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Abstract

Purpose: To investigate the diagnostic value and feasibility of radiomics-based

texture analysis in differentiating pulmonary sclerosing pneumocytoma (PSP) from

solid malignant pulmonary nodules (SMPN) on single- and three-phase computed

tomography (CT) images.

Materials and Methods: A total of 25 PSP patients and 35 SMPN patients with

pathologically confirmed results were retrospectively included in this study. For each

patient, the tumor regions were manually labeled in images acquired at the noncon-

trast phase (NCP), arterial phase (AP), and venous phase (VP). The least absolute

shrinkage and selection operator (LASSO) method was used to select the most use-

ful predictive features extracted from the CT images. The predictive models that dis-

criminate PSP from SMPN based on single-phase CT images (NCP, AP, and VP) or

three-phase CT images (Combined model) were developed and validated through

fivefold cross-validation using a logistic regression classifier. Model performance was

evaluated using receiver operating characteristic (ROC) analysis. The predictive per-

formance was also compared between the Combined model and human readers.

Results: Four, five, and five features were selected from NCP, AP, and VP CT

images for the development of radiomic models, respectively. The NCP, AP, and VP

models exhibited areas under the curve (AUCs) of 0.748 (95% confidence interval

[CI], 0.620–0.852), 0.749 (95% CI, 0.620–0.852), and 0.790 (95% CI, 0.665–0.884)
in the validation dataset, respectively. The Combined model based on three-phase

CT images outperformed the NCP, AP, and VP models (all p < 0.05), yielding an

AUC of 0.882 (95% CI, 0.773–0.951) in the validation dataset. The Combined model

displayed noninferior performance compared to two senior radiologists; however, it

outperformed two junior radiologists (p = 0.004 and 0.001, respectively).

Conclusion: The Combined model based on radiomic features extracted from three-

phase CT images achieved radiologist-level performance and could be used as

promising noninvasive tool to differentiate PSP from SMPN.
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1 | INTRODUCTION

Pulmonary sclerosing pneumocytoma (PSP) is a rare benign tumor

originating from undifferentiated respiratory epithelium.1,2 As the

basis for diagnosis of PSP, imaging physicians currently consider the

morphological characteristics of an oval-shaped, well-defined,

smooth boundary and the tail sign as distinguishing hallmarks3,4;

however, these characteristics are restricted by subjectivity and

unsatisfactory reproducibility. Moreover, it is challenging to distin-

guish PSP from solid malignant pulmonary nodules (SMPN) when

these nodules fail to exhibit malignant computed tomography (CT)

signs such as spiculation, pleural indentation, and lobulation. Thus,

using only on visual characteristics may easily lead to misdiagnosis

and thus cause the most effective treatment period to be missed.

Radiomic analysis is an emerging technique that can noninva-

sively reflect tumor heterogeneity by extracting high throughput of

quantitative features on images, and it has shown a strong applica-

tion value in differentiation, efficacy evaluation, and prognosis judg-

ment in oncology, especially in distinguishing primary lung cancer

from inflammatory nodules. However, most conventional studies of

radiomic analysis only focus on noncontrast CT images.5–7 To the

best of our knowledge, there are few studies concerning the use of

radiomic analysis to differentiate PSP from SMPN, especially by add-

ing contrast-enhanced imaging. The purpose of this study was to

investigate the diagnostic value and feasibility of radiomics-based

texture analysis in differentiating PSP from SMPN without malignant

CT signs on single- and three-phase CT images.

2 | MATERIALS AND METHODS

2.A | Patients enrollment

This retrospective study was approved by our ethics committee board.

Data for patients who underwent chest contrast-enhanced CT between

January 2010 and March 2020 were initially retrieved. All patients

underwent biopsy or surgery, and the tumor type was pathologically

confirmed. The inclusion criteria were as follows: (1) all patients had

undergone preoperative CT scans with noncontrast phase (NCP), arte-

rial phase (AP), and venous phase (VP) within 2 weeks before surgery;

(2) isolated solid pulmonary nodules larger than 1 cm; (3) nodules with-

out cavitation and satellite lesions; and (4) no performance of radiother-

apy or chemotherapy. The exclusion criteria were as follows: (1) solid

pulmonary malignant tumors with obvious malignant CT signs such as

lobulated shape, spicules of margin, or pleural indentation and (2) pure

ground-class nodules and mixed ground-glass nodules. Ultimately, 25

PSP patients and 35 SMPN patients (including lung adenocarcinoma,

lung squamous carcinoma, small cell lung cancer, or lung metastases)

were enrolled for further analysis.

2.B | CT image acquisition

Contrast-enhanced chest CT examinations were performed using a

GE Discovery CT750 HD CT scanner (GE Healthcare, Princeton, NJ,

USA). The CT scanning parameters were as follows: 120-kV tube

voltage, 360-mA tube current, 0.6-sec tube rotation time, 512 × 512

matrix, SFOV large body, and 5-mm section thickness. All CT images

were reconstructed using a 0.625-mm slice thickness.

For the contrast-enhanced CT scan, patients were injected with

1.5 mL of iodine (300 mg I/mL) by a pump injector at a rate of 3 mL/

s into the antecubital vein. Images of arterial and venous phases

were obtained at a postinjection delay of 5.7 sec and 30 sec after

initiation of contrast material injection, respectively.

2.C | Image analysis

All CT images were manually labeled by a radiologist with more than

10 years of experience. The pixel-wise tumor regions were seg-

mented on the maximal slice of CT images using ITK-SNAP version

3.8.0 (http://www.itksnap.org). Contouring was carefully drawn

within the borders of the tumors while avoiding covering the adja-

cent bronchi and vessels. The segmentation results were reviewed

and modified by another senior radiologist with more than 20 years

of experience. Both radiologists were blinded to pathologic results.

2.D | Radiomic feature extraction and selection

Feature extraction and selection was performed using the InferScholar

platform version 3.3 (InferVision, Beijing, China). The PyRadiomics pack-

age (version 2.1.2, https://github.com/Radiomics/pyradiomics) was used

to automatically extract radiomic features from the tumor regions of CT

images. A total of 991 nonzero features were extracted, including first-

order intensity statistics features (n = 234) and texture features (Gray

Level Dependence Matrix [n = 182], Gray Level Co-occurrence Matrix

[GLCM, n = 273], Gray Level Size Zone Matrix [GLSZM, n = 94], and

Gray Level Run LengthMatrix [GLRLM, n = 208]).

To avoid overfitting and reduce model complexity, dimension

reduction of the features was conducted using the two-sample t test

and the Least Absolute Shrinkage and Selection Operator (LASSO)

approach. The differential features between PSP and SMPN groups in

the training dataset were firstly selected, and then the most valuable

radiomic features (those most closely associated with the discrimina-

tion between PSP and SMPN) were chosen for further analysis.

2.E | Development of radiomic models

We developed three single-phase based predictive models using

radiomic features extracted from the CT images of the noncontrast

phase (NCP model), arterial phase (AP model), and venous phase (VP

model), respectively. A Combined model incorporating radiomic fea-

tures of the three phases was also constructed. A logistic regression

(LR) classifier was used to discriminate PSP from SMPN patients.

The PSP and SMPN groups were defined as positive and negative in

the classification process, respectively. LR was a statistical modeling

technique where the probability of a category was related to a set

of explanatory variables.8 The logistic model was defined by the fol-

lowing equations:
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z¼ a0þ∑
n

i¼1
aixi (1)

PðzÞ¼ eZ

1þeZ
(2)

where Z was a measure of the contribution of the explanatory vari-

ables xi (i = 1, . . ., n), ai represented the regression coefficients

obtained by maximum likelihood in conjunction with their standard

errors ▵ai, and P(z) was the categorical response of the variables.

The models were trained using the scikit-learn toolkit, and the

parameters were as follows: c = 1, penalty = ‘l2’, tol = 0.0001,

solver = libninear; other parameters were set by default. To better

train our models and build them more robustly based on a limited

sample size, the fivefold cross-validation method was applied.

The development and validation of all models were performed

using InferScholar platform version 3.3 (InferVision, Beijing, China).

2.F | Assessment of radiologists

PreoperativeCT images from noncontrast and contrast CT scanwere ret-

rospectively reviewed by four radiologists (two senior radiologists with

more than 20 years of experience each, and twos junior radiologists with

4 and 5 years of experience in thoracic imaging), then made a judgment

between PSP and SMPN. The judgment criterion was according to the

diagnostic experience that mainly included size, shape, internal density,

strengthening mode, and tumor periphery. Radiologists were unaware of

the patients’ clinical information and pathologic results.

2.G | Statistical analysis

The receiver operating characteristic curve was used to evaluate the

capacity of the predictive models for the discrimination of PSP from

SMPN tumors in the training and validation datasets, with respect to

sensitivity, specificity, and the area under curve (AUC). Sensitivity

was defined as TP / (TP + FN), specificity was defined as TN / (FP +

TN), where TP, FP, FN, and TN refer to true positive, false positive,

false negative, and true negative, respectively.

The Mann–Whitney U test was used for evaluation of the differ-

ences in continuous variables with a distribution across categories.

The association between categorical variables in different groups

was accessed using the chi-squared test. Delong’s test was applied

for comparing differences between two or more AUCs of different

models. All tests were two sided, and a P value < 0.05 was consid-

ered statistically significant. All analyses were performed using Prism

5 for Windows (Version 5.01) and MedCalc (Version 18.11.3).

3 | RESULTS

3.A | Study design

From January 2010 to March 2020, a total of 60 patients (23men,

37 women)were retrospectively enrolled in this study according to

inclusion and exclusion criteria. The age for the 25 patients with PSP

was 52.0 � 11.42 years (range, 24–68 years) and 62.7 � 11.17

years (range, 17–77 years) (P < 0.05) for the 35 patients with SMPN.

The NCP, AP, VP, and Combined models using different phase of CT

images were conducted using the fivefold cross-validation method.

3.B | Feature selection

A two-step method was applied for feature selection. There were

353, 398, and 379 features obtained from the NCP, AP, and VP of

CT images after feature selection with a two-sample t test, respec-

tively. These key features were further selected using LASSO regres-

sion. Finally, four, five, and five features selected from the NCP, AP,

and VP of CT images were used for the development of radiomic

models, respectively. The feature heatmap was plotted according to

the normalized radiomic feature values (Figure 1).

3.C | Development and validation of the radiomic
models

The diagnostic performance of the radiomic models was evaluated using

the receiver operating curve (ROC) analysis in the validation dataset. As

shown in Figure 2 (Figure 2), the AUCs of NCP, AP, VP, and Combined

models were 0.786 (95% CI, 0.661–0.882), 0.797 (95% CI,

0.673–0.890), 0.846 (95% CI, 0.729–0.926), and 0.928 (95% CI,

0.831–0.979) in the training dataset, respectively. The NCP, AP, VP, and

Combined models exhibited AUCs of 0.748 (95% CI, 0.620–0.852),
0.749 (95% CI, 0.620–0.852), 0.790 (95% CI, 0.665–0.884), and 0.882

(95% CI, 0.773–0.951) in the validation dataset, respectively.

The Combined model showed better performance than the other

single-phase models (Delong’s test, P = 0.022 vs the NCP model,

P = 0.039 vs the AP model, P = and 0.038 vs the VP model). The

accuracy, sensitivity, specificity, and AUCs of these predictive mod-

els are summarized in Table 1. The predictive scores of the NCP, AP,

VP, and Combined models for each patient in the validation dataset

are shown in Figure 3 (Figure 3).

3.D | Comparison of diagnostic efficiency between
the Combined model and radiologists

ROC analysis results suggested that the Combined model was nonin-

ferior to radiologists in differentiating PSP from SMPN. Delong’s test

indicated that the Combined model achieved similar diagnosis capa-

bility to the two senior radiologists (P = 0.275 and 0.521, respec-

tively), and the model significantly outperformed the two junior

radiologists (P = 0.004 and 0.001, respectively). The detailed perfor-

mance of the Combined model and radiologists are summarized in

Table 2; the ROC analysis is shown in Figure 4.

4 | DISCUSSION

PSP is a subtype of adenoma and is derived from a dual population

of surface cells resembling type II pneumocytes and round cells.
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Histologically, the tumor is solid, papillary, sclerotic, or hemor-

rhagic.9,10 Most studies have shown that benign tumors usually exhi-

bit a progressive and homogeneous enhancement pattern.2,11

Notwithstanding, Cheung et al. reported that the inhomogeneous

enhancement pattern was dominant because of differences in

histopathological predominant types.12 In addition, Chung et al.

showed that the morphologic features or enhancement patterns in

CT images could not help distinguish between lung cancer and

PSP.13 In addition, PSP also has potentially malignant potential, such

as lymph node metastasis, slow-growing multiple nodules, and pleu-

ral dissemination, which has been frequently reported despite its rar-

ity.14–16 Therefore, it is difficult to distinguish PSP from pulmonary

malignancies using only conventional imaging features, especially

malignant nodules or masses without malignant signs.

F I G . 1 . Heatmap of selected radiomic features from noncontrast phase, arterial phase, and venous phase images. Each row represents a
radiomic feature, and each column corresponds to one patient (separately grouped for PSP and SMPN patients).

F I G . 2 . ROC curves of the (a) NCP
model, (b) AP model, (c) VP model, and (d)
Combined model in the training and
validation datasets, respectively.
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Radiomics-based CT texture analysis is a technique that can carry

out mathematical analysis and operation on the pixels, voxel gray

levels, and spectral characteristics in the images, then quantify the

heterogeneity of tumor tissue structure through specific texture

parameters.17–19 CT texture analysis can provide an objective assess-

ment of lesion and organ spatial heterogeneity such as cellular den-

sity, angiogenesis, and necrosis; this analysis can provide information

beyond that of conventional subjective image assessment.20 In addi-

tion, in some aspects, the information gained is also beyond that of

random sampling biopsy, as biopsy analysis only evaluates a small

part of the tumor, while texture analysis reflects the tumor as a

whole.21

In present study, we found that the VP model showed higher

sensitivity and discrimination capability than the other two single-

phase models, and the discrimination capability was further improved

in the Combined model by incorporating features from three-phase

CT images than the NCP, AP, and VP models (all P < 0.05), yielding

an AUC of 0.882. The NCP model showed inferior discrimination

TAB L E 1 Diagnostic performance of the predictive models in the validation dataset.

Models Cut-off Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

NCP model 0.455 60.0% (38.7%–78.9%) 85.7% (69.7%–95.2%) 0.748 (0.620–0.852)

AP model 0.463 64.0% (42.5%–82.0%) 88.6% (59.9%–89.6%) 0.749 (0.620–0.852)

VP model 0.364 76.0% (54.9%–90.6%) 71.4% (53.7%–85.4%) 0.790 (0.665–0.884)

Combined model 0.416 80.0% (59.3%–93.2%) 85.7% (69.7%–95.2%) 0.882 (0.773–0.951)

Abbreviations: AUC, area under the receiver-operating characteristic curve; NCP, noncontrast phase; AP, arterial phase; VP, venous phase.

F I G . 3 . The diagnostic score of the NCP,
AP, VP, and Combined models for each
patient in the validation set. Red bars
represent the scores for PSP patients,
while black bars represent the scores for
SMPN patients.

TAB L E 2 Diagnostic performance comparison of the Combined model and radiologists.

Models Sensitivity Specificity AUC (95% CI) P value (vs the Combined model)

Combined model 80.0% (20/25) 85.7% (30/35) 0.882 (0.773–0.951) N/A

Senior radiologist 1 88.0% (22/25) 77.1% (27/35) 0.826 (0.706–0.911) 0.275

Senior radiologist 2 92.0% (23/25) 77.1% (27/35) 0.846 (0.729–0.926) 0.521

Junior radiologist 1 88.0% (22/25) 51.4% (18/35) 0.697 (0.565–0.809) 0.004*

Junior radiologist 2 80.0% (20/25) 54.3% (19/35) 0.671 (0.538–0.787) 0.001*

Abbreviations: AUC, area under the receiver-operating characteristic curve.

*P < 0.05.
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capability compared to that of the other single-phase models. The

results from our study differ from previously published texture anal-

ysis studies. For instance, Dennie et al. reported that noncontrast-

enhanced CT exhibited a higher specificity (88%) and AUC (0.9) than

that of contrast-enhanced CT (38% and 0.6, respectively) in the dif-

ferentiation of primary lung cancer and granulomatous nodules.22

The reasons for the inconsistency of results are not yet clear. How-

ever, some studies manifested that using IV contrast medium may

obscure textural information and influence the results, because con-

trast-related factors such as speed of infusion, amount of contrast

agent, image-related factors (scan and delay time), and patient-re-

lated factors (cardiac output, anatomical differences) are not stan-

dardized and contribute to inconsistent results.23 Nonetheless, our

results are in accord with other texture analysis studies. For exam-

ple, Son et al. reported that iodine-enhanced imaging could improve

efficacy of diagnosing invasive adenocarcinoma from AIS or MIA

compared to diagnosing using nonenhanced imaging from 0.888 to

0.959, respectively (P = 0.029).24 Based on previous reports,25,26 we

speculate that the reason may be the difference in intratumoral

microvessel density between benign and malignant tumors, namely,

the difference of capillary perfusion and permeability could be more

prominent after contrast administration.

The present results also showed that the Combined model

achieved noninferior performance to that of two senior radiologists,

without an obvious statistical difference, but that the model outper-

formed two junior radiologists. Thus, application of the radiomic

model may be conducive for junior radiologists to use in discriminat-

ing PSP and SMPN. Tumor peripheral characteristics such as the vas-

cular bordering sign or vascular correction sign, which relate to

discriminating PSP and SMPN, were not extracted into the radiomic

model; this may be why the Combined model provided no significant

advantage over senior radiologists.

Some limitations of this study should be noted. First, this was a

retrospective study from a single center and with a small sample

size. We will conduct prospective multicenter studies with a larger

sample size to avoid bias in modeling and results and increase its

repeatability. Second, radiomic features were only extracted inside

the tumor in our study, while some radiomic features at the tumor

periphery related to discriminating PSP and SMPN were not

extracted; further studies should focus on integrating the radiomic

features inside and outside the tumor to improve the diagnosis abili-

ties. Third, clinical data were not analyzed in combination with radio-

mic features, and these should be included into further study for

nomogram analysis.

5 | CONCLUSION

In conclusion, we established a radiomic model based on multiphasic

CT in differentiating PSP from SMPN on single- and three-phase CT

images, and the results showed that models based on three-phase

CT images achieve better performance than those using single-phase

CT images. The results manifested that radiomics-based texture anal-

ysis could serve as a promising non-invasive tool for radiologists to

differentiate PSP and SMPN.
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