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AbstrAct
Extracellular matrix metalloproteinase inducer, also knowns as cluster of 

differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein 
that is involved in numerous physiological and pathological functions, especially in 
tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the 
proton-linked transport of monocarboxylates such as L-lactate across the plasma 
membrane to preserve the intracellular pH and maintain cell homeostasis. As a 
chaperone to some MCT isoforms, CD147 overexpression significantly contributes 
to the metabolic transformation of tumor. This overexpression is characterized by 
accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor 
cells with a metabolic advantage and an invasive phenotype in the acidic tumor 
microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell 
metabolism and the associated molecular mechanisms. The regulation of CD147 and 
MCTs may prove to be with a therapeutic potential for tumors through the metabolic 
modification of the tumor microenvironment.

INtrODUctION

A majority of human tumors exhibit significantly 
higher glucose flux compared with adjacent normal 
tissues, and the glucose metabolism is characterized by 
increased aerobic glycolysis in the tumorous tissues [1-4]. 
This metabolic switch provides tumors with a growth and 
invasion advantage especially under hypoxic conditions. 
However, increased dependence on glycolysis results 
in increased lactic acid production, and the abundant 
lactic acid has to be exported mainly by two H+/lactate 
symporters (monocarboxylate transporters, MCT1/MCT4) 
in order to prevent cellular acidosis in the tumor cells [5-
10]. On the other hand, increased acid efflux due to altered 
glucose metabolism results in the chronic exposure of 
peritumoral normal tissues to an acidic microenvironment 
that produces toxicity in normal cells. Tumor cells evolve 

resistance to acid-induced toxicity during tumorigenesis, 
allowing them to invade the damaged surrounding normal 
tissues. 

It has been well recognized that cluster of 
differentiation 147 (CD147) is broadly expressed 
on human tumors and plays a critical role in tumor 
progression [11-17]. Intriguingly, CD147 has also been 
shown to associate specifically with cell surface expression 
and the appropriate location of MCTs as a chaperone in 
the energy metabolism of tumors, thus contributing to 
the tumor invasion and tumor metastasis [18-21]. In this 
review, we seek to describe the roles of CD147 and MCTs 
in altered glucose metabolism and the consequent acid-
mediated invasive phenotype of tumors, and we discuss 
the underlying molecular mechanisms.
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cD147 IN tUmOrs

CD147, also known as HAb18G/CD147 in 
humans, is a hepatoma-associated antigen cloned by 
hepatoma monoclonal antibody HAb18 screening from a 
human hepatocellular carcinoma cDNA library [22, 23]. 
HAb18G/CD147, which belongs to the immunoglobulin 
superfamily, contains two extracellular immunoglobulin 
domains (C and V domains), a hydrophobic 
transmembrane domain, and an intracellular domain [24, 
25]. The corresponding gene is located on chromosome 
19p13.3 and contains 1797 bp encoding 269 amino acid 
residues [26-28]. There are three Sp1 binding sites and 
two hypoxia-inducible factor (HIF) binding sites in the 
5’-flanking and the 3’-flanking region, respectively, of the 
CD147 gene. [29, 30]. 

In addition to its familiar matrix metalloproteinase 
(MMP)-inducing ability, CD147 plays a vital role in 
neural network formation and development [31, 32], 
spermatogenesis and fertilization [33, 34], lymphocyte 
responsiveness [35], rheumatoid arthritis, HIV infection 
[36, 37], tumor metastasis, and tumor angiogenesis 
[11]. A study involving CD147-/- mice demonstrated 
defective activities in MMP production and secretion, 
spermatogenesis, lymphocyte responsiveness, and 
neurological functions in the early stages of development; 
these animals were also infertile due to failure of 
implantation and fertilization [38]. As a type I integral 
membrane receptor, CD147 typically associates with many 
ligands, such as MCTs [18-21], integrins [39], annexin II 
[40], caveolin-1 [41], cyclophilin A [42], and βig-h3 [43], 
based on the characteristics of the molecular structure of 
CD147. 

As previously reported, CD147 was highly enriched 
on the surface of various malignant tumor cells, including 
cancers of the brain, lung, breast, liver, bladder, and skin 
[12, 13], triggering the production and release of MMPs 
in the surrounding stromal fibroblasts and endothelial 
cells, as well as in the tumor cells themselves, via cGMP/
NO-sensitive capacitative calcium entry. The MMPs thus 
contributed to the degradation of the extracellular matrix, 
which eventually led to tumor invasion and metastasis [14-
16]. In addition, it has been found that elevated CD147 
expression is significantly correlated with the malignancy 
of these cancers [11, 17]. 

Vascular endothelial growth factor (VEGF), which 
can be upregulated under hypoxic and acidic conditions in 
tumors, plays a pivotal role in tumor angiogenesis and is 
crucial for tumor growth, invasion, and metastasis [44]. As 
indicated previously by Tang et al.[45], modulating CD147 
expression and activity via recombinant DNA engineering 
and neutralizing antibodies influenced VEGF production 
at both the RNA and protein levels in human breast 
cancer cells in a CD147- and MMP-dependent fashion 
in cocultures of tumor cells and fibroblasts. Consistently, 
CD147 regulated VEGF and MMP expression in xenograft 

tumors and stimulated tumor angiogenic potential and 
growth rate. Similarly, the knocking down of CD147 using 
specific siRNA significantly inhibited VEGF expression by 
malignant melanoma cells, resulting in the suppression of 
microvessel density in nude mouse xenograft models [17]. 
These findings strongly support the idea that in addition 
to being an MPP inducer, tumor-associated CD147 is still 
an important angiogenesis enhancer that contributes to 
the tumor angiogenesis mechanism in tumor progression 
[17, 45, 46]. To explore the underlying signaling pathways 
used by CD147 to induce VEGF expression, previous 
studies by Tang et al. have shown that the PI3K-Akt 
signaling pathway is specifically involved in the regulation 
of VEGF expression by CD147 in MDA-MB-231 breast 
cancer cells. The researchers used various blocking and 
neutralization experiments aimed at PI3K and CD147, and 
they identified a positive feedback regulatory mechanism 
of CD147 expression [47, 48]. In addition, Sounni et 
al. suggested that membrane type 1 MMP induced by 
CD147 might specifically stimulate VEGF-A production 
directly via the Src tyrosine kinase signaling pathway in 
human breast carcinoma MCF7 cells [49]. The PI3K-Akt 
signaling pathway has been well accepted as one of the 
most important signaling pathways in angiogenesis, as 
shown previously by a series of evidence [50].

Cell-cell or cell-matrix anchorage is important for 
cell viability and proliferation, as loss or alteration of 
this anchorage could lead to anoikis which is a form of 
apoptosis [51]. The acquisition of anoikis resistance is 
a key feature of neoplastic transformation, and it is an 
important prerequisite for tumor invasion and metastasis. 
Previous findings have indicated that CD147 expression 
protects breast cancer cells from anoikis, at least in part, 
by a mitogen-activated protein kinase-dependent reduction 
of Bim, which is a proapoptotic BH3-only protein, and that 
knockdown of CD147 expression by RNA interference 
sensitized cancer cells to anoikis through the activation 
of caspase-3 [52]. Ke et al. found that CD147 expression 
was significantly higher in hepatocellular carcinoma cells 
(SMMC-7721) resistant to anoikis compared with the 
parental cells, and that CD147 knockdown by siRNA 
also remarkably induced cell anoikis, partially via 
inactivation of the PI3K/Akt signaling pathway [53]. In 
summary, the acquisition of anoikis resistance through 
upregulation of CD147 may represent a newly recognized 
mechanism underlying the metastasis of malignant 
tumor cells. In addition to cell apoptosis and necrosis, 
autophagy is usually known as another important form of 
cell death [54], and the role of autophagy in tumors has 
been a topic of intense discussion [55, 56]. It has been 
reported that HAb18G/CD147 inhibited the starvation-
induced formation of autophagosomes in human SMMC-
7721 liver cancer cells in a dose-dependent manner via 
downregulation of autophagy-relating protein ATG6/
Beclin1 expression involving the Class I PI3K/AKT 
pathway [57]. 
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It is known that CD147 is highly expressed on the 
hepatocellular carcinoma cells (HCCs) and is involved in 
tumor growth, angiogenesis, invasion, and metastasis as an 
early pathological diagnosis biomarker and a significantly 
unfavorable prognostic factor for HCC [16, 58, 59]. In 
detail, CD147 colocalized and interacted with integrin 
α3β1 [39] and α6β1 [60] in the invasion and metastasis 
potential of hepatoma cells via the integrin α3β1-mediated 
focal adhesion kinase (FAK)-paxillin and FAK-PI3K-Ca2+ 

signaling pathways, and the integrin α6β1-mediated PI3K-
Ca2+ signaling pathways, respectively. The enhancing 
effects of HAb18G/CD147 on the adhesion, invasion 
capacities and secretion of MMPs of hepatoma cells 
(SMMC-7721) were partially blocked by integrin α3β1 
and α6β1 antibodies; Wortmannin and LY294002, specific 
PI3K inhibitors, were able to reverse the attenuating 
effect of HAb18G/CD147 on the negative regulation of 
Ca2+ entry by PI3K. Further study about the fundamental 
mechanisms underlying the interaction between CD147 
and integrin confirmed that the extracellular membrane-
proximal domain of CD147 bonds to the metal ion-
dependent adhesion site (MIDAS) motif of integrin β1 
to activate the downstream FAK signaling pathway, 
subsequently functioning in the invasion and metastasis of 
HCCs [61]. In the same manner, the RGD motif in many 
extracellular matrix proteins interacted with the MIDAS 
motif of integrin β1 submit [62]; therefore the RGD motif 
may have competitively inhibited the CD147-integrin 
β1 interaction and attenuated the malignant properties 
of tumor cells induced by CD147, which would be a 
potentially innovative therapeutic strategy for tumors. 

In addition to integrin, annexin II, a 36-kDa Ca2+ 
and phospholipid-binding protein, has been characterized 
as a new interaction protein of CD147 in HCCs to promote 
the invasion and migration of HCCs in vitro as a functional 
complex in the same signal transduction pathway [40]. 
However, the expression of annexin II was not affected 
by the downregulation of CD147, and vice versa [40]. 
Cytoskeleton rearrangement plays an important role in 
cell motility. The annexin II-CD147 interaction is involved 
in the cytoskeleton rearrangement of HCCs via inhibiting 
Rho/ROCK signaling pathways and amoeboid movement 
by CD147 through inhibiting the phosphorylation of 
annexin II, thus promoting membrane localization of 
WAVE2 and Rac1 activation, and contributing to the 
formation of lamellipodia and mesenchymal movement 
by way of the integrin-FAK-PI3K/PIP3 signaling pathway 
[63]. Epithelial-mesenchymal transition (EMT) is defined 
as a process in which stationary polarized epithelial cells 
are converted into motile mesenchyma-like cells with an 
invasive phenotype and malignant behavior [64], triggered 
by TGF-β via Smad-dependent and non-Smad-dependent 
signaling pathways [65]. Interestingly, research results 
from Wu and his group uncovered, for the first time, a 
novel role of CD147 in mediating EMT. Samples from 
patients with liver disease indicated that the expression 

of HAb18G/CD147 was upregulated in TGF-β-induced 
EMT. A dual-luciferase reporter assay and ChIP further 
demonstrated that CD147 upregulation was controlled by 
the PI3K/Akt/GSK3b signaling pathway, and that CD147 
was a transcriptional target of Slug [66]. 

In conclusion, CD147 is a tumor-associated antigen 
involved in the growth, survival, invasion, angiogenesis, 
and metastasis of tumors, mainly via CD147-mediated 
MMP production and interaction with various ligands 
involved in the neoplastic cell behavior. All mentioned 
non-metabolic molecular mechanisms of tumor 
progression associated with CD147 overexpression are 
represented schematically in Figure 1.

mcts IN tUmOrs

MCTs belong to the solute carrier 16 gene family, 
which currently contains 14 members [67, 68]. All family 
members are predicted to have 12 transmembrane helices 
(TMs) with intracellular C- and N-termini and a large 
cytosolic loop between TMs 6 and 7 [67]. MCTs catalyze 
the transport of monocarboxylates such as L-lactate across 
the plasma membrane. However, only four members of 
the family (MCTs1-4) have actually been confirmed to 
function as proton-linked MCTs, whereas MCT8 is a 
thyroid hormone transporter [69] and MCT10, originally 
known as T-type amino acid transporter 1, is an aromatic 
amino acid transporter [70]. Transport mediated by MCT8 
and MCT10 is not proton linked. The essential metabolic 
roles of MCT isoforms 1-4 in cell homeostasis has been 
depicted in detail in most normal tissues. Depending on 
the tissues and the species, MCT1 or MCT2 is used to 
take up lactic acid for energy metabolism (e.g., oxidation 
in heart, red muscle, and neurons) or for gluconeogenesis 
(liver and kidney) [71-74]. MCT4 plays a critical role in 
lactic acid efflux in most tissues that rely on glycolysis 
for energy metabolism under normoxic conditions (e.g., 
white skeletal muscle fibers) [75, 76]. MCT3 expression 
is confined to the retinal pigment epithelium (RPE) and 
choroid plexus [77], and it is believed to facilitate the 
transport of glycolytically derived lactic acid out of the 
retina. 

MCT expression can be regulated at both the 
transcriptional and post-transcriptional levels [68]. 
Numerous studies have reported the upregulation of MCT1 
in skeletal muscle in response to chronic stimulation or 
exercise at the transcriptional level through elevated 
calcium and AMP-activated protein kinase (AMPK) [72]. 
MCT2 expression may be subject to post-transcriptional 
control. It has been reported that noradrenaline and both 
insulin and insulin-like growth factor (IGF)-1 enhance the 
expression of MCT2 by translational activation mediated 
by stimulation of the PI3K/Akt/mTOR pathway [78]. 
However, how such a restricted expression of MCT3 in 
RPE and the choroid plexus is regulated is not actually 
known. Among the major regulatory mechanisms 
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identified for MCT4 expression, the upregulation of 
MCT4 expression in response to hypoxia mediated by 
HIF-1α is of particular importance [79]. Hypoxia could 
increase MCT4 mRNA and protein expression, as MCT4 
promoter activity is stimulated by hypoxia via the presence 

of four potential hypoxia response elements in the MCT4 
promoter [79]. This is consistent with the proposed role of 
MCT4 in pumping out lactic acid derived from glycolysis 
across the plasma membrane from cells; elevated MCT4 
expression is often observed in tumor cells that rely almost 

Figure 1: schematic representation of the non-metabolic molecular mechanism of tumor progression associated with 
cD147 overexpression. First, CD147 colocalizes and interacts with integrin in the invasion and metastasis of tumor cells via integrin 
α3β1-mediated FAK-paxillin and FAK-PI3K-Ca2+ signal pathways and integrin α6β1-mediated PI3K-Ca2+ signaling pathways, respectively. 
Second, the annexin II-CD147 interaction is involved in rearranging the cytoskeleton via inhibiting Rho signaling pathways and amoeboid 
movement by CD147 through inhibiting annexin II phosphorylation in the EMS, thus promoting membrane localization of WAVE2, Rac1 
activation, formation of lamellipodia and mesenchymal movement via the integrin-FAK-PI3K/PIP3 signaling pathway. Third, CD147 
stimulates tumor angiogenesis by elevating VEGF and MMPs via PI3K-Akt signaling pathway. In addition, CD147 is involved in EMT 
via a signaling cascade: TGF-β-PI3K/Akt-GSK3β-Snail-Slug-CD147. Finally, CD147 expression protects tumor cells from anoikis and 
starvation-induced autophagy at least in part by reducing Bim and downregulating autophagy-relating gene ATG6/Beclin1, respectively. 
Akt: also known as protein kinase B (PKB); Bim: Bcl-2 interacting mediator of cell death; EMT: epithelial mesenchymal transition; EMS: 
endomembrane system; FAK: focal adhesion kinase; GSK-3β: glycogen synthase kinase-3β; MMP: matrix metalloproteinase; PDK1: 
phosphoinositide dependent protein kinase-1; PI3K: phosphatidylinositol 3-kinase; PIP3: phosphatidylinositol 3,4,5-trisphosphate; Rac1: 
Ras-related C3 botulinum toxin substrate 1; RhoA: Ras homolog gene family, member A; Rock: Rho-kinase; Snail: zinc-finger transcriptional 
factor Snail; Slug: zinc-finger transcriptional factor Slug; TGF-β1: transforming growth factor-β1; VEGF: vascular endothelial growth 
factor; WAVE2: WASP-family verprolin homologous protein 2.
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entirely on glycolysis for their energy metabolism [80].
One of the recently recognized hallmarks of cancer 

is altered glucose metabolism with dependence on 
glycolysis for energy production [4]. Consequently, large 
amounts of lactate produced have to be exported to the 
extracellular milieu; thus, it is not surprising that cancer 
cells exhibit high levels of MCT expression to maintain 
this metabolic phenotype [9, 10]. In this context, MCT1 
and MCT4 on one hand play a dual role in the maintenance 
of high glycolytic rates by performing lactate efflux, and 
on the other hand contribute to the homeostasis of the 
intracellular pH through the cotransport of protons [81]. 
However, there is considerable variation in the expression 
of MCT isoforms in different tumors due to the different 
metabolic profiles of tumors [82]. 

In the literature, there is controversy regarding the 
expression of MCTs in colorectal carcinoma [83, 84] and 
breast cancer [85, 86]. Regarding tumors of the central 
nervous system, a recent report indicated that MCT1 and 
MCT4 are overexpressed in the plasma membrane of 
glioblastoma cells [87]. There is only one study showing 
a dramatic increase in the expression of MCT1 and MCT4 
from pre-invasive to invasive squamous lesions in the 
uterine cervix [88]. It has also been reported that MCT1, 
MCT2, and MCT4 are highly expressed in gastrointestinal 
stromal tumors and are significantly associated with 
clinicopathological data [89]. While one study reported 
an increase of both MCT1 and MCT 4 expression and 
a positive correlation with prostate cancer progression 
[90], another report demonstrated a dramatic upregulation 
of both MCT 2 and MCT4, but a significant decrease in 
MCT1 expression in prostate cancer cells [91]. Additional 
studies regarding MCT expression in other tumor types, 
verification of the reports already published, and further 
excellent functional studies are needed for a more in-depth 
elucidation of the importance of MCTs in cancer.

cD147 AND mcts IN tUmOr 
glycOlysIs

One characteristic of the altered metabolism in 
malignant tumor is the increased glucose uptake [1]. 
Differential diagnosis between malignant and benign 
lesions using positron emission tomography imaging is 
based on this fundamental feature of tumor metabolism 
[92]. In contrast to the corresponding normal tissues 
which depend on mitochondrial aerobic respiration for 
the production of energy in the presence of physiologic 
oxygen and glycolysis to metabolize glucose during 
oxygen deprivation [93], tumor tissues mainly use aerobic 
glycolysis to metabolize glucose even in the presence of 
sufficient oxygen [2-4]. This metabolic adaption within the 
malignant tumor was first identified by Otto Warburg in 
1956 and called the Warburg effect [94].

As mentioned previously, CD147 interacts with 
MCTs [18-21], and it has been shown to serve as a 

chaperone to assist MCT1 and MCT4 in folding, stability, 
membrane expression, and functionality [19]. Specifically, 
CD147 regulates the surface expression and function of 
MCT1, which is generally widely expressed [95]. The 
expression of MCT4, however, which could be induced 
under the condition of hypoxia, tended to be restricted 
to tissues utilizing glycolysis, and increased expression 
of MCT4 has been reported in several malignant tumors 
[67, 79, 80]. A hallmark of the altered metabolism in 
malignant tumors is aerobic glycolysis. Blocking CD147 
with a targeted monoclonal antibody or silencing CD147 
by siRNA resulted in the inhibition of the proliferation, 
invasiveness, angiogenesis, and metastatic potential of 
colon cancer cells and malignant melanoma cells [17, 96, 
97]. These results potentially suggest that the protumoral 
action of CD147 is at least in part due to the interaction 
with MCT1/MCT4 to promote tumor cell glycolysis 
via increased glucose uptake, lactate release, and the 
production of adenosine triphosphate (ATP). MCT4, 
a hypoxia-inducible and tumor-associated lactate/H+ 
symporter, has been shouwn to confer resistance to the 
suppression of growth of Ras-transformed fibroblasts 
(glycolytic tumors) by MCT1/2 inhibition and to 
reestablish the tumorigenicity [98].

Hypoxia, one of the most pervasive physiological 
stresses within the tumor microenvironment [99], is 
largely due to poorly formed tumor vasculature [100]. 
Significant regions of tumor tissues are separated 
from the supporting blood vessels by great distances, 
causing hypoxia, nutrient deficiency, and waste product 
accumulation [101]. Tumor cells have been shown to 
undergo fundamental metabolism adaption in order to 
survive and to display a growth advantage in the tumor 
microenvironment with limited oxygen and nutrition [2-4]. 
A series of transcription factors have been reported to be 
implicated in this process [102, 103], among which, HIF-
1α transcription factor [104, 105] plays a pivotal role in 
this hypoxic adaption, mainly via the overexpression and 
increased activity of several glycolytic proteins, including 
glucose transporter-1 (GLUT-1), MCT-4, and a variety 
of glycometabolic enzymes [21, 80]. A genome-wide 
chromatin immunoprecipitation (ChIP)-on-chip assay 
identified CD147 as a new hypoxia-responsive molecule 
essential for the glycolytic switch under hypoxia [106, 
107]. Increased expression of CD147 at both the mRNA 
and protein levels in a time- and dose-dependent manner 
in the hypoxic microenvironment of epithelial solid tumor 
has been revealed by immunohistochemical staining [21]. 
The identification of the key molecules involved in tumor 
hypoxia adaptation confirmed that CD147 up-regulation 
was mainly mediated by a combined effect of HIF-1ɑ and 
specificity protein 1 (Sp1) on the activation of CD147 
promoter [21]. Kong et al. also found that promoter 
hypomethylation up-regulated CD147 expression 
primarily through increased Sp1 binding and that it was 
associated with a poor prognosis in human hepatocellular 
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carcinoma [107]. As expected, hypoxia-induced CD147 
enhanced glycolysis in both tumor cell lines and a tumor 
xenograft model, partially through interaction with MCT-
1 and MCT-4 [21]. In summary, a body of evidence 
uncovered a novel mechanism of hypoxia adaptation 
mediated by the interaction between CD147 and MCTs to 
promote glycolysis in tumor progression. 

Recently, the enthusiasm to study the importance 
of metabolism in cancer has resulted in some attention-
grabbing discoveries that revealed additional functions of 
well-known oncogene and tumor suppressor gene-encoded 
proteins [108]. Over the past 15 years, increasing evidence 
has proven that oncogene Myc, PI3Ks/AKT/mTOR 
pathways, along with HIF, can stimulate the transcription 
of a number of genes whose products are significantly 
involved in glycolysis pathways [109, 110]. Similarly, p53, 
which is mostly known for its tumor suppressor properties, 
is also able to control the metabolic switch in cancer 
directly through a series of mechanisms that decelerate 
glycolysis and help to maintain aerobic respiration [111, 
112]. The p53 protein has been shouwn to inhibit the 
expression of GLUT 1 and GLUT4 transporters, which 
are important for glucose uptake [113]. More intriguingly, 
p53 is also able to inhibit the activities of PI3K/AKT/
mTOR signaling pathways by regulating the transcription 
of four important genes, including insulin-like growth 
factor 1-binding protein-3 (IGF-1BP-3), tuberous sclerosis 
protein 2 (TSC-2), phosphatase and tensin homolog 
(PTEN) and the beta subunit of AMP-activated protein 
kinase (AMPK) which all negatively regulate AKT and 
mTOR activities [114]. 

As mentioned above, several intracellular signaling 
mediators have been identified in the metabolic regulation 
of tumor cells. However, relevant reports regarding 
the involvement of some molecules on the cell surface 
in the reprogramming process of glucose metabolism 
are rare and ambiguous. Several recent investigations 
have determined the involvement of CD147 in tumor 
glycolytic metabolism through the gain/loss-of-function 
studies [21, 98]. A study by Huang and his colleagues 
[115] demonstrated that CD147 contributed significantly 
to the altered glucose metabolism in HCCs through a p53-
dependent way (Figure 2). First, upregulation of CD147 
promoted glycolysis mediated by the p53-dependent 
upregulation of GLUT1 and activation of liver type 
phosphofructokinase (PFKL) in HCC lines. However, the 
increased expression of CD147 inhibited mitochondrial 
oxidative resipiration mediated by the p53-dependent 
downregulation of PGC1a, TFAM, and p53R2 at the same 
time. Second, CD147 triggered the activation of the PI3K/
Akt/MDM2 pathway and the subsequent promotion of p53 
degradation, thus accelerating the lactate export through 
MCT1 in HCCs [115]. Regulation of the altered glucose 
metabolism by CD147 and MCT1/MCT4 in tumor is 
depicted schematically in Figure 2.

There are currently several drugs in clinical trials or 

under development that are based on specifically targeting 
the aberrant metabolism of tumors [109]. The therapeutic 
strategies include indirect targets (signaling pathways that 
are involved in altered glucose metabolism in the tumor) 
and direct targets consisting of the metabolic enzymes 
themselves (targeting nucleotide biosynthesis, glycolysis, 
amino acid metabolism and lipid metabolism). A study 
by Huang [114] demonstrated that the in vitro and in vivo 
proliferation of HCCs cells was suppressed by knockout 
or blocking CD147 and/or MCT1, which resulted in 
the down-regulation of glucose metabolism, suggesting 
that CD147 is a promising therapeutic target in HCCs 
by reprogramming the glucose metabolism. Actually, 
131I-labeled radioimmunologic monoclonal antibody 
against CD147 agent (generic name: [131I] metuximab 
injection; brand name: Licartin), was previously developed 
and approved by Sino FDA for clinical application [116, 
117]. An increasing body of evidence has revealed 
a previously unrecognized metabolic mechanism of 
application of CD147 in cancer diagnosis and therapeutic 
intervention.

tUmOr AcIDIc mIcrOeNvIrONmeNt 
AND tUmOr prOgressION

It is well accepted that tumor microenvironments 
play a significant role in modulating tumor development 
and progression [118]. Hypoxia and lactic acidosis are 
two important determinants in this environment, and 
tumor cells adapt their metabolism to respond to these 
unauspicious conditions [80]. As mentioned above, 
increased glucose uptake and elevated aerobic glycolysis, 
which are induced maily by HIF-1 under hypoxia, confer 
tumor cells a remarkable growth advantage. As such, 
the increased acid production due to the altered glucose 
metabolism subjects the peritumoral normal tissue to 
chronic exposure to an acidic microenvironment. This 
increased production of glycolytically derived acid is 
toxic to the surrounding normal cells due to the caspase-
mediated activation of the p53-dependent apoptosis of 
normal cells that express wild-type p53 activity [119, 120]. 
Tumor cells have evolved a resistance to acid-mediated 
toxicity during carcinogenesis, permitting them to invade 
the damaged adjacent normal tissues. The constitutive 
upregulation of H+ transporters or mutations in p53 and/
or the downstream effectors in tumor cells might partially 
contribute to the tolerance of tumor cells to acidosis of 
the microenvironment [6, 121, 122]. We hypothesize 
that the glycolytic phenotype first emerged as a survival 
mechanism to adapt to the hypoxic microenvironment, and 
that the increased acid production from the upregulated 
glycolysis led to acid-mediated tumor invasion. In 
addition to evoking different sensitivities to the acidic 
microenvironment in normal cell competitors and tumor 
cells, extracellular acidosis also promotes angiogenesis 
through the enhanced release of VEGF [123, 124] and 
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indirectly accelerated extracellular matrix degradation 
by inducing adjacent fibroblast and macrophage cells to 
release proteolytic enzymes such as cathepsin B [125] or 
by increased lysosomal recycling [126]. 

Tumor-infiltrating lymphocytes, an important part of 
the tumor surveillance system, play an important role in 
the anti-tumor immunity [127]. However, the spontaneous 
clearance of established tumor lesions by endogenous 
immune mechanisms is rare. Increasing evidences has 
attributed this phenomenon to a functional impairment 
of effector T cells in the tumor microenvironment [128]. 
Activated T cells also rely on elevated glycolysis and 
efficient secretion of lactic acid due to a higher energy 

demand during proliferation and cytokine production [129, 
130]. The transcriptional and translational expression of 
MCT1, 2 and 4 has already been reported in lymphocytes 
[131]. However, a disadvantageous lactic acid gradient 
between the extracellular milieu and the cytoplasm due to 
an accumulation of lactic acid in the tumor environment 
suppresses the proliferation and cytokine production of 
effector T cells via blockade of lactate efflux, thereby 
disturbing T-cell metabolism [130]. Consistent with those 
findings, extracellular lactic acidosis derived from tumors 
has also been shown to modulate the antigen-presenting 
capability of human monocyte-derived dendritic cells 
(DCs) to differentiate into tumor-associated DCs in a 

Figure 2: schematic depicting the regulation of altered glucose metabolism by cD147 in a tumor. Hypoxia in the tumor 
microenvironment induces the upregulation of CD147 expression by a combined effect of transcription factor HIF-1 on HRE of CD147 
and SP1 on the activation of CD147 promotor. The overexpression of CD147 promotes aerobic glycolysis mediated by the activation of the 
PI3K/Akt/MDM2 pathway, subsequently promotion of p53 degradation and inhibiting the downregulation of GLUT1/4 gene expression 
and suppression of PFK by p53 in the glycolytic metabolism and repressing mitochondrial oxidative respiration via downregulation of 
PGC1a, TFAM, and p53R2 in a p53-dependent manner at the same time. The glycolytic phenotype of tumor leads to increased production 
of lactic acid, which has to be exported across the plasma membrane in order to prevent cell death, due to cellular acidosis. Lactate is 
pumped out from cells mainly through two H+/lactate co-transporters, MCT1 and MCT4, to maintain homeostasis in the intracellular pH 
of tumors (MCT1 is bidirectional). CD147 serves as a chaperone to assist in the surface expression, folding, stability, appropriate location 
and functionality of MCT1 and MCT4. ATP: adenosine triphosphate; Akt: also known as protein kinase B (PKB); GLUT1/4: glucose 
transporter 1/4; HIF: hypoxia-inducible factor; HRE: hypoxia response element; MCT1/4: monocarboxylate transporter 1/4; MDM2: 
mouse double minute 2 homolog; PFK: phosphofructokinase; PGC-1: peroxisome proliferators-activated receptor-γ coactivator-1; PI3K: 
phosphatidylinositol 3-kinase; P53: protein 53; P53R2: p53-inducible ribonu cleotidereductase small submit 2; SP1: specificity protein 1 
transcription factor; TFAM: mitochondrial transcription factor A.
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three-dimensional tumor model within multicellular tumor 
spheroids [132]. As we know, elevated expression of 
CD147 has been observed on activated lymphocytes and 
is involved in the immunological synapse formation [133]. 
Furthermore, CD147 in regulatory T cells has been able 
to identify FoxP3+CD45RO+CTLA4+ activated human 
regulatory T cells from resting regulatory T cells [134, 
135]. In other words, CD147 is engaged in both immune 
response and immune suppression.

therApeUtIc pOteNtIAl OF cD147 
AND mcts IN tUmOrs

It has been suggested that CD147 detection is 
a useful test for the pathological diagnosis of early 
hepatocellular carcinoma in needle biopsy samples [58]. 
Multivariate analysis has revealed that the expression of 
CD147 is an independent prognostic indicator for patients 
with HCC and non-small cell lung cancer [58, 136]. In 
addition, low CD147 expression has also been suggested 
as a significantly favorable prognostic factor in gastric 
carcinoma [137], glioblastoma [138], endometrial cancer 
[139], and hypopharyngeal squamous cell carcinoma 
[140]. In patients with urothelial carcinoma of the bladder 
(UCB), univariate analysis revealed that high MCT1 and 
CD147 expressions were correlated with poor overall 
survival, whereas high MCT4 expression was associated 
with poor recurrence-free survival. Multivariate analysis 
has also indicated that high MCT1 and MCT4 expression 
can be independent prognostic markers for poor overall 
survival and poor recurrence-free survival, respectively 
[141].

The clinical application of CD147 and MCTs has 
been suggested not only as a potential diagnostic and 
prognostic marker in tumors [142], but also as a potential 
therapeutic target. It has been reported that anti-CD147 
monoclonal antibody and 131I-labeled HAb18 F(ab’)2 
metuximab monoclonal antibody injection (Brand name: 
Licartin), as a targeted radioimmunotherapy for HCC 
patients significantly decrease the secretion of MMPs 
and the invasive potential of HCC cells, which could be 
used to effectively prevent the recurrence and metastasis 
of HCC after hepatectomy and liver transplantation 
[16, 143]. A combination therapy of percutaneous 
radiofrequency ablation (RFA) and 131I-labeled metuximab 
treatment showed a greater anti-recurrence benefit than 
RFA alone [144]. Chimeric CD147 antibody as referred 
to CNTO 3899 was evaluated as a potential treatment 
for head-and-neck squamous cell carcinoma by means 
of inhibition of cytokines, MMPs and VEGF [145, 146]. 
From the perspective of tumor metabolism, CD147 
modulation disrupted its interaction with MCTs and 
rendered the tumor cells vulnerable to energy deficiency 
as they are dependent on aerobic glycolysis, which is 
regulated through the cooperation of MCTs and CD147, 
for their energy supply [147]. However, CD147 is broadly 

expressed on hematopoietic cells, and which play a 
critical role in a series of physiological activities, such as 
lymphocyte activation, so the application and consequence 
of anti-CD147 should be evaluated comprehensively in 
more details. 

MCTs play a vital role in monocarboxylate transport 
and pH homeostasis [7]. Because MCT1 is bidirectional, 
its inhibition not only causes a decrease in intracellular 
pH and eventually leads to cell death, but also resultes in 
a more acidic extracellular environment, which is usually 
associated with a more aggressive behavior of tumor 
[148-150]. The potential application of MCT1 inhibition 
in cancer treatment might be explained by a hypothesis 
referring to a metabolic symbiont model between hypoxic 
and aerobic cells within the tumor microenvironment 
[151]. Briefly, in the presence of MCT1, the aerobic tumor 
cells adjacent to the tumor vessels supply consume lactate 
to provide a survival advantage to the hypoxic tumor cells 
far away from the tumor vessels. However, in the absence 
on MCT1, the aerobic cells have to take up glucose for 
energy metabolism, due to the unavailability of lactate 
consumption resulting in susceptibility to starvation of the 
hypoxic cells. It had been demonstrated that the silence 
of MCT1 in conjunction with MCT2 could inhibit tumor 
growth and incurred tumor cell apoptosis and necrosis 
[152]. On the other hand, inhibition of MCT4 via siRNA 
has been found to remarkably suppress the transwell 
migration of MDA-MB-231 cells by as much as 85% 
[153]. 

Intervention in MCT expression presents clinical 
application potential, especially in cancer treatment, 
through cell migration suppression, cell death induction 
via intracellular acidification and hypoxic cell starvation 
[154, 155]. However, there are no relevant products 
currently in clinical trials. When considering MCTs 
as targets for therapy, it is crucial to keep in mind that 
inhibiting MCTs would trigger deleterious systemic side 
effects, as it has definitively been found that they are 
closely associated with a broad range of cell physiological 
activities. Specifically, systemic delivery of an MCT1 
inhibitor could bring disaster to almost every organ of the 
body, with the most drastic effects occurring on cardiac 
and skeletal muscles [79]. Therefore, local targeted 
delivery is required as a first step toward a potential 
clinical application. Recent evidences from a large cohort 
of human prostate tissues of different grades supportes 
MCTs as potential targets in prostate cancer [8]. In the 
end, because some MCT sub-types rely on CD147 as 
their chaperone for expression and appropriate location, 
CD147 inhibition would also contribute to cell apoptosis 
by disturbing lactate influx/efflux and indirectly lead to a 
drop in intracellular pH [156].

 cONclUsIONs

Increased aerobic glycolysis has been well accepted 
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as a remarkable hallmarker of tumors. Increased glucose 
uptake and elevated aerobic glycolysis provide tumor cells 
with a remarkable growth advantage, and subsequently, 
increased acid production that resultes in an acidic tumor 
microenvironment. Extracellular acidosis leads to tumor 
progression through several complicated positive feedback 
pathways, due to different sensitivities to the acidic 
microenvironment between the normal cell competitors 
and tumor cells. In view of the interaction between 
CD147 and MCTs, a previously unrecognized metabolic 
mechanism of application of CD147 and MCTs in cancer 
diagnosis and therapeutic intervention has attracted 
much attention. CD147 and MCTs are increasingly being 
recognized as potential therapeutic targets in tumors, 
due to their importance in tumor metabolic switch and 
eventual tumor progression.
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