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Abstract 
Background: In January 2020, a previously unknown coronavirus 
strain was identified as the cause of a severe acute respiratory 
syndrome (SARS-CoV-2). The first viral whole-genome was sequenced 
using high-throughput sequencing from a sample collected in Wuhan, 
China. Whole-genome sequencing (WGS) is imperative in investigating 
disease outbreak transmission dynamics and guiding decision-making 
in public health. 
 
Methods: We retrieved archived SARS-CoV-2 samples at the 
Integrated Biorepository of H3Africa Uganda, Makerere University 
(IBRH3AU). These samples were collected previously from individuals 
diagnosed with coronavirus disease 2019 (COVID-19) using real-time 
reverse transcription quantitative polymerase chain reaction (RT-
qPCR). 30 samples with cycle thresholds (Cts) values <25 were selected 
for WGS using SARS-CoV-2 ARTIC protocol at Makerere University 
Molecular Diagnostics Laboratory. 
 
Results: 28 out of 30 (93.3%) samples generated analyzable genomic 
sequence reads. We detected SARS-CoV-2 and lineages A (22/28) and B 
(6/28) from the samples. We further show phylogenetic relatedness of 
these isolates alongside other 328 Uganda (lineage A = 222, lineage B 
= 106) SARS-CoV-2 genomes available in GISAID by April 22, 2021 and 
submitted by the Uganda Virus Research Institute. 
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Conclusions: Our study demonstrated adoption and optimization of 
the low-cost ARTIC SARS-CoV-2 WGS protocol in a resource limited 
laboratory setting. This work has set a foundation to enable rapid 
expansion of SARS-CoV-2 WGS in Uganda as part of the Presidential 
Scientific Initiative on Epidemics (PRESIDE) CoV-bank project and 
IBRH3AU.
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Introduction
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19)
which has now spread throughout the entire world, causing more than 175 million infections and over 3.7 million deaths
globally.1 During early 2020, whole-genome sequencing (WGS) enabled researchers to rapidly identify SARS-CoV-2,
and knowing the genome sequence allowed rapid development of diagnostic tests and other appropriate tools needed
for the response to this novel infection. Continued genome sequencing supports the monitoring of the disease’s spread,
activity, viral evolution as well as emerging new viral variants.2 The COVID-19 pandemic is still ongoing and the global
response will have to continue for the foreseeable future; the World Health Organization (WHO) has recommended
WGS to be further adopted as well as implemented in new settings and new uses to better understand the world of
emerging pathogens and their interactions with humans in a variety of climates, ecosystems, cultures, lifestyles, biomes2

and genetic backgrounds.

Uganda has had approximately 60,250 COVID-19 cases and 423 deaths by June 12, 2021.3 As more countries move to
implement genome sequencing programmes, Uganda is among those embracing SARS-CoV-2WGS.Of the 131Uganda
full SARS-CoV-2 genomes analysed in December 2020, 50 (38%) belonged to lineage A and the rest belonged to a
variety of B lineages with the majority lineages being B.1 (N = 30; 23%) and B.1.5 (N = 17; 13%) which were found
predominantly in cross border truck drivers seeking to enter the country.4 As of April 26, 2021, a total of 328 SARS-
CoV-2 samples had been sequenced and deposited in theGISAID5 by theUgandaVirus Research Institute (UVRI).6 This
represented 0.8% of the total COVID-19 cases that had been detected in the country at that time. This situation is very
similar to almost all other African countries, yet this ongoing global pandemic has already demonstrated the importance
of widespread access to rapid novel pathogen discovery and subsequent surveillance, as well as comprehensive pathogen
information sharing.

We piloted sequencing of SARS-CoV-2 samples at the Molecular Diagnostics Laboratory located in the Department of
Immunology andMolecular Biology, Makerere University for two reasons: (i) to test the feasibility of ARTIC amplicon-
based genome sequencing at our local institution; and (ii) to extend genomic analyses for COVID-19 surveillance
in Uganda. ARTIC protocol was selected due to its low cost and high sensitivity, as well as its scalability compared
to other sequencing methods.7 Routine SARS-CoV-2 genome sequencing in many places still faces difficulties such
as an unreliable supply-chain for WGS reagents, since many of these are imported from western countries, limited
technical expertise as well as genomic infrastructure, and relatively high costs of genome sequencing. Consequently, this
work also served as a feasibility study to assess the implementation, practicality, and adoption of ARTIC amplicon-based
sequencing inUgandan’s resource-limited settings, allowing future efforts to integrate and expand into routine laboratory
diagnostic pipelines. This current study served as a proof-of-concept to extend genomic capacity for COVID-19
surveillance at Makerere University, College of Health Sciences (MakCHS) Molecular Diagnostic Laboratory. This
laboratory has been performing SARS-CoV-2 reverse transcription quantitative polymerase chain reaction (RT-qPCR)
since March 2020 and was among the first facilities in Uganda to be accredited by the Ministry of Health to carry out
routine SARS-CoV-2 testing. We sought to perform WGS of 30 SARS-CoV-2 RT-qPCR positive samples using the
COVID-19 ARTIC v3 amplicon-based sequencing protocol in our settings using the Illumina MiSeq sequencing
platform. We considered samples based on the criteria below;

i. Cycle thresholds (Cts) values below 25. This is because the ARTIC SARS-CoV-2 sequencing protocol
produces longer and high-quality genomes with Ct values below 30.8

ii. We sequenced samples collected after September 2020 to increase the chances of detecting any of the
emerging circulating SARS-CoV-2 variants including the high mortality9 variant originally referred to as the
UK variant or B.1.1.7, and the highly transmissible10 variant originally referred to as the South Africa variant or
B.1.351/501Y.V2 which had been reported on 14 December and 18 December, 2020 respectively.11

iii. All our sequenced isolates in this study were therefore selected from those archived samples collected after
September 2020.

Methods
Ethical consideration
The Integrated Biorepository of H3Africa Uganda (IBRH3AU) received ethical approval from Makerere University
School of Biomedical Sciences Research and Ethics Committee (SBS-REC) and from the Uganda National Council for
Science and Technology (UNCST) to collect, process, store, and share biospecimens including COVID-19 specimens.
Additionally, the IBRH3AU obtained ethical approval from the Mulago National Hospital REC (Protocol Number
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MHREC 1868 and approved on March 27th, 2021). Participants consented in writing to sample storage and subsequent
use of their samples in current and future studies related to understanding SARS-CoV-2 infection in Uganda.

Study design
This was a cross-sectional study design.

Study settings
Samples for this study included nasopharyngeal swabs collected from individuals who had a positive COVID-19 test
at the Molecular Diagnostic Laboratory. COVID-19 samples processed at this facility were archived at the Integrated
Biorepository of H3Africa Uganda – IBRH3AU. These samples were collected between September 2020 and February
2021 from individuals coming from Kampala metropolitan area, which consists of Kampala city itself and the
neighboring Wakiso, Mukono, Mpigi, Buikwe and Luweero districts of Uganda.

Sample preparation and nucleic acid extraction
Total nucleic acid was extracted using the QIAamp Viral RNAMini Kit (Qiagen) at the MakCHSMolecular Diagnostic
Laboratory, as per the manufacturer’s protocol. All patient samples had initially been assessed by RT-qPCR for SARS-
CoV-2 viral RNA using a triplex approach that targets the N, ORF and S viral genes. Therefore, this study used samples
that were diagnostically SARS-CoV-2 positive with amplification of the targeted region(s) crossing the threshold before
25 PCR cycles. In total, 30 SARS-CoV-2 positive samples were selected randomly for high-throughput genome
sequencing at our facility using a MiSeq Illumina platform.

Sequencing and bioinformatics analysis
These samples had been collected and previously stored from patients diagnosed with COVID-19 using real-time
RT-qPCR. Metadata associated with the patient samples included the date of sample collection, gender, nationality, and
purpose of testing (Routine, Contact, Alert, Travelers, Quarantine, Case, and Professional jobs requiring COVID-19 PCR
test). ARTIC amplicon-based sequencing was used to generate 400 bp amplicons with 75 bp overlaps covering the length
of the ~ 29.9 kB SARS-CoV-2 genome as described elsewhere.12 Briefly, cDNA synthesis was carried out with random
primers (Protoscript II First Strand cDNA Synthesis Kit, E6560S) followed by PCR amplification using ARTIC primers.
Genomic library preparation was carried out using the Nextera XTDNALibrary Preparation kit (15032355) according to
manufactures' recommendations, and sequencing was carried out on the Illumina MiSeq platform (Illumina, CA, USA)
using MiSeq Reagent Kit v3 (600-cycle, #MS-102-3003), according to manufacturer’s protocol.

Quality control (QC) was carried out before viral genome fasta generation, as previously described.13 Briefly, demulti-
plexed fastq files generated by sequencing were used as an input data for the analysis. Reads were trimmed based on
quality scores with a cutoff threshold of Q30 to remove low-quality regions, in addition to adapter sequences. QC
assessment for sequence reads was performed using FastQC (v0.11.9)14 and MultiQC (v1.9).15

For those reads passing the QC cutoff, we used Pangolin COVID-19 lineage assigner (v3.0.5)16 to assign SARS-CoV-2
viral lineages. Phylogenetic analysis was carried out in order to understand the evolution of this virus within the Ugandan
population, including other SARS-CoV-2 genomes fromUganda that had been submitted by the Uganda Virus Research
Institute (UVRI) to the GISAID database by April 22, 2021, and only complete sequences were included, totaling
328 SARS-CoV-2 genomes.

Multiple sequence alignment of 328 Ugandan SARS-CoV-2 genomes and 28 from MakCHS Molecular Diagnostics
Laboratory was performed using the web version of MAFFT v.7.475.17 In each alignment, the SARS-CoV-2 reference
sequence (NCBI Reference Sequence: SARS-CoV-2 isolate Wuhan-Hu-1, complete genome, NC_045512.2) was
included. The alignment from MAFFT was then subjected to snp-sites v2.3.318 to generate a phylip file format, which
was later used to infer a maximum likelihood tree using PhyML v3.3.319 with the tool’s default parameters. The tree
generated by PhyML was stored in a newick file format. The file was then uploaded to the interactive tree of life (iTOL
v4.0)20 - an online tool for phylogenetic tree display and annotation for visualization (Figure 1). We then used snipit
v1.0.321 to zoom into the 28 genomes from MakCHS sequencing lab to visualize their snps in reference to the SARS-
CoV-2 reference genome (Figure 2).

Results
COVID-19 samples
The average age of the study participants was 40 years with an equal ratio ofmales to females. Their nationalities included
21 Ugandans, 3 Eritreans, 2 Indians, 1 Israeli and 1 South Sudanese. After WGS, we successfully generated a total of
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28 out 30 (93%) analyzable SARS-CoV-2 genomes. It was probable that only these archived specimens had adequate
viral RNA for successful genomic sequencing. Targeted SARS-CoV-2 RT-qPCR was positive for N, ORF, and S viral
genes, however two samples did not have detectable Ct values for viral S gene.

Sequencing quality
Both patient demographics and summary characteristics of these genomes are shown in Table 1.We foundmore A strains
of SARS-CoV-2 than B strains. The different quality metrics used included SARS-CoV-2 draft genome length,
GC-content and average depth of coverage. The coverage of all samples was above 30X.

Figure 1. Phylogenetic analysis of 356 SARS-CoV-2 genome isolates (Lineages A and B) from Uganda.

Figure 2. Nucleotide alignment showing variants covering the SARS-CoV-2 sample genome lengths.
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Phylogenetic analysis
Of the virus genomes generated, wewere unable to identify any known SARS-CoV-2 variants of concern or interest from
the sampled specimens when we compared the genomes from specimens collected in September 2020 to February 2021.
Phylogenetic analysis of all the sequenced SARS-CoV-2 genomes by then from Uganda shows genomic relatedness
as seen in Figure 1; however, this observation was of limited value given that there was inadequate epidemiologic
data from the patients from whom these specimens had been collected. There was close genomic relatedness detected
in MAKCHScov28 and cov10 as well as MAKCHScov5 and cov6 that had been collected from different patients on
the same date. MAKCHScov26 and cov16 as well as MAKCHScov25 and cov4 were equally closely linked through
phylogenetic analysis, though collected at least two months apart. Hence, this phylogenetic relatedness is likely to
indicate local transmission events of SARS-CoV-2 in Kampala metropolitan area.

Discussion
Due to the fact that 28/30 of SARS-CoV-2 genomes were successfully sequenced on the MiSeq platform, we have
demonstrated a proof-of-concept project on SARS-CoV-2 WGS using archived clinical nasopharyngeal swab samples
from the IBRH3AU. This study has successfully optimized and validated SARS-CoV-2WGSusing theARTIC amplicon
sequencing protocol. This has enabled us to adopt SARS-CoV-2WGS atMakCHSMolecular Diagnostic Laboratory. As
of June 8, 2021, Uganda had registered 53,961COVID-19 cases andmore than half (~26,000) of the samples are stored at
the IBR3HAU biorepository.

Globally, researchers are being encouraged to sequence and share more genomes of SARS-CoV-2 via the GISAID
platform, and there are currently more than 1.8 million coronavirus genome sequences from 172 countries and territories,
which is a great testament to the hard work of researchers around the world during the COVID-19 global pandemic.22

Ironically, approximately 98%of these genomes have been submitted by high-income countries, underscoring the need to
build a similar capacity in lower-middle-income settings (LIMC).

In this study, we estimated that the cost of WGS per SARS-CoV-2 clinical specimen in our laboratory to be $110
compared to $57.8723 in the United States using a multiplex PCR followed by sequencing on an Illumina MiSeq
apparatus. In the United Arab Emirates, the cost of SARS-CoV-2 full genome sequencing was estimated to be ~$87 per
specimen when sequencing 96 samples in a batch at 400� using the target enrichment method.24 It should be noted that
target enrichment sequencing is still a more cost-effective approach and is scalable in many settings that handle large
volumes of these samples. As of June 8, 2021, GISAID had 1,885,406 hCoV-19 genomic data with only a total of 19,065
submissions being from Africa while on June 1 2021, a total of 4,843,874 COVID-19 cases and 130,814 deaths (CFR:
2.7%) had been reported in 55 African Union (AU) member states representing 3% of all cases reportedly globally.25

However, amajority of the low-quality SARS-CoV-2 genomes submitted in this same online genome database have been
submitted from sequencing facilities in Africa.

As many countries and territories globally continue to find the optimal approach in managing the health-related
consequences of COVID-19, more laboratories in these settings must find the best or affordable protocols to implement
WGSof SARS-CoV-2 to inform public healthmeasures.We performedWGS of 30 samples and specifically successfully
evaluated the performance of ARTIC SARS-CoV-2 sequencing protocol performance in our settings using the Illumina
MiSeq platform. In this study, genomic libraries were generated using RNA samples isolated from either newly prepared
nasopharyngeal swabs in AVL buffer, which is a lysis buffer intended for purifying viral nucleic acids, or previously
collected and frozen nasopharyngeal swabs preserved in AVL buffer. Therefore, the findings of this study offer guidance
on implementing the low-cost ARTIC SARS-CoV-2 genome sequencing protocol to study SARS-CoV-2 genomic
variations in resource limited settings. Many of these settings are currently unable to perform real-time WGS of such
samples either due to absence of sequencing infrastructure, which in some cases has been overcome by establishing
collaborationswith sequencing facilities in other countries and therefore requiring shipment of the samples, unsustainable
supply of sequencing reagents, or lack of trained genomics and bioinformatics personnel.WGS of SARS-CoV-2 remains
vital in elucidating COVID-19 disease26 for the unforeseeable future as researchers globally continue to identify new
SARS-CoV-2 variants of concern and interests such as B.1.1.7 (Alpha), B.1351 (Beta), P.1 (Gamma), B.1.617.2 (Delta)
and B.1.427/B.1.429 (Epsilon), P.2 (Zeta), B.1.525 (B.1.525), P.3 (Theta), B.1.526 (Iota), and B.1.617.1 (Kappa)
respectively.27 WGS allows detection and characterization of these emerging viral variants, generating essential new
information about their genomic, immunologic, virologic, epidemiologic, and clinical characteristics.

Incomplete epidemiological and clinical characteristics as well as lack of COVID-19 disease severity of study
participants are some of the limitations of this study. Also, the small sample size used as well as sequencing of samples
that had been collected fromKampala metropolitan area may not represent the true proportion of identified SARS-CoV-2
lineages and variants in Uganda during the study period.
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We recommend the establishment of more collaborative consortia between researchers, as well between National
Public Health Institutions in LIMCs and developed countries to build low-cost, sustainable, functioning pathogen
genome sequencing facilities to accelerate pathogen discovery and outbreak surveillance usingWGS. Furthermore, these
facilities can equally utilize recently developed multiplex RT-qPCR assays to screen for SARS-CoV-2 variants of
concern or interest and monitor their frequencies. These variant genotyping assays not only complement WGS in such
settings but also offer a cost-effective way to identify which samples can be prioritized forWGS, especially those that are
unidentifiable by routine genotyping tests. Even during the vaccination phase of COVID-19, documenting incidences
and prevalence of these SARS-CoV-2 re-or-emerging variants is key in identifying vaccine escape mutants. This offers
the opportunity for judicious use of WGS for rapid discovery of novel SARS-CoV-2 variants.

Conclusion
In conclusion, our proof-of-concept study shows that ARTIC SARS-CoV-2 sequencing protocol on Illumina MiSeq is
sensitive and accurate at higher SARS-Cov-2 template concentration (e.g., Ct value <25) in the Ugandan settings. We
successfully validated the protocol and evaluated the process in mappability, genome length, GC-content, viral genome
coverage, and variations in SNV calling. The result of our study provides a thorough affirmation of carrying out whole-
genome sequencing for clinical SARS-CoV-2 samples in resource limited settings, thereby providing information to
mitigate the impact of COVID-19 on our society. We have further contributed to SARS-CoV-2 global dataset.
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nlm.nih.gov/nuccore/MZ287348

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov21/2021
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ORF1ab polyprotein (ORF1ab), ORF1a polyprotein (ORF1ab), surface glycoprotein (S), ORF3a protein (ORF3a),
envelope protein (E), membrane glycoprotein (M), ORF6 protei... Accession number:MZ287349 https://www.ncbi.nlm.
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GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov26/2021,
complete genome. Accession number: MZ287354 https://www.ncbi.nlm.nih.gov/nuccore/MZ287354

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov20/2021
ORF1ab polyprotein (ORF1ab), ORF1a polyprotein (ORF1ab), surface glycoprotein (S), ORF3a protein (ORF3a),
envelope protein (E), membrane glycoprotein (M), ORF6 protei... Accession number:MZ287355 https://www.ncbi.nlm.
nih.gov/nuccore/MZ287355

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov13/2020
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envelope protein (E), membrane glycoprotein (M), ORF6 protei... Accession number:MZ287356 https://www.ncbi.nlm.
nih.gov/nuccore/MZ287356
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ORF1ab polyprotein (ORF1ab) and ORF1a polyprotein (ORF1ab) genes, partial cds; and surface glycoprotein (S),
ORF3a protein (ORF3a), envelope protein (E), membrane gly... Accession number: MZ287357 https://www.ncbi.nlm.
nih.gov/nuccore/MZ287357

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov4/2020,
complete genome. Accession number: MZ287358 https://www.ncbi.nlm.nih.gov/nuccore/MZ287358

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov28/2021,
complete genome. Accession number: MZ287359 https://www.ncbi.nlm.nih.gov/nuccore/MZ287359

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov19/2020,
complete genome. Accession number: MZ287360 https://www.ncbi.nlm.nih.gov/nuccore/MZ287360

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov7/2021,
complete genome. Accession number: MZ287361 https://www.ncbi.nlm.nih.gov/nuccore/MZ287361

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov12/2021,
complete genome. Accession number: MZ287362 https://www.ncbi.nlm.nih.gov/nuccore/MZ287362

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov5/2020,
complete genome. Accession number: MZ287363 https://www.ncbi.nlm.nih.gov/nuccore/MZ287363

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov1/2020,
complete genome. Accession number: MZ287364 https://www.ncbi.nlm.nih.gov/nuccore/MZ287364

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov15/2020
ORF1ab polyprotein (ORF1ab), ORF1a polyprotein (ORF1ab), surface glycoprotein (S), ORF3a protein (ORF3a),
envelope protein (E), membrane glycoprotein (M), ORF6 protei... Accession number:MZ287365 https://www.ncbi.nlm.
nih.gov/nuccore/MZ287365

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov3/2020
ORF1ab polyprotein (ORF1ab), ORF1a polyprotein (ORF1ab), surface glycoprotein (S), ORF3a protein (ORF3a),
envelope protein (E), membrane glycoprotein (M), ORF6 protein... Accession number: MZ287366 https://www.ncbi.
nlm.nih.gov/nuccore/MZ287366

GenBank: Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/UGA/MAKCHScov9/2021,
complete genome Accession number: MZ287367 https://www.ncbi.nlm.nih.gov/nuccore/MZ287367
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Mboowa et al. describes the application of the ARTIC protocol for sequencing of SARS-COV-2 
genomes and subsequently analysis in preparation for submission of data to GISAID. 
 
A few minor comments: 
 
1. Abstract, Background 
The context of this work points to the need for more adoption of WGS in Africa and therefore 
increase disease surveillance. One way of ordering the background paragraph could be: Start with 
the last sentence of that paragraph, remove the Wuhan sentence and then follow with the first 
sentence then mention that to date, x % of sars-cov-2 genomes submitted to GISAID were 
contributed from Africa. This data includes low quality viral genomes and a need for improved 
protocols for implementing WGS. 
 
2. Introduction, last paragraph 
Replace UK variant and SA variant sentence with the acceptable nomenclature, "Alpha" and "Beta" 
variants respectively, so that this scientific record in F1000 assists in rectifying the public usage of 
terms. 
 
3. Methods section, study design 
Is it standard protocol to archive SARS-CoV-2 biospecimens in the local biobank (IBRH3AU)? If not 
then it would be good to extend the sentence to add reproducibility for others wanting to do the 
same. 
 
4. Methods, seq and bioinformatics analysis section 
Delete the first sentence that starts "These samples had been...". Edit the next sentence to read, 
"Metadata associated with the randomly selected 30 COVID-19 positive patient samples included 
the data of sample collection..." 

 
Page 13 of 17

F1000Research 2021, 10:598 Last updated: 19 AUG 2021

https://doi.org/10.5256/f1000research.56967.r89860
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0420-2916


 
5. Discussion 
This article is key to accelerating adoption of methods to respond to COVID-19. This focus of the 
paper was to show the success with using the ARTIC protocol. You could add a sentence in the 
results section after the phylogenetic analysis using iTOL to point readers to the option of using 
Nextstrain within the analysis process and the value of richer meta data in this context. 
 
Figures 1 and 2 have a title but no caption/description. 
 
Table 1: could you order the info in this table according to one of the columns? That would make 
reading the table a bit easier - maybe group by lineage? Or order by GC-content? 
 
Any comment on the 45.96 GC-content for MAKCHScov17/2020? Curious why the spike in 
comparison to the other samples.
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Anthony Mukwaya   
Department of Ophthalmology, Institute for Clinical, And Experimental Medicine, Faculty of Health 
Sciences, Linköping University, Linköping, Sweden 

Summary 
The article by Mboowa et al., evaluates the ARTIC protocol for Whole-genome sequencing of SARS-
CoV-2 in Uganda. Authors test the protocol using previously collected qPCR positive COVID-19 
samples, and they found that 93.3% of the samples generated readable genetic sequences. Of 
these samples, about 78% were of the A lineage, and 21% were of the B lineage. Authors show a 
relatedness of the isolates in the current study to other SARS-CoV-2 genomes available in GISAID. 
The study shows the feasibility of conducting the ARTIC protocol in a resource limited setting, thus 
allowing for more SARS-COV-2 WGS in the country. The idea behind the study is interesting, vital, 
and timely, given the role played by WGS in disease epidemiology. The article is properly written, 
the methods are robust, but few minor details need to be clarified. The comments below should 
be taken into consideration as they aim to further improve on the overall quality of the article. 
 
Minor corrections

The following statement needs to be revised for accuracy: "Of the 131 Uganda full SARS-
CoV-2 genomes analyzed in December 2020, 50 (38%)". I suspect authors meant "Of the 131 
full SARS-CoV-2genomes analyzed in Uganda in December 2020…"? 
 

1. 

I suggest a brief introduction of the SARS-CoV2 lineages/nomenclature be included in the 
introduction to guide the reader for example the "Pango lineages". 
 

2. 

In the introduction, authors write "that this situation is very similar to almost all other 
African countries…" however, the "situation" being referred to is not properly 
problematized, thus needs to be explicitly defined in the preceding sentence (i.e. is it an 
issue with low testing rate or low/no sequencing rate or both)? 
 

3. 

A brief introduction of ARTIC including the principle behind it would be good to summaries 
in the introduction, while highlighting the advantages of ARTIC over the currently available 
SARS-CoV-2 genome sequencing platforms. 
 

4. 

Under the subheading study settings, the exact test used for COVID-19 diagnosis should be 
stated in this section as well. Under ethical consideration, please clearly state that "no 
patient information that can be used to identify an individual such as names and personal 
identification number etc. were used in the study". 
 

5. 

Authors should elaborate on the details of the diagnostic protocol used for testing. For 
example, did all the amplification curves for all the three genes have to be below Ct 25 for a 
sample to be declared positive? What if only two genes had Ct values below 25, and the 
other gene above Ct 25, how was a such a sample classified? What would a Ct value of 26 
mean? This being a diagnostic PCR, Interpretation of the diagnostic data should be clarified 
to indicate that many factors were taken into consideration, for example the total number 
of cycles run, and the Ct value range for interpretation, the positive control, and that of the 
internal control etc. 
 

6. 

It is not clear if the samples used for sequencing were amplicons stored from the diagnostic 7. 
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process or if it was aliquots of RNA previously extracted during testing, or separate samples 
were collected from the individual specifically for this study. Please specify this in the 
methods. 
 
Figures 1 and 2 need to be appropriately cited in the results main text. 
 

8. 

In the recommendations, authors should recommend further testing of the ARTIC SARS-
CoV-2 sequencing protocol using a much bigger sample size, different sample types, and 
preservation buffers, to draw more comprehensive conclusions. 
 

9. 

Authors write that "the result of our study provides a thorough affirmation of carrying out 
whole genome sequencing for clinical SARS-CoV-2 samples in resource limited settings, 
thereby providing information to mitigate the impact of COVID-19 on our society". However, 
I think that it is important that the importance of sequencing on disease epidemiology be 
clearly stated as part of the study contribution.

10. 
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