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Abstract In the case of some specific cancers, immunotherapy is one of the possible
treatments that can be considered. Our study is based on a mathematical model of
patient-specific immunotherapy proposed in Kronik et al. (PLoS One 5(12):e15,482,
2010). Thismodelwas validated for clinical trials presented inMichael et al. (ClinCan-
cer Res 11(12):4469–4478, 2005). It consists of seven ordinary differential equations
and its asymptotic dynamics can be described by some t-periodic one-dimensional
dynamical system. In this paper we propose a generalised version of this t-periodic
system and study the dynamics of the proposed model. We show that there are three
possible types of themodel behaviour: the solution either converges to zero, or diverges
to infinity, or it is periodic. Moreover, the periodic solution is unique, and it divides the
phase space into two sub-regions. The general results are applied to the PC specific
case, which allow to derive conditions guaranteeing successful as well as unsuccessful
treatment. The results indicate that a single vaccination is not sufficient to cure the
cancer.
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1 Introduction

Over the last few decades, cancer immunotherapy has become a growing area of active
research, with a wide variety of approaches developed and clinically implemented in
different cancer indications. The rational basis for immunotherapy is the assumption
that cancer evolves to evade the control of the host’s immune system, and that a proper
boost, e.g. by restoration of an impaired function or by countering immunosuppressive
mechanisms employed by the cancer, would allow immune system to regain control
over the disease (de Visser et al. 2006; Hanahan and Weinberg 2011). Thus, the com-
mon denominator of the different modes of cancer immunotherapy is the attempt to
manipulate one or several components of patient’s own immune system that interact
with the disease (in contrast to the chemical or biological therapies that directly target
the cancer or cancer-supporting cells). This adds further levels of complexity to the
system, making understanding and rationalisation of the treatment effects a non-trivial
task.

In order to effectively respond to a developing malignancy, the immune system
has to properly recognise the threat, induce massive production of several types of
immune cells that perform different complementary tasks, create the suitable micro-
environment and successfully deliver the relevant cells and substances to the disease
location. Cancer evades the immune control by acquiring the ability to impede these
processes at one or more stages, e.g., by reducing the efficacy of antigen recognition,
or suppressing the immune response by secreting anti-inflammatory or pro-regulatory
cytokines. Many different ways in which cancer may protect itself from the immune
system have been discovered (Dunn et al. 2002; Schreiber et al. 2011). When these
evasion strategies are understood, the immunotherapy approaches can be designed
in order to overcome them by enhancing the impaired immune processes. The vari-
ety of suggested immune treatments includes therapeutic vaccines, cytokines, and
monoclonal antibodies enhancing tumor-killing mechanisms of the adaptive immune
response (Gulley and Drake 2011; Melero et al. 2014). Each treatment type targets
a specific component of the complicated network of interactions between the immune
system and cancer. Yet, the suggested treatments encounter significant problems when
translated into clinic, eventually showing limited efficacy and low response rate, even
though sporadic cases of remarkable effectiveness are observed in individual patients.
The latter observation raises the possibility that effective design of immune inter-
vention is undermined by our limited understanding of the complicated dynamics of
interactions between the two major players, the immune system and the cancer, and
how it varies from patient to patient (Agur and Vuk Pavlovic’ 2012).

Mathematical analysis is a powerful way to gain understanding of behaviour of
complex systems, in particular, in biology. Indeed, cancer–immune interactions have
been extensively investigated using various mathematical models; see recent reviews
in de Pillis et al. (2014) and Eftimie et al. (2011) and references therein. One popular
approach is to represent the studied system by a set of differential equations, whereas
the time-dependent variables represent the quantities of cells or substances of interest.
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The equations’ structure reflects the understanding of themost important processes and
interactions, whereas the parameters represent the rates or relations that characterise
these processes. Such a model can be then investigated analytically or numerically
(by simulations) in order to determine the spectrum of plausible behaviours and, if
possible, gain insight into optimal design of therapeutic intervention. Hitherto, many
different models have been formulated and studied, most of them emphasising the the-
oretical aspects of the immunotherapy, with limited application to actual experimental
and clinical data. Yet, if the model’s parameters are retrieved from experiments, or
by matching model output versus real clinical data, one can obtain not only a gen-
eral insight into the systems’ dynamics, but rather actually predict the quantitative
response of the disease to the treatment. Further, this allows designing and testing
various alternative treatment strategies that would be most beneficial, on a population
or individual level. Following this line of thought, a model of progression of prostate
cancer (PCa) under vaccination treatment was developed and calibrated in Kronik
et al. (2010), using data published in the literature, as well as individual profiles of
prostate-specific antigen (PSA) in response to vaccination by allogeneic whole-cell
vaccination in a phase 2 clinical study (Michael et al. 2005). The model, comprising
a system of 7 ordinary differential equations (ODEs), was calibrated individually for
each patient, by fitting the individual response data, given as PSA levels measured
before, during and after the treatment. It was able to accurately reproduce individual
PSA dynamics in response to immunotherapy, for most of the patients. In a subsequent
work, it was also demonstrated that individual parameters can be identified at early
stages of the treatment, and thus, the model can be used to predict further dynamics
of response and eventually optimise the individual treatment schedule, given a well-
defined end-point; e.g., stabilisation of PSA levels (Kogan et al. 2012). Thus, such
a model may be relevant to a clinical application of immunotherapy, with a potential
to dramatically change the approach to treatment design. All the above investigation
was carried by numerical simulations, which has the obvious drawback of exhibiting
model behaviour only under the specific sets of parameters values, at which the model
is numerically solved. Here, wewish to expand this investigation by an analytical study
of the asymptotic behaviour of this specific model. This will allow further insight into
its predictive ability, scope and limits of applications, which can be important to further
utilisation of the model, and the above approach as a whole.

This article is built as follows. Section 2 presents a general result concerning asymp-
totic dynamics of one ODE with the right hand-side F(t, x) being t-periodic and
monotonic in x . Section 3 briefly presents and explains the model to be studied.
Section 4 shows that the system dynamics is asymptotically one dimensional and
particularly simple when only one boost of immunotherapy is given. Finally, Sect. 5
presents the analysis for the case of periodic impulsive vaccination. In that case giving
the treatment periodically, we asymptotically obtain a t-periodic right-hand side of
the equation, and the general theorem from Sect. 2 applies.
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2 General theorems

We consider a general Cauchy problem of the form

ẋ = x F(t, x), x(t0) = x0, x0, t0 ≥ 0, (1)

where the function F fulfils the following conditions.

(A1) F is continuous and locally Lipschitz continuous in x for all (t, x) ∈ D = R
2+,

where R+ = [0,+∞).
(A2) For all (t, x) ∈ D equality F(t + 1, x) = F(t, x) holds, that is F is t-periodic.
(A3) F is increasing in x , that is for any t ≥ 0 and x > y ≥ 0 inequality F(t, x) >

F(t, y) holds.
(A4) F is uniformly bounded in D .

Remark 1 Notice that due to t-periodicity of F it is enough to consider initial time
t0 ∈ [0, 1). Moreover, Assumptions (A1)–(A4) imply that unique solutions of Eq. (1)
exist globally in time (that is for every t ≥ 0) independently of t0 ∈ [0, 1) and x0 ≥ 0.
Hence, for x0 > 0 there is x(t) > 0 for any t ≥ 0.

Theorem 1 Let F fulfil (A1)–(A4) and

FA =
1∫

0

F(s, 0) ds > 0.

Then any solution of Eq. (1) with x0 > 0 tends to +∞ as t → +∞.

Proof Let t ∈ [0, 1) and n ∈ N be arbitrary. Integrating Eq. (1) on the interval
[t + n, t + n + 1] we obtain

ln
x(t + n + 1)

x(t + n)
=

t+n+1∫

t+n

F(s, x(s))ds,

and therefore monotonicity of F in x implies

x(t + n + 1) = x(t + n) exp

⎛
⎝

t+n+1∫

t+n

F(s, x(s))ds

⎞
⎠

> x(t + n) exp

⎛
⎝

t+n+1∫

t+n

F(s, 0)ds

⎞
⎠ = x(t + n)eFA .

Under the assumption FA > 0 the sequence (x(t + n))n∈N satisfies the inequality
x(t + n + 1) > qx(t + n) with q = eFA > 1. As t ∈ [0, 1) is arbitrary, this yields
x(t) → +∞ as t → +∞. ��
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1 2
Fig. 1 Illustration of the behaviour of solutions of Eq. (1)

Theorem 2 Let F fulfil (A1)–(A4) and

FA =
1∫

0

F(s, 0) ds < 0.

Moreover, assume that

F(t, x) → f (t) > 0 uniformly as x → +∞.

Then there exists a curve γ : [0, 1) → (0,+∞) such that

– if x0 < γ (t0), then solutions of Eq. (1) converge to zero;
– if x0 > γ (t0), then solutions of Eq. (1) diverge to +∞;
– if x0 = γ (t0), then x(t0 +1) = γ (t0) and the curve γ prolonged in a periodic way
on [1,+∞) is a periodic solution of Eq. (1).

Proof According to Remark 1 solutions of Eq. (1) are unique, and thus trajectories
cannot cross each other. We show that the behaviour of the solution is thus determined
by the inequality between values at t = t0 and t = t0 + 1, cf. Fig. 1 for t0 = 0.

If x0 = x(t0) < x(t0 + 1) = x1, then this inequality is preserved for any t ≥ 0.
Clearly, considering the trajectory x(t) for initial data (t0, x0) it lies below the trajectory
x̃(t) for initial data (t0, x1), as solutions are unique. However, x̃(t) on [t0, t0 + 1] is
a shift of x(t) from [t0 +1, t0 +2] due to t-periodicity of the vector-field F . Similarly,
if x(t0) > x(t0 + 1), then x(t) > x(t + 1) for any t ≥ 0.

Consider the case x(t0) < x(t0 + 1). Due to Assumption (A3) we have

t0+n∫

t0+n−1

F(s, x(s))ds >

t0+1∫

t0

F(s, x(s))ds
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for any n > 1. Notice, that f A(x) = ∫ t0+1
t0

F(t, x)dt is a continuous, increasing func-
tion of x . Moreover f A(0) = FA < 0 and f A(∞) > 0 according to the assumptions.
Therefore, there exists x̄ > 0 such that f A(x) < 0 for x < x̄ , and f A(x) > 0 for
x > x̄ . Therefore, for x0 ≥ x̄ we have

δ(t0) =
t0+1∫

t0

F(s, x(s))ds >

t0+1∫

t0

F(s, x0)ds ≥ 0,

which yields

x(t0 + n) ≥ x0e
δ(t0)n → +∞

for any t0 ∈ [0, 1).
For the case x̄ > x(t0) > x(t0 + 1) analogous arguments leads to the following

conclusion

x(t0 + n) ≤ x0 exp

⎛
⎝n

t0+1∫

t0

F(s, x(s))ds

⎞
⎠

< x0 exp

⎛
⎝n

t0+1∫

t0

F(s, x0)ds

⎞
⎠ = x0e

nδ(t0) → 0

for any t0 ∈ [0, 1), as δ(t0) < 0 in this case.
It remains to prove that a periodic solution exists. We show that if x0 is small

enough, then x(t) → 0, while if x0 is large enough, then the solution diverges to +∞.
The continuous dependance of solutions on initial data would complete the proof.

To this end, first we give some estimates of the solutions. Due to (A4) there exists
r > 0 such that |F(t, x)| < r for all (t, x) ∈ D . Thus, for any t ∈ [t0, t0 +1)we have

x(t) = x0 exp

⎛
⎝

t∫

t0

F(s, x(s))ds

⎞
⎠ ≤ x0e

r

and,

x(t) ≥ x0 exp

⎛
⎝

t∫

t0

F(s, 0)ds

⎞
⎠ ≥ x0e

−r .

Now, consider x0 sufficiently small. Then

x(t0 + 1) = x0 exp

⎛
⎝

t0+1∫

t0

F(s, x(s))ds

⎞
⎠ ≤ x0 exp

⎛
⎝

t0+1∫

t0

F(s, x0e
r )ds

⎞
⎠ .
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Let x̄ be as before, that is f A (x) < 0 for all 0 ≤ x < x̄ . For x0 ≤ x̄e−r we have

exp

⎛
⎝

t0+1∫

t0

F(s, x(s))ds

⎞
⎠ < exp

⎛
⎝

t0+1∫

t0

F(s, x̄)ds

⎞
⎠ < 1,

and therefore x(t0 + 1) < x(t0).
Similarly, we can show that for x0 sufficiently large x(t0 + 1) > x(t0). Clearly,

x(t0 + 1) > x0 exp

⎛
⎝

t0+1∫

t0

F(s, x0e
−r )ds

⎞
⎠ .

As f (t) = limx→∞ F(t, x) > 0 and due to continuity and t-periodicity of F the
function f is continuous periodic and thus there exists ε > 0 such that f (t) > ε.
The uniform convergence of F(t, ·) to f (t) implies that there exists x̃ such that for all
x ≥ x̃ the inequality F(t, x) > ε/2 holds. Thus, for x0 > x̃ we have

ẋ ≥ ε

2
x 	⇒ x(t0 + 1) ≥ x0e

εt/2 > x(t0).

Now, continuous dependance and uniqueness of solutions of Eq. (1) finishes the
proof.

Remark 2 Notice, that if F(t, x) is independent of t , that is F(t, x) = G(x) for some
locally Lipschitz continuous function G, then

1. either there exists x̃ > 0 such that G(x̃) = 0, and then x(t) → 0 for 0 < x0 < x̃ ,
while for x0 > x̃ we have x(t) → +∞ as t → +∞;

2. or G(x) > 0 for x > 0, and then x(t) → +∞ for any x0 > 0.

In the next sectionweuse our results to analyse the PC immunotherapymodel proposed
in Kronik et al. (2010).

3 A model for PCa immunotherapy

In this section we present and briefly explain the model for vaccination treatment of
PCa which was proposed in Kronik et al. (2010). This model describes interactions
among the tumour antigen, either endogenous (Vp) or injected as a vaccine extracted
from cell lines (V ), several types of immune cells and prostate cancer cells, P . The
injected vaccine is assumed to be taken up by the naive dendritic cells. It is injected into
the dermis where it stimulates maturation of dendritic cells (we assume that there is
a large pool of immature dendritic cells) into mature antigen-presenting cells (Dm) at
the rate ki ; cf. Banchereau and Palucka (2005) and Banchereau and Steinman (1998).
Each dendritic cell takes up an amount of vaccine, nV , during maturation. The mature
antigen-presenting dendritic cells migrate from skin into lymph nodes at the rate km
with the probability αl to join the pool of functional antigen-presenting dendritic cells
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(DC ). The functional dendritic cells become exhausted (Kajino et al. 2007) and turn
into regulatory dendritic cells (DR) (Langenkamp et al. 2000) at the rate kC R, and
the latter die with rate μD . Moreover, functional antigen-presenting dendritic cells
recruit and activate tumor-specific cytotoxic T lymphocytes (CTLs;C) (Janeway et al.
2005) that can kill tumor cells, at the rate aC . In parallel, regulatory dendritic cells
recruit regulatory lymphocytes, known as Tregs (R) (Hollenbaugh and Dutton 2006),
at the rate aR . The Tregs inactivate CTLs (George et al. 2003) with rate proportional
to both cell type concentrations, with the coefficient kC R. Both types of lymphocytes,
CTLs and Tregs, are also dying with rates μC and μR , respectively. The existence of
regulatory cells cannot be ignored as increased number of regulatory CD4+CD25high
T cells were detected in the blood and tumour tissue of early stage PCa patients (Miller
et al. 2006). Finally, the tumour cells, P , are assumed to grow exponentially with rate
g in absence of CTLs, while the latter kill the tumour cells with rate proportional
to both populations, with coefficient aP and additional factor that decrease tumour
killing efficacy with increasing tumor burden (cf. Kronik et al. 2008; Kogan et al.
2010; Piotrowska et al. 2013 for additional information about this saturation). All the
variables related to the specific cell populations, reflect amounts of the corresponding
cells at time t . The above-described cascade of immune reactions that eventually leads
to the suppression of cancer cells, is represented by the following system of ordinary
differential equations

V̇ = −klnV V,

Ḋm = kl(V + Vp) − kmDm,

ḊC = αl kmDm − kCRDC ,

ḊR = kCRDC − μDDR,

Ṙ = aRDR − μR R,

Ċ = aC DC − μCC − kRCR,

Ṗ = gP − aP
h pCP

hP + P
,

(2)

with an initial condition reflecting one boost of V0 to the system without immunity,
that is (V0, 0, 0, 0, 0, 0, P0), V0, P0 > 0. Later, we study addition of multiple boosts,
which can be represented by adding appropriate δ-functions (i.e. Vi · δ(t − ti ) for
each boost Vi at time ti ) to the first equation in (2). For the comparison with previous
analysis, note, that in Kogan et al. (2012) and Kronik et al. (2010) it was assumed
that Vp = 0, i.e. the endogenous immune response induced by tumour antigens is
either fully suppressed, or negligible. In this case, without treatment, asymptotically,
the tumour always will growwithout limit, while other system components will stay at
zero. All other parameters were estimated (averages and biologically plausible ranges)
in Kronik et al. (2010).

For facilitation of our analysis, we non-dimensionalise this system, in order to
reduce the number of parameters. New parameter values can be easily computed from
the formulae below and the estimations reported in Kronik et al. (2010). We define
the following variables and parameters:
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dm = Dm

kl
, dc = DC

αl klkm
, dr = DR

αl klkmkCR
, r = R

αl klkmkCRaR
, c= C

αl klkmaC
,

p = P

hp
, k = αl klkmkCRaRkR, kv = klnV , a = aPaCαkkmkl .

These substitutions transform the system into the following form:

V̇ = −kvV,

ḋm = V + Vp − kmdm,

ḋc = dm − kCRdc,

ḋr = dc − μDdr ,

ṙ = dr − μRr,

ċ = dc − μCc − kcr,

ṗ = gp − a
cp

1 + p
.

(3)

The non-dimensional formulation reduces the number of parameters from 14 to 9,
without changing the qualitative dynamics. In fact, the original variables values are
simple linear functions of those in (3), and can be easily recomputed, once the para-
meters are given. In the following, we study the behaviour of system (3).

4 Dynamics of Eqs. (3) after one boost

Studying the dynamics of Eqs. (3) we can integrate subsequent equations one by one
obtaining

V (t) = V0e
−kv t 	⇒ V (t) → 0 as t → ∞.

Therefore,

ḋm = V0e
−kv t + Vp − kmdm

implying

dm = Vp

km
(1 − e−kmt ) + V0

km − kv

(e−kv t − e−kmt ),

as km �= kv for the parameter values estimated in Kronik et al. (2010). Therefore,
dm → Vp

km
, and moreover if Vp = 0, then dm → 0 exponentially.

Next, we can also obtain an explicit formula for dc, and now as kCR = km in the
original parameter estimation, we have not only exponential functions, but also com-
binations of exponential functions with a linear term t . However, the full expression
for dc is not important for the asymptotic behaviour of the solutions. The first five
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equations of (3) form a linear subsystem, and it is easily seen that dc → Vp
kmkCR

and

again dc → 0 for Vp = 0, and the convergence is of the order te−kCRt .
Similarly,

dr → Vp

kmkCRμD
	⇒ dr → 0for Vp = 0,

r → Vp

kmkCRμDμR
	⇒ r → 0forVp = 0,

c → μDμRVp

kCRkmμCμRμD + kVp
=: c∞ 	⇒ c → 0for Vp = 0.

Eventually, for every ε > 0 there exists t̄ > 0 such that

p

(
g − ac∞

1 + p
− ε

)
≤ ṗ ≤ p

(
g − ac∞

1 + p
+ ε

)
. (4)

Let us consider one-dimensional dynamical system governed by

ẋ = x

(
g̃ − ac∞

1 + x

)
, (5)

where g̃ = g + ε or g̃ = g − ε. According to Remark 2, the dynamics of Eq. (5)
depends on the magnitude of c∞. Clearly,

– If c∞ is small, such that Eq. (5) has no positive equilibrium, then x → ∞.
– If c∞ is sufficiently large, then there exists a positive equilibrium x̄ = ac∞

g̃ − 1 of
Eq. (5) and for 0 < x0 < x̄ the solution tends to 0, while for x0 > x̄ the solution
tends to ∞.

As ε is arbitrary, to have a positive equilibrium p̄ one needs

p̄ = ac∞
g

− 1 > 0 ⇐⇒ c∞ >
g

a
.

This condition is equivalent to

μDμRVp

kCRkmμCμRμD + kVp
>

g

a
,

that is

VP (aμDμR − gk) > gkmμCμDμRkCR .

Corollary 1 To achieve a cure of the disease one needs

g <
a μDμR

k
:= gmax and VP >

gkmμCμDμRkCR

k(gmax − g)
.
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Corollary 1 means that to achieve the cure after one boost the tumour cannot be
highly reproductive and moreover natural influx VP of mature dendritic cells must be
sufficiently large.

It is obvious that in this case,

– if p ∈ (0, p̄), then p → 0;
– if p > p̄, then ṗ > 0 and p → ∞.

Moreover, if c∞ <
g
a , then there is no positive equilibrium and p also tends to ∞.

Notice, that if Vp = 0 we have c∞ = 0, and therefore for any positive initial data
p(0) = p0 we have p(t) → ∞.

Corollary 2 For parameter values estimated in Kronik et al. (2010) the cure cannot
be achieved after one boost.

5 Impulsive vaccination

Following Corollary 2, when Vp = 0 (or when it is very small) we need to apply more
vaccination boosts in order to reduce tumour load. In the following we assume Vp = 0
and consider the sequence of boosts of the samemagnitude,V0, given each time interval
Δt , starting at t = 0. We obtain impulsive equation for V which can be easily solved
on intervals of the form [nΔt, (n + 1)Δt], n ∈ N. Clearly, for t ∈ (nΔt, (n + 1)Δt)
we obtain

V (t) = V0
1 − e−(n+1)kvΔt

1 − e−kvΔt
e−kv(t−nΔt),

with

V (nΔt)+ = V0(1 + e−kvΔt + · · · + e−nkvΔt ),

where V (nΔt)+ is the level of vaccine just after (n + 1)th boost, as the first boost
is given at t = 0. It is obvious that V tends to a periodic function as t → ∞. More
precisely,

V (t) → V0
e
−kvΔt

(
t

Δt −
[

t
Δt

])

1 − e−kvΔt
=: V∞(t), (6)

where s − [s] is the fractional part of s = t
Δt . We see that V (t) < V∞(t) for every

t > 0.
Then the asymptotic dynamics of Dm is governed by

ḋm(t) = V (t) − kmdm,

and as V is periodic, in the limit we also obtain a periodic expression for dm :

d∞
m (t) = V0

(1 − e−kv )(1 − e−km )

(1 − e−km )e−kv(t−[t]) − (1 − e−kv )e−km (t−[t])

km − kv

,
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where we assume Δt = 1, for simplicity (one can always choose appropriate time
units and scale all the parameters and variables accordingly).

Similarly, we can show that the functions dc(t), dr (t), r(t) and c(t) are asymptoti-
cally periodic with the period equal to 1. Clearly, asymptotic equation for any of these
variables can be expressed in the following way

ẋ = F(t) − G(t)x, x(0) = 0, (7)

where F and G are periodic with the period 1, G(t) > 0 (in fact, for all the variables
except c the function G is constant, G(t) = kCR , or G(t) = μD , or G(t) = μR for
dc(t), dr (t), r(t), respectively).

Lemma 1 For any solution x(t) of Eq. (7) there exists a periodic function x∗ with
period 1 such that |x(t) − x∗(t)| → 0 as t → ∞.

Proof The solution of Eq. (7) reads

x(t) =
t∫

0

F(s)e
−

t∫
s
G(u)du

ds. (8)

For t = n ∈ N Eq. (8) has the form

x(n) =
n∫

0

F(s)e
−

n∫
s
G(u)du

ds =
n∑

k=1

e
−

n∫
k
G(u)du

k∫

k−1

F(s)e
−

k∫
s
G(u)du

ds.

Due to periodicity of G we have

n∫

k

G(u)du = (n − k)

1∫

0

G(u)du = (n − k)GA,

where GA = ∫ 1
0 G(u)du is the mean value of G, while due to periodicity of G and F

we obtain

k∫

k−1

F(s)e− ∫ k
s G(u)duds =

1∫

0

F(s)e
−

1∫
s
G(u)du

ds =: K .

Therefore,

x(n) = K (1 + e−GA + e−2GA + · · · + e−(n−1)GA) = 1 − e−nGA

1 − e−GA
K
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yielding

x(n) → K

1 − e−GA
.

Next, let us take t ∈ (0, 1) and calculate

x(n + t) =
n+t∫

0

F(s)e− ∫ n+t
s G(u)duds = e− ∫ t

0 G(u)du

n∫

0

F(s)e− ∫ n
s G(u)duds

+
n+t∫

n

F(s)e− ∫ n+t
s G(u)duds

= x(n)e− ∫ t
0 G(u)du +

t∫

0

F(s)e− ∫ t
s G(u)duds.

This proves that x(t) converges to the periodic function

x∗(t) = K

1 − e−GA
e− ∫ t−[t]

0 G(u)du +
t−[t]∫

0

F(s)e− ∫ t−[t]
s G(u)duds.

��
Now, we need to study

ẋ = x

(
g − H(t)

1 + x

)
, x(t0) = x0, (9)

where x = p and H(t) = ac(t) is smooth and periodic.We can show that the dynamics
of Eq. (9) depends on an average of H . Let us define HA = ∫ 1

0 H(s)ds.

Theorem 3 If g > HA, then x(t) → ∞, as t → +∞, for any t0, and x0 > 0. If
g < HA, then for any t0 ∈ [0, 1) there exists x∗(t0) > 0 such that

– for 0 < x0 < x∗(t0) the solution x(t) → 0 as t → ∞;
– for x0 > x∗(t0) the solution x(t) → ∞ as t → ∞;
– for x0 = x∗(t0) the solution is periodic.

Proof It is a simple corollary from Theorems 1 and 2.

5.1 Conditions for cure and unsuccessful treatment

Now, we come back to Eq. (6), and consider together the magnitude of one boost V0
with the frequency of vaccine application. For every ε > 0 there exists t̄ such that for
any t > t̄ we have
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V ∈
[
V0

e−kvΔt

1 − e−kvΔt
− ε, V0

1

1 − e−kvΔt

]
=: [Vm, VM ].

Then, for sufficiently large t we obtain the following inequalities:

dm ∈
[
Vm
km

,
VM

km

]
=:

[
dmm , dM

m

]
, dc ∈

[
dmm
kCR

,
dM
m

kCR

]
=: [dmc , dM

c ],

dr ∈
[
dmc
μD

,
dM
c

μD

]
=:

[
dmr , dM

r

]
, r ∈

[
dmr
μR

,
dM
r

μR

]
=: [rm, rM ].

Hence, for sufficiently large t ,

ċ ≥ dmc − (μC + krM ) c 	⇒ c ≥ dmc
μC + krM

=: cm

and

ċ ≤ dM
c − (μC + krm) c 	⇒ c ≤ dM

c

μC + krm
=: cM

Eventually, p is governed by

gp − acM p

1 + p
≤ ṗ ≤ gp − acm p

1 + p
,

and therefore if cm >
g
a and p < p̄min := acm

g − 1, then p → 0 yielding the cure of
the disease.

As ε is arbitrary, we can take a limit ε → 0 and calculating cmin we obtain

cmin = μRμDVmin

kmμRμDμCkCR + kVmax
.

Using the formula above we can approximate the value V0 which is sufficient to cure
the disease for the fixed interval Δt , that is

μRμD
V0e−kvΔt

1−e−kvΔt

kmμRμDμCkCR + kV0
1−e−kvΔt

>
g

a

implying

V0
1 − e−kvΔt

(aμRμDe
−kvΔt − kg) > gkmkCRμCμRμD.

This means that g < gmax is the necessary condition to obtain the cure independently
of the type of treatment (one or more boosts).
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Corollary 3 If

g < gmax e
−kvΔt ,

then

V0 >
gkmkCRμCμRμD(1 − e−kvΔt )

k(gmax e−kvΔt − g)

is sufficient to cure the disease for p0 < p̄min = acmin
g − 1.

On the other hand, if p0 > p̄max = acmax
g − 1 or cmax <

g
a , then p(t) → ∞ as

t → ∞.

At the end we should notice, that the result of Theorem 3 can be used for better
approximation of the conditions for cure, but then the average value of c has to be
calculated explicitly, which is possible but tedious task.

6 Conclusion

Themodel proposed inKronik et al. (2010) and analysed in the present work, describes
the interaction between advanced PCa and immune system under vaccination treat-
ment. The immune response is governed by a one-way signalling cascade starting
from the tumour-specific antigen, which can be endogenous (represented by Vp) or
externally administered (represented by V ). The signal proceeds through antigen-
presenting cells to the activation of cytotoxic effector cells (c). In parallel a built-in
delayed negative feedback (carried out by r ) inhibits results from the same stimulation,
and inhibits the immune attack on the cancer. Without treatment, this system stabilises
at certain level of effector cells (c = c∞), which contributes to the reduction of the
tumour load. Corollary 1 gives the condition for a possibility of tumour control. In
brief, these conditions demand that the pro-inflammatory arm of the system will be
stronger than pro-regulatory arm and also be strong in comparison to the growth rate
of the tumour. When this is the case, the outcome depends on the tumour load at the
beginning of the process: if it is higher than a threshold p̄, computed in Sect. 4, the
disease will progress, while if it is lower than p̄, disease will be eliminated.

One boost of vaccination has a transient effect on the system. A signal is sent from
V to c, as described above, but eventually it wanes off, due to elimination in all the
cell populations along the chain of reaction. Therefore, c temporarily increases above
it’s steady level, c∞, but eventually goes back down to that level. It is reasonable to
assume that at the beginning of the treatment the disease was not under control (i.e.,
p > p̄, (otherwise the treatment would not be needed). Then, if the conditions of
Corollary 1 hold, the boost V0 should be high enough, so that the transient increase in
c will reduce the tumour load p below the threshold p̄. If this happens, the immune
systemmay restore the control and eliminate the diseasewithout additional treatments.
If on the other hand, such substantial boost is unfeasible, or the parameters make it
is impossible (violating assumptions of Corollary 1), a single vaccination cannot be
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effective against cancer. In particular this applies when, as assumed in Kogan et al.
(2012) and Kronik et al. (2010), Vp is zero or negligible.

In the latter case of ineffective endogenous antigen response, the hope is that peri-
odic treatment may help. Indeed, as shown in Sect. 5, when the vaccination is applied
periodically, the signal sent to the effector cells reaches higher levels, and can be
practically evaluated to be higher than some minimal level c > cmin > c∞. Thus,
in principle a prolonged may generate an on-going immune reaction at levels higher
than endogenous. As shown by Corollary 3, there is a possibility for elimination of
tumour of any initial size, given that the treatment frequency (Δt) and doses (V0) can
be controlled. Importantly, using this Corollary, or, if needed, more explicit numerical
calculations, the minimal requirements of treatment intensity parameters (i.e., Δt and
V0) can be computed, given the values of the model parameters. This opens the path
for optimisation of the immune treatment regimens, both on population and individual
levels. We hope that our analysis will facilitate and motivate further advancement of
mathematical and computational methods in the field of oncoimmunotherapy.
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