have a flatter slope whereas a densely mutated chro-
mosome would have a steeper slope. We observed many
chromosomes shift from a densely mutated segment to a
sparsely mutated segment, or vice versa (Figure 2 and Figure
S2). We calculated the density of EMS mutations (see Mate-

rials and Methods) and observed that a lower density of
mutation averaged about two SNVs per mega base pair
and a higher density of mutation averaged between four
and six SNVs per mega base pair (Figure 4). The shift in
mutational density along the chromosome is likely a result
of meiotic crossing over between the paternal and maternal
chromosome. If so, the mutational frequency in sperm dif-
fers from the frequency in oocytes. There is evidence for this
difference in other species. In Drosophila, EMS is more ef-
fective when fed to males than to females (Lewis and Bacher
1968), suggesting that sperms have a higher mutational
frequency. More effective repair mechanisms and an in-
creased cytosolic volume in the oocyte that may act as a sink
for alkylating agents could result in a lower mutation fre-
quency. Thus, it is possible that hermaphrodite sperm are
more sensitive than oocytes to mutation.

Identification of heterozygosity using allelic ratio

The left half of chromosome I has notably fewer homozy-
gous mutations than the rest of the chromosome. We
predicted that the SNVs in that region would have ,90%
read support due to heterozygosity. We counted the number
of SNVs as a function of their allelic ratio (Figure 5). For
a typical chromosome, most of the SNVs fall within a 90–
100% allelic ratio (e.g., the green line in Figure 5). However,
in chromosome I, we observed a bi-modal distribution of the
SNVs, with one peak at 70–80% and another peak at 90–
100% (black line in Figure 5). Nearly all of the SNVs in the
70–80% category are located in the sDp2 region (blue
dashed line in Figure 5) whereas SNVs outside of the sDp2
region are within 90–100% (red dashed line in Figure 5).
We conclude that the EMS-induced mutations are homozy-
gous along chromosome I homologs and differ from the
wild-type alleles on the duplication, resulting in an allelic
ratio in the range of 70–80%.

Figure 1 A map of lethal genes
on chromosome I exposed by the
deletion hDf7, which is in the
sDp2 region. Six lethal genes fall
within this region. Three of these
genes (let-353, let-503, and let-
504) fall in the region flanked
by the left breakpoint of hDf7
and the left breakpoint of the
cosmid C18E3.

Table 1 Alleles of let-504

Strain Allele Mutagen Genotype Arrest stage

KR456 h137 EMS sDp2; let-504 (h137) dpy-5 (e61) unc-13 (e450) Sterile adult
KR661 h327 Gamma radiation sDp2; let-504 (h327) dpy-5 (e61) unc-13 (e450) L2/L3
KR772 h448 EMS sDp2; let-504 (h448) dpy-5 (e61) unc-13 (e450) Sterile adult
KR1506 h844 EMS sDp2; let-504 (h844) dpy-5 (e61) unc-13 (e450) L3
KR1541 h888 EMS hT1; let-504 (h888) dpy-5 (e61) unc-13 (e450) L2/L3
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We reasoned that we could use the allelic ratio to
determine the extent of the duplication. We plotted the
distribution of allelic ratios in 1-Mbp intervals along the
chromosomes (Figure S3). Chromosomes I-right, II, III, IV,
V, and the X are predominantly homozygous for the SNVs
whereas the left half of chromosome I is predominantly non-
homozygous for the SNVs (Figure S3). On chromosome I,
homozygous SNVs emerge between 7 and 8 Mbp, indicating
that the sDp2 boundary falls within this interval. A detailed
examination of the region (Figure 6) shows that homozy-
gous mutations emerge between 7.2 and 7.3 Mbp, corre-
sponding to the location of the right breakpoint of sDp2.

Application of EMS mutation blocks and allelic ratios
to identify candidate mutations in the hDf7 region

The hDf7 region contains 62 predicted protein-coding
sequences. Of these predicted coding sequences, 43 are po-
tentially essential genes by the observation of arrest pheno-
types after RNA interference treatment (Fraser et al. 2000;
Sonnichsen et al. 2005). Even with this shortened candidate

list, identifying the molecular lesion for let-504 among the
candidates is a daunting task. WGS of a strain carrying one
of the alleles therefore presents a viable approach to iden-
tifying the responsible mutation. To narrow down the can-
didates, we took advantage of the two genomic features
discussed above: (1) EMS mutation types occur in contig-
uous blocks and (2) the allelic ratio is likely to be close to
70–80%. Our analysis of the EMS mutations showed that
chromosome I is predominantly C/T changes, and thus we
predicted that let-504 (h448) is also likely to be a C/T
change.

The strain KR772 carries flanking markers in addition to
the lethal mutation let-504 (h448), and we examined the
sequence for these pre-existing mutations. One of the
markers, dpy-5 (e61), is situated in the sDp2 region, and
the duplication provides a wild-type copy of the e61 mutant
allele. At position 5,432,448 on chromosome I, 80% (45/56
reads) had an A whereas the remaining 20% of the reads
had a C at this position, which is the nucleotide in the wild-
type N2 sequence. Our results are in agreement with the

Figure 2 Positions of G/A (red squares) and C/T (blue diamonds) homozygous SNVs. Any SNV with.90% read support is considered homozygous.
The x-axis represents the length of the chromosome in mega base pairs. The y-axis indicates each SNV ID. The scale is the same for all the chromosomes
so that the slope of the line corresponds to the density of SNVs. Chromosomes I and III are predominantly C/T changes whereas chromosomes II, V,
and X are predominantly G/A changes. Chromosome IV has a stretch of G/A changes followed by a stretch of C/T changes. Chromosome I and X
have a steeper slope, indicating a higher density of EMS mutations.
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previous published description of e61 (Thacker et al. 2006).
The other marker, unc-13 (e450), is situated outside the
duplicated region, and thus we expected that 90–100% of
the reads would correspond to the e450 allele. We observed
that 96% (55/56 reads) had a T at position 7,435,169 in
a gene encoding unc-13 (Ahmed et al. 1992), whereas in our
N2 strain there is a C at this position. The change would
result in a STOP codon replacing the normal glutamine (Q)
residue in the 13th exon. Previously, e450 was known ge-
netically to introduce a stop codon into unc-13 (Waterston
1981); however, this is the first report of the nucleotide
change responsible for this allele.

Having demonstrated that we could correctly identify
SNVs corresponding to known mutations, we set out to find
the molecular lesion for let-504. The let-504 gene was map-
ped previously to the hDf7 region (Johnsen et al. 2000). Ge-
netic mapping data placed the left breakpoint of hDf7 to the
right of unc-89, and the right breakpoint to the left of anc-1,

thus positioning hDf7 between 4.10 and 4.32 Mbp on chro-
mosome I (Figure 1). We used both manual and bioinfor-
matics analysis looking for SNVs within the hDf7 region.
Similar to the dpy-5 (e61) mutation, we expected the SNV
to have an allelic ratio close to 70–80%, and we discounted
any SNV that was present in all the reads. For example, we
found a single base-pair deletion in R12E2.1 that was present
in all the reads, and we discounted it as a candidate mutation.

We identified three SNVs that satisfied our criteria (Table
2). A G/A change with 70% read support (35/50) was
found in a noncoding region 18 bp upstream of H31G24.3.
No other SNVs were found in H31G24.3. Sanger sequencing
revealed that the same mutation occurs upstream of
H31G24.3 in all the let-504 alleles. Since the different alleles
of let-504 have different arrest stages, this mutation is likely
not the h448 mutation. A C/T mutation was found in the
last intron of E01A2.1 and was supported by 75% of the
reads (111/148). This mutation did not disrupt the coding

Figure 4 The number of EMS-induced changes per 1 Mbp.
This plot was generated by combining the rates from KR772
(excluding chromosome I), RB5002, VC1923, and VC1924.
Two prominent peaks are clearly observed: one at 1.5/Mbp
and another at 3.5/Mbp. A smaller peak was also observed
at 6/Mbp. The data for RB5002, VC1923, and VC1924 are
from Flibotte et al. (2010).

Figure 3 (A) Alkylated G’s as a result of EMS treatment
affecting the DNA of haploid gametes are shown in red.
(B) During the first round of replication, the alkylated G’s
will be mis-paired with T’s. (C) In the next round of repli-
cation, the new T’s will pair with A’s. Either one of the
chromosomes shown in C could enter the P1 cell and give
rise to the germ line and the next generation of offspring.
If the chromosome giving rise to the germ line comes from
the “New Minus” strand, the mutations will appear as
G/A changes when compared to the reference se-
quence. If the chromosome giving rise to the germ line
comes from the “New Plus” strand, the mutations will
appear as a C/T changes. Other segregant possibilities
are not shown for simplicity. Note that all the mutational
changes along the chromosome are of the same type,
either G/A or C/T, and that the type will be passed
on to the progeny in the next generation.
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region nor any splice signals and is thus unlikely to be the
cause of h448. The third mutation was in E01A2.4 and
caused a C/T change at position 4,132,191 in 67% of
the reads (42/63). This SNV changed the third nucleotide
of the first codon from ATG (methionine) to ATA (isoleu-
cine) and effectively removed the start codon for E01A2.4.
Given the allelic ratio (67%) and the fact that it is a C/T
change, we propose that E01A2.4 is let-504.

Identification of let-504 as E01A2.4, a NFkB-activating
protein ortholog

We PCR-amplified and sequenced the coding region of
E01A2.4 from strains carrying the remaining four let-504
alleles (Table 1). Sanger sequencing revealed nonsense muta-
tions in E01A2.4 for three of the alleles: h137, h844, and h888
(Figure 7). h888 changes the 41st codon from TGG (W) to
TGA (STOP); h844 changes the 151st codon from CAA (Q) to
TAA (STOP); and h137 changes the 358th codon from CAG
(Q) to TAG (STOP). The fourth allele (h327), which was
generated with gamma radiation, did not contain a SNV in
the coding region of E01A2.4 and may be a complex mutation
not detectable by PCR amplification and sequencing.

The lethal phenotypes of let-504 alleles correlate with the
positions of the alleles in E01A2.4. Using gonadal indexing,
we determined that h888 and h844, which remove most of
the protein sequence, have the most severe phenotypes, ar-
resting at the mid-larval stage (Figure S4). The milder phe-
notype, that of sterile adults, was seen in h137 and h448
(Figure S4). The h137 allele truncates the protein close to
the end whereas the h448 allele has a mutated start codon.
The milder phenotype of h137 may result from readthrough
of the stop codon, and in the case of h448 might be due to
the use of an alternative start codon that allows a truncated
protein to be made. However, we observed that the tm4719
allele, which removes amino acids 257–404 in E01A2.4, also
produces sterile adult animals. Thus, it is possible that the
first 256 amino acids contain information required for pro-
gression beyond the mid-larval stage.

To further confirm that let-504 is E01A2.4, we carried out
transgenic fosmid rescue and complementation test experi-
ments. The transgenic rescue experiment was done by crossing
let-504 (h448) animals to a strain carrying the transgenic fos-
mid WRM0614bH01, which contains E01A2.4. However, we
were not able to observe rescue. This could be for many

Figure 6 Chromosomal I region between 6
and 9 Mbp. The blue bars represent nonhomo-
zygous SNVs, and the red bars represent homo-
zygous SNVs. An SNV with an allelic ratio
between 40 and 89% is considered as nonho-
mozygous. An SNV with allelic ratio $90% is
considered as homozygous. A nonhomozygous
mutation first occurred at 7.3 Mbp.

Figure 5 Allelic ratio in KR772 for the whole chromosome
I, whole chromosome III, part of chromosome I under
sDp2, and part of chromosome I not under sDp2. Allelic
ratio is presented as the percentage of reads that show
SNV at a particular nucleotide position. In the sDp2 region,
the peak at 70–80% represents mutations homozygous in
the homologs with a wild-type allele in sDp2.
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reasons. Because of the sterility phenotype and morphological
defects in the gonad, it is possible that E01A2.4 expression is
required in the germ line, where expression of transgenic fos-
mid may be suppressed. In the absence of a rescuing construct,
we carried out a complementation test with the tm4719 allele.
We predicted that worms carrying both h448 and tm4719
alleles would arrest as sterile adults if let-504 is E01A2.4. Thus,
we constructed h448/tm4719 animals (see Materials and
Methods) and examined 83 sterile adults from h448 mothers,
which also carried the tm4719 allele. Thus, h448 failed to
complement tm4719. We conclude that E01A2.4 is the coding
region for the essential gene let-504.

BLAST searches with the E01A2.4 protein sequence show
sequence similarity to the human gene NFkB-activating pro-
tein (NKAP) with 30% identity at the protein level. In
humans, NKAP is a transcriptional repressor that associates
with the NOTCH corepressor complex and is required for
T-cell development (Pajerowski et al. 2009).

Concluding remarks

The issue of heterozygosity continues to be a challenge in
genome sequence analysis. Here, we have demonstrated that
heterozygous SNVs can be identified effectively using in-
formation from the mutational landscape and allelic ratios.
An application of our approach is the identification of lethal

mutations in essential genes. About 3000–5000 of the
20,000 genes in C. elegans are estimated to be essential for
development and survival. Over the past 25 years, thou-
sands of lethal alleles corresponding to .500 essential
genes have been isolated. These mutations are maintained
as heterozygous mutations using translocations and duplica-
tions. In the case of the duplication sDp2, 237 essential
genes have been mapped genetically. Correlating coding
regions to these lethal mutations has been slow and labori-
ous. We have shown that WGS is a time-efficient and cost-
effective way for further characterizing essential genes. Our
approach is also applicable to situations in which the het-
erozygous mutations exist in a 1:1 allelic ratio (m/+). With
deep enough coverage, a 50% SNV allelic ratio will stand
out against the statistical noise of the sequencing method-
ology. The coverage required will depend upon the read
length and the sequencing methodology and can be calcu-
lated for specific situations. In addition, we have provided
a better molecular understanding of EMS mutation fixation,
which may be a useful tool for identifying alkylating agent-
induced lesions in C. elegans and other model organisms.
The fact that a particular type of EMS mutation occurs in
contiguous blocks reduces the number of non-informative
changes and provides prediction with regard to mutation
type. The approach taken here is readily applicable to the

Table 2 Candidate let-504 mutations

Chromosome Position Reference Mutation
Reference read

support
Mutation read

support
Allelic

ratio (%) Genomic environment

I 4116834 G A 15 35 70 18 bp upstream of H31G24.3
I 4132191 C T 20 41 67.21 First exon of E01A2.4
I 4142061 C T 37 111 75 Last intron of E01A2.1

Figure 7 Location of let-504 alleles. The 13changes underneath the allele name indicate amino acid changes.
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rest of the lethal collection as well as to other phenotypes.
As essential genes often encode highly conserved proteins
that act either in cell maintenance or in a developmentally
critical pathway, identification of the coding regions corre-
sponding to the mutant collection will greatly increase both
available genetic resources and information about gene
function. Identification of the molecular basis of these genes
is of value for both our understanding of animal biology and
the study of human disease.
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Figure	  S1	  	  	  The	  distribution	  of	  single	  nucleotide	  variations	  (SNVs)	  in	  KR772.	  	  
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Figure	  S2	  	  	  Non-‐random	  distribution	  of	  EMS	  induced	  changes	  are	  seen	  in	  RB5002,	  VC1923,	  and	  VC1924.	  The	  X-‐axis	  represents	  the	  length	  of	  chromosomes.	  The	  Y-‐axis	  indicates	  
each	  SNV	  ID.	  The	  data	  used	  to	  generate	  this	  figure	  was	  from	  the	  supplementary	  table	  of	  (FLIBOTTE	  et	  al.	  2010).	  	  
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Figure	  S3	  	  	  Distribution	  of	  homozygous	  and	  non-‐homozygous	  SNVs	  per	  1Mbp	  window	  in	  each	  chromosome.	  The	  blue	  bars	  represent	  non-‐homozygous	  SNVs	  and	  the	  red	  bars	  
represent	  homozygous	  SNVs.	  A	  SNV	  with	  allelic	  ratio	  between	  40%	  and	  89%	  are	  considered	  as	  non-‐homozygous.	  A	  SNV	  with	  allelic	  ratio	  90%	  or	  above	  are	  considered	  as	  
homozygous.	  	  
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Figure	  S4	  	  	  DAPI	  staining	  and	  DIC	  images	  for	  h888,	  h844,	  h137,	  and	  h448.	  The	  yellow	  line	  outlines	  the	  gonad.	  The	  h888	  and	  h844	  alleles	  show	  the	  more	  severe	  phenotype	  where	  
the	  gonadal	  arms	  have	  yet	  to	  turn.	  The	  h137	  and	  h448	  alleles	  show	  milder	  phenotype	  where	  the	  gonadal	  arms	  have	  fully	  turned.	  	  
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Table	  S1	  	  	  All	  SNVs	  present	  in	  KR772	  with	  more	  than	  20%	  read	  support.	  
	  
	  
Table	  S1	  is	  available	  for	  download	  at	  http://www.genetics.org/content/suppl/2012/01/20/genetics.111.137208.DC1	  as	  an	  excel	  file.	  	  
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