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Abstract

Viral proteins localize within subcellular compartments to subvert host machinery and pro-

mote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human

proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified

viral proteins at specific intracellular locations, such as association of accessary proteins

with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signal-

ing, ER-Golgi transport, and protein translation. It identified viral protein adjacency to spe-

cific host proteins whose regulatory variants are linked to COVID-19 severity, including the

TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M pro-

tein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host

protein translation whereas ORF6 localization with MAVS was associated with inhibited

RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified can-

didate host targets for the NSP5 protease, with specific functional cleavage sequences in

host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to

viral proteins in living human cells and nominates pathogenic mechanisms employed by

SARS-CoV-2.

Author summary

SARS-CoV-2 is the latest pathogenic coronavirus to emerge as a public health threat. We

create a database of proximal host proteins to 17 SARS-CoV-2 viral proteins. We validate

that NSP1 is proximal to the EIF3 translation initiation complex and is a potent inhibitor

of translation. We also identify ORF6 antagonism of RNA-mediate innate immune
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signaling. We produce a database of potential host targets of the viral protease NSP5, and

create a fluorescence-based assay to screen cleavage of peptide sequences. We believe that

this data will be useful for identifying roles for many of the uncharacterized SARS-CoV-2

proteins and provide insights into the pathogenicity of new or emerging coronaviruses.

Introduction

Coronaviruses comprise a diverse family of large positive-sense single stranded (+ss)RNA

enveloped viruses that cause respiratory and gastrointestinal disease. In addition to common

seasonal coronaviruses, a number of strains can cause severe disease, as seen in the Severe

Acute Respiratory Syndrome Coronavirus (SARS-CoV) virus outbreak in 2003 [1], the Middle

East Respiratory Syndrome Coronavirus (MERS-CoV) virus outbreak in 2012 [2] and the

2019 outbreak of SARS-CoV-2 [3]. This viral family has large (26 to 32kb) genomes that

encode tens of viral proteins. All coronaviruses have a similar organization consisting of a

large open reading frame (ORF1) encoding two overlapping polyproteins, pp1A and pp1AB.

These polyproteins are cleaved by one of two viral proteases, nonstructural protein 3 (NSP3)

and NSP5, with the resulting protein products sequentially numbered NSP1-NSPX. ORF1AB

is invariably followed by genes encoding the structural proteins, including the Spike protein

(S), Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N). SARS-CoV-

2 encodes NSP1-16 as well as the accessory proteins ORF3a, ORF3b, ORF6, ORF7a, ORF7b,

ORF8, ORF9b, ORF9c, ORF10, and ORF14, though it is not known if each open reading

frame encodes for a functional protein product. The function of many SARS-CoV-2 accessory

proteins is either unknown or highly variable across differing coronaviruses, underscoring the

need to begin mapping their putative localizations and functions.

Proximity proteomics (BioID) uses enzymes, such as the modified bacterial biotin ligase,

BirA, to biotinylate nearby proteins on lysine residue-containing proteins within a radius of

10-20nm [4]. When fused to a protein of interest it labels not only proteins that directly bind

the fused protein but also those adjacent to it, enabling rapid isolation of biotinylated proteins

whose identity can provide clues about the localization and function of the protein studied.

When coupled to mass spectrometry it provides an alternative to traditional tandem affinity

purification and mass spectrometry (TAP-MS) [5]. Whereas, TAP-MS can isolate protein

complexes that stably bind the protein of interest in a manner robust enough to survive protein

extraction, BioID-MS labels both transient and stable interactors in living cells, particularly

those stabilized by cellular membranes that can be destroyed in traditional TAP-MS experi-

ments. In this way, BioID may localize the cellular “neighborhoods” of a given fusion protein.

We recently generated a biotin ligase derived from Bacillus subtilis, which has 50 times greater

activity than the original E. coli BirA [4,6], allowing decreased labeling times and increased sig-

nal-to-noise ratios. Applying proximity proteomics to SARS-CoV-2 viral proteins in human

cells may facilitate insight into their localization and putative functions.

The actions of specific SARS-CoV-2-encoded proteins are only partially understood at

present. The replication transcription complex, which includes the RNA-dependent RNA

polymerase and other factors, and the N protein, which are necessary for protecting the newly

synthesized genomes and assembling the viral particles, comprise the core viral replication

machinery. Other viral gene products, generally termed accessory factors, are believed to be

dedicated to manipulating the host environment to foster viral replication [7]. One of the

main functions of accessory factors is to block host antiviral response [8] though many viral

proteins are multifunctional and structural proteins can also affect host signaling pathways [9].
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Other coronaviruses have also been shown to block host translation [10,11], inhibit interferon

signaling [12, 13], antagonize viral RNA sensing [14,15], and degrade host mRNAs [16]. The

degree of homology between SARS-CoV-2 and other coronaviruses, suggests the existence of

both shared and divergent host protein interactions between its viral proteins and those of the

other members of the coronavirus family.

Here we used proximity proteomics to identify the human proteins vicinal to 17 major

SARS-CoV-2 proteins and, from that data and validation studies, to predict their likely loca-

tion and function. We examined the intersection of the resulting atlas of human factors adja-

cent to SARS-CoV-2 viral proteins with risk loci associated with severe COVID-19 by genome

wide association studies (GWAS). This nominated specific, viral protein-adjacent host candi-

dates whose natural variation in expression may contribute to differences in COVID-19 sus-

ceptibility in the population. We also demonstrated that multiple SARS-CoV-2 products can

affect host translation and host innate immune signaling and define a list of potential host tar-

gets and pathways for the NPS5 protease. Taken together, these resource data plot the location

of the 17 major SARS-CoV-2 within the cell, define an atlas of human host proteins adjacent

to them, and offer insight into potential pathogenic mechanisms engaged by SARS-CoV-2.

Results

Host proteins proximal to viral proteins and their subcellular localization

To identify the human host proteins vicinal to the 17 major SARS-CoV-2 encoded viral pro-

teins, HA epitope tagged fusions of BASU-BirA [6] were generated with each of these 17 viral

ORFs (Fig 1A). BASU was introduced at the N and C terminus to minimize disruption as pre-

viously described [17]. Samples were prepared from plasmid-transfected 293T cells after 2

hours of biotin labeling and the biotinylated proteins were then isolated using streptavidin.

Samples were divided for LC-MS/MS and immunoblotting (S1 Fig). MS data search was per-

formed and protein lists were analyzed and scored using the Significance Analysis of Interac-

tome (SAINT) method [18]. Using a cutoff of a SAINT score of 0.9 generated a list of 2421

host proteins compromising 1119 different host proteins. (Figs 1B and S2, and S1 Table)

across the 17 viral proteins studied, 513 of which were unique to a specific viral protein. These

data comprise a compendium of candidate human proteins adjacent to SARS-CoV-2-encoded

proteins.

The identity of these 1119 human proteins provided clues to SARS-CoV-2 biology. Gene

ontology (GO) term analysis (Fig 1B, 1C, and 1D and S2 Table) identified processes associ-

ated with SARS-CoV-2 viral protein impacts. This included translation initiation, RNA bind-

ing, the 26S proteasome, signaling, and SNARE-associated intracellular transport. It also

identified adjacencies to major histocompatibility (MHC) proteins and components of the

nuclear pore complex (NPC). A number of these processes, such as protein translation, are

known processes affected by coronaviruses, while others, such as RNA-binding, are less well

characterized.

To begin to map putative localizations for the 17 studied SARS-CoV-2 proteins within the

cell, cellular component GO-term enrichment analysis was performed (Fig 2A), which pointed

to possible intracellular localizations for each viral protein based on curated knowledge of the

host proteins identified adjacent to each viral protein. To validate and extend this, protein frac-

tions were prepared from cells expressing each SARS-CoV-2 protein studied. These included

four overlapping fractions: a) cytoplasm b) cytoplasm/membrane c) nucleus/membrane, and

d) nucleus (Fig 2B). Integrating GO-term analysis with immunoblotting of these fractions

enabled predictions of the likely intracellular localization of each viral protein (Fig 2C and

2D). Many SARS-CoV-2 accessory proteins concentrate in the ER or in ER-proximal
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Fig 1. Proximal Interactome of 17 SARS-CoV-2 proteins. A) Schematic of BioID workflow. B) Curated network of SARS-CoV2 virus-

host protein associations (SAINT� 0.9) obtained from BASU BioID. Coronavirus proteins are labeled in light blue and virus-host

interactions are connected by red edges, while host-host protein interactions obtained from high confidence STRING interactions are

labeled in grey. Highlighted node clusters of similar function, including 26S proteasome components (black), MHC Class I (red),

nuclear pore (dark blue), RNA-binding (maroon), SNARE complex (purple), translation initiation complex (green) proteins were

selected based on GO term analysis. C) Selected biological process GO term enrichment; enrichment scores are given as -Log10 p-values.

Selected GO terms are nuclear pore organization, translational initiation, endosomal transport, and RNA splicing. D) Heatmap of

molecular function GO term enrichment of SARS-CoV-2 proteins. All presented GO terms have a -Log10 p-value>3 for the

Nucleoprotein, the listed non-structural proteins, or the listed open reading frames or a -Log10 p-Value>5 for the M membrane

protein.

https://doi.org/10.1371/journal.ppat.1009412.g001
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membranes (M, ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, and ORF10). A number, how-

ever, appear to be predominantly cytoplasmic (NSP1, NSP2, NSP5, NSP15, ORF9b) and, inter-

estingly, several appear to localize in part to the nucleus or nuclear membrane (NSP9, NSP14,

ORF6, ORF9c). The localization predicted from these data is consistent with observations

from other recent work [17,19]. Of the membrane localized proteins, subtle differences in loca-

tion could be inferred. In the case of M protein, association with membranes in the endocytic

pathway as well as lysosomal membranes was predicted. ORF8 and ORF10 clustered similarly

with enrichment for ER interactions in the lumen.

Additionally, we sought to confirm the location of select viral proteins during infection.

This would allow us to both assess if localization matched in conditions where all viral proteins

are expressed and at normal levels, and also to rule out that localization is not different during

transient overexpression of our BASU-tagged constructs. Specifically, A549 cells expressing

the SARS-CoV-2 receptor, ACE2, were infected with SARS-CoV-2 at an MOI of 0.1, fixed

with 4% paraformaldehyde, and stained with antibodies [20] against SARS-CoV-2 proteins

(NSP1, NSP14, ORF6) along with host proteins identified from the BIOID (EIF3A, Rae1,

Nup98, MCM3AP) and Hoescht for nuclear staining (Fig 3). NSP1 displayed punctate cyto-

plasmic (Fig 3A), while NSP14 stained both perinuclear and nuclear (Fig 3B), and ORF6

stained mostly perinuclear (Fig 3C). The staining patterns of infected cells largely mirrored

that which was observed from the BIOID and fractionation studies. These data indicate that

specific SARS-CoV-2 may display increased localization to a variety of intracellular sites,

including the cytoplasm, nucleus and distinct endomembranes.

As there exists an orthogonal proteomics dataset [17], our results were compared with the

previously published dataset. Rather than using proximity labeling to identify interactors, this

study used TAP-MS to identify co-purified interactors of SARS-CoV-2 viral proteins. These

two approaches have been found to be complementary [21,22]; where the first approach

enriches for stable complexes, while the latter enriches for neighbor proteins in the endoge-

nous environments of the bait. To address this, the identified viral proteomes of the two stud-

ies were compared. To do so we first reanalyzed the data from the TAP-MS study [17] to call

all hits with a SAINT score� 0.9 as was to call high-confidence interactors equally. This gener-

ated a list of 695 host proteins. Comparison between the two studies yielded 960 proteins

unique to the current study, 536 unique to the TAP-MS study, and 159 proteins shared

between the two (S3 Fig). GO-term analysis for molecular function, biological process, and

cellular component were performed on the hits from the TAP-MS data (S4, S5, and S6 Figs).

Proximity labeling methods are particularly suited for identifying the location of bait proteins

[23,24] therefore, cell component analysis was compared between the two lists (S7 Fig). Given

the high amount of unique hits, it was not surprising to see major differences between cell

component enrichment between viral proteins. NSP1 uniquely enriched for hits associated

with preinitiation complex and ribosomal components by BIOID, but not by TAP-MS. Con-

trastingly, NSP9 enriched for similar factors only by TAP-MS. Despite the differences, there

were important similarities between the two approaches. For example, ORF6 was found to

enrich for nuclear pore components using either method. Taken together for SARS-CoV-2

biology, the two approaches appear to give complementary insights into potential targets and

pathways and both are valid for discovery.

Fig 2. Localization of SARS-CoV-2 proteins. A) Heatmap of cell component GO term enrichment of SARS-CoV-2 proteins. B) Western blots of

SARS-CoV-2 viral protein-expressing HEK293T cell fractions; whole cell lysate (WCL), cytosol, cytosol/membrane, nucleus/membrane and

nucleus fractions. Alpha-tubulin, calnexin, and histone H3 were used as fractionation controls for cytosol, membrane, and nucleus respectively.

Schematic C) and table D) depicting the predicted location of all SARS-CoV-2 proteins surveyed in this study based on both the BioID and

fractionation analysis.

https://doi.org/10.1371/journal.ppat.1009412.g002
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Viral proximal interactors include drug targetable host genes

There is a lack of SARS-CoV-2 specific antiviral therapies or against coronaviruses generally.

Many current and experimental therapeutics were developed for activity against other viruses

and are being tested for cross efficacy against SARS-CoV-2. Others are therapies known to

have broad antiviral effects. There is significant interest in developing drugs that directly target

SARS-CoV-2 viral proteins, but research and development may take years before use in

patients. Another approach is using drugs against host genes critical to virus infection and rep-

lication. For example, drugs targeting ACE-2, the main receptor for SARS-CoV-2, or ACE-2

expression and function have been pursued. To expand the list of possible drugs beyond entry

inhibitors, we compared the viral proximal proteome generated in this study against the “drug-

gable” genome, which include databases of the gene targets of available drugs. This generated a

list of 47 host genes (S8 Fig and S3 Table) and highlights, as previously reported [17], a group

of cellular kinases associated with N protein. The viral nucleocapsid has been shown to be

phosphorylated and phosphorylation is suggested to be important for its function [25,26]. This

highlights cellular kinase inhibitors as drugs with possible activity against SARS-CoV-2.

GWAS-linked host proteins in the viral proximal proteome

The genetic basis for the wide spectrum of COVID-19 severity in different individuals within

the human population is not fully understood. A number of recent genome wide association

studies (GWAS) studies have endeavored to map genetic risk loci associated with SARS-CoV-

2 infection and COVID-19 clinical severity [27,28]. These studies leverage large numbers of

patients to identify SNPs that are correlated with outcomes such as infection and severity of

disease, including hospitalization and mortality. Such linkage studies have identified a number

of non-coding variants that may perform a regulatory function, for example, by altering

expression of effect genes (eGenes) important in host susceptibility to SARS-CoV-2.

To determine if any putative COVID-19 risk-linked regulatory variants might control the

expression of host proteins proximal to SARS-CoV-2 viral proteins, the following analysis was

performed. Using publicly available data from GWAS studies [27,28], all single nucleotide

polymorphisms (SNPs) associated with increased risk of COVID disease that reside in non-

coding DNA were identified. These were filtered for variants localized to open chromatin,

characteristic of regulatory DNA, in cell types relevant to COVID-19 pathogenesis, including

immune and pulmonary cells. The resulting disease risk-linked variants were further distilled

to those identified as expression quantitative trail loci (eQTLs) for specific putative eGene tar-

gets (Fig 4A). These eGenes, which represent a set of genes whose expression may be con-

trolled by natural variants in the human population linked to COVID-19 risk, were then

intersected with the atlas of host factors identified as adjacent to SARS-CoV-2 viral proteins by

proximity proteomics. Publicly available protein interaction data was then integrated to proj-

ect the connectedness of resulting gene set (Fig 4B). The resulting network was notable for

host proteins implicated in cytokine signaling, cell cycle control, transcription, and translation,

suggesting that genetic susceptibility to COVID-19 may link to variations in the expression of

proteins that mediate these processes.

Among proteins identified by this analysis was TRIM4, a RING E3 ligase, that activates type

I interferon signaling through activation of the cytosolic RNA sensor RIG-I. TRIM4 was signif-

icantly associated with SARS-CoV-2 M protein in proximity proteomics data (S1 Table) and,

Fig 3. Immunofluorescent staining of SARS-CoV-2 proteins in infected cells. A549 cells expressing ACE2 were infected for 48 hours with SARS-CoV-2

WA1 strain, fixed, and stained with the indicated viral (green) and host proteins (red) as well as nuclear staining by Hoescht (blue). A) NSP1, B) ORF6, C)

NSP14.

https://doi.org/10.1371/journal.ppat.1009412.g003
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Fig 4. COVID disease risk eGenes proximal to viral proteins. A) Table of GWAS risk SNPs which also scored as BioID hit. B) Map of

connectedness of eGenes (Mauve) with BioID interactors (Gray) and the corresponding viral proteins (Purple). eGenes also identified by BioID

are outlined in black. GWAS-identified eGenes-associated with antiviral response, cell-cycle, transcription, and translation are also highlighted.

C) Virtual 4-C plot showing chromatin contact between TRIM4 promoter and linked COVID disease risk SNP (rs1569055). Genome tracks

showing ATAC peaks and contact loops of GM12878, Naïve T, Th-17, and T-reg cells.

https://doi.org/10.1371/journal.ppat.1009412.g004
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using eQTLgen [29], a regulatory SNP (rs1569055) approximately 230kb downstream of the

TRIM4 promoter was recently associated with increased COVID severity in patients [28].

High-C chromatin immunoprecipitation (HiChIP) data from the immortalized B-cell line

GM12878 as well as primary T-cell populations demonstrated chromatin looping from the

SNP to the TRIM4 promoter (Fig 4C). Looping of this SNP increased contact strength in

naïve, T-regs and Th-17 T-cells. TRIM4 is one of a group of ubiquitin ligases [30–33] that can

activate RIG-I during RNA-sensing and subsequent antiviral signaling. Altered expression

coupled with disruption by potential association with the SARS-CoV-2 M protein supports a

model with the following features; a) individuals with this regulatory variant may express less

TRIM4 b) physical association with SARS-CoV-2 M protein further reduces functional

TRIM4 c) a relative reduction in biologically active TRIM4 leads to reduced innate immune

signaling d) this reduction leads to increased susceptibility to SARS-CoV-2 pathogenesis. Inte-

grating proximity proteomics data with genetic risk eQTL variants may help identify such can-

didate susceptibility mechanisms for natural variations in disease outcomes within the

population.

In addition to GWAS studies, several groups have undertaken genome wide CRISPR

screens to identify host factors required for viral replication [34–36]. The intersection of

significant hits from these CRISPR screens and the viral proteome from this study yielded

few hits. Given the role of accessory factors as being non-essential for viral replication, the

lack of overlap is not surprising. Nevertheless, NXF1 and MCM3AP, known mediators of

mRNA export [37], were found as hits in both CRISPR studies and as proximal interactors of

ORF6. NXF1 and MCM3AP are part of an RNA export complex [38] that docks at nuclear

pores.

Predicted viral antagonism of host protein translation and antiviral

response

NSP1 is a part of the viral polyprotein ORF1 and during normal viral replication is cleaved and

liberated by the viral protease NSP3. Earlier work has identified NSP1 of SARS-CoV-1 as a

potent inhibitor of translation in a mechanism that involves interactions with the host ribo-

somes [10,13]. Recently other groups have shown that NSP1 of SARS-CoV-2 similarly blocks

translation through interaction with the 40s ribosome[39, 40]. High confidence proteins proxi-

mal to NSP1 included EIF3A, EIF3B, EIF2G, and EIF4G2 (Fig 5A) of which the first 3 are

components of the EIF3 translation initiation complex. Interestingly, members of the EIF3

complex were not identified as high-confidence interactors by traditional TAP-MS studies

[17,19]. Having confirmed through immunofluorescent microscopy that NSP1 predominantly

resides in the cytosol of infected cells but only weakly co-localized with EIF3A, a member of

the translation initiation complex, we sought to test if SARS-CoV-2 NSP1 inhibits host transla-

tion, NSP1 was expressed in HEK293T cells followed 24 hours later by transfection of in-vitro

transcribed capped and polyadenylated mRNA expressing luciferase. NSP1 reduced luciferase

signal by (49.7%) as compared to GFP control (Fig 5B), demonstrating that NSP1 can inhibit

host cap-dependent translation, consistent with data reported by others [39,40]. To determine

if NSP1 could inhibit translation of host-derived 5’ UTRs and host IRES elements, two host

UTRs (IFIT1 and ISG15) were subcloned separately upstream of luciferase along with two host

IRES sequences (XIAP1 and APAF1) and luciferase measured in cells transfected with or

without NSP1 construct. NSP1 reduced luciferase signal of both 5’ UTRs (IFIT1 = 55.2%,

ISG15 = 53.1%) and IRES elements (XIAP1 = 55.0%, APAF1 = 40.0), indicating a block in

translation of these elements (Fig 5B). Lastly, NSP1 effects were tested on the SARS-CoV-2 5’

UTR and the Cricket Paralysis Virus (CRPV) IRES. CRPV IRES is a minimal viral-derived
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IRES that initiates translation completely independent of EIF3. Surprisingly, NSP1 blocked

both viral elements (SARS-CoV-2 = 59.1%, CRPV = 52.2%) compared to GFP control. NSP1

therefore exhibits broad translation inhibition of mRNAs containing various regulatory ele-

ments, suggesting NSP1 action on the initiating ribosome, however, additional actions, such as

mRNA cleavage[10, 16], may also be operative. This highlights the utility of using proximal

Fig 5. NSP1 and ORF6 disruption of host translation and innate immune signaling. A) Curated map of NSP1 proximal interactors. Highlighted are host proteins

involved in translation initiation. B) Effect of NSP1 on translation of in vitro transcribed, capped polyadenylated transcripts containing 5’ UTRs from SARS CoV-2, IFIT1,

and ISG15 as well as IRES elements from XIAP1, APAF1, and CRPV. Data shown is the average of three independent experiments and significance was calculated using

Student’s T Test where � indicates p value<0.005. Curated maps of ORF6 C) and ORF9b D) proximal proteins showing nuclear pore protein complex association with

ORF6 and MAVS association with both ORF6 and ORF9b. E) Effect of ORF6 and ORF9b on IFNB1 promoter activity after RIG-I 2-CARD induction. Normalized

luciferase shown is the ratio of nano luciferase/firefly luciferase normalized to empty vector control. Data shown is the average of three independent experiments.

https://doi.org/10.1371/journal.ppat.1009412.g005
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proteomic labeling to identify, although they be weak or transient interactions, functional part-

ners of viral proteins that cannot be readily identified by TAP-MS.

Host innate immune detection and signaling pathways are heavily targeted by viral pro-

teins, especially accessory proteins [41]. Mitochondrial Activation of Viral Signaling (MAVS)

is a critical signaling adaptor for RIG-I like receptors (RLR) cytosolic sensing pathway [42–

45]. It recruits activated RLR sensors RIG-I and MDA-5 at mitochondrial and mitochondrial-

proximal membranes and leads to the activation of both IRF3 and NF-κB and expression of

type-I interferons [46]. RIG-I and MDA-5 recognize various types of non-host or aberrant

RNA species and are critical for host defense against RNA viruses [47]. MAVS was found as a

high confidence protein proximal to two SARS-CoV-2 proteins: ORF6 and ORF9b (Fig 5C

and 5D). ORF6 has been found to inhibit type-I interferon SARS-CoV-2 [48,49] and the

closely related SARS-CoV-1 [12,50]. One study demonstrated that ORF6 inhibition of type-1

interferon expression was linked to ORF6 binding to nuclear import complex Nup98/Rae1

[49], both of which were also captured as not only proximal interactors, but also were also

observed to be localized in similar proximity to ORF6, but not ORF9B. We tested the ability of

our SARS-CoV-2 ORF6 and ORF9b constructs to inhibit RLR signaling by co-transfecting

constructs expressing ORF6 or ORF9B along with a reporter expressing nanoluciferase under

the control of the IFNB1 promoter for interferon β1 along with a second reporter constitutively

expressing firefly luciferase. To activate RLR signaling we transfected in a plasmid expressing a

truncated version of RIG-I only containing the 2 CARD domains. This truncation is constitu-

tively recruited to MAVS and initiates signaling in absence of any RNA stimulus and will test

the viral proteins’ ability to block any signaling downstream of sensing. ORF6 significantly

inhibited RIG-I 2CARD activation of IFNB1 promoter activity by 96 percent (Fig 5E) while

ORF9b showed no effect on inhibiting IFNB1 promoter activity. These data demonstrating

ORF6 proximity to MAVS, along with ORF6 inhibition of IFNB1 promoter induction, impli-

cate ORF6 impairment of MAVS in the RLR innate immune signaling pathway.

NSP5 proteomics prediction of potential host cleavage targets

NSP5 is one of two critical proteases encoded by SARS-CoV-2 and is also known as SARS-

CoV-2 3CLpro due to its similarity to picornavirus 3C proteases and a number of other

+ssRNA viruses. These proteases all contain chymotrypsin-like folds and a triad of residues

harboring the critical cysteine residue [51]. 3CLpro-like proteases are considered important

therapeutically since they are essential for cleaving large polyprotein products produced by

+ssRNA viruses and chemical protease inhibitors may act broadly across members of a given

virus family [52,53]. In addition to their necessity in the virus life cycle, many viral proteases

can target host proteins and specifically affect antiviral responses or other cellular processes

[54–56]. Complementing previous efforts to infer targets of the NSP5 protease, we identified

34 host proteins in the NSP5 proximal proteome (S2C Fig and S1 Table). To nominate possi-

ble host targets of NSP5 whose levels are decreased upon protease expression, we performed

SILAC mass spectrometry comparing wild type SARS-CoV-2 NSP5 to the catalytically-inactive

NSP5C145A mutant [17,57]. Residue 145 is the critical catalytic cysteine and mutation to alanine

prevents protease activity [58]. Cell death was observed following transient expression of wild

type NPS5, but not NSP5C145A, so cells were collected 24 hours post-transfection to minimize

those effects. Immunoblotting for NSP5 and C145A in whole cell lysates confirmed expression

of the proteases in samples from both heavy and light media (S9 Fig). A number of host pro-

teins showed significant depletion in cells expressing wild type NSP5, but not protease-inactive

NSP5C145A (Fig 6A). Combining both data generated identified an additional 26 candidates

resulting in a pool of 60 potential host protein targets for NSP5 (Fig 6B).
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Fig 6. BioID and SILAC MS identify candidate targets for the viral protease NSP5. A) Comparison of two biological

replicates of protein abundance in HEK293T cells expressing either NSP5 wild type (WT) or the catalytically inactive NSP5C145A

mutant by log2 fold change. B) Map of NSP5 proximal interactome (Gray) overlaid with host proteins decreased in abundance

in SILAC (Red). CDNK2AIP was detected as both a BioID hit and decreased in abundance in SILAC. C) Peptide cleavage assay

of four sequences from SARS-CoV-2 polyprotein PP1AB and the indicated host genes: CWC22, CDNK2AIP, FANCD2, P53.

Normalized FRET signal is shown comparing HEK293T cells expressing either wild type NSP5 or NSP5C145A. PP1ab and

CWC22 mutant (mut) sequences contain nucleic acid changes that result in QS!AS mutation in the peptide sequence. Data

shown is representative of three independent experiments and significance was calculated using Student’s T Test. � Indicates p

value<0.05, NS not significant. Dose-dependent effect of coronavirus protease inhibitor G376 on cleavage of peptide encoded

by PP1ab-2 D) and FANCD2-2 E) sequences.

https://doi.org/10.1371/journal.ppat.1009412.g006
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To begin to examine potential cleavage of these candidate proteins by NSP5, we searched

their peptide sequences for potential cleavage sites using a published a cleavage prediction

algorithm [59]. We then took these peptide sequences and tested them for cleavage by NSP5

using a loss of fluorescence resonance energy transfer (FRET) fluorescence assay. In brief,

potential cleavage sites were inserted between a FRET pair and then this construct was co-

transfected along with plasmids expressing either NSP5 or the NSP5C145A, with loss of FRET

signal only after wild type NSP5 expression as indicative of cleavage. This assay can be used to

screen potential peptides encoded by host target sequences. To this end four sequences taken

from SARS-CoV-2-pp1AB polyprotein, which is normally cleaved by NSP5, were cleaved as

expected and as demonstrated by loss of FRET signal (Fig 6C and 6D). Testing of sequences

from human CDKN2AIP, CWC22, FANCD2, and P53 proteins indicated NSP5 cleavage of

one CWC22 and two FANCD2 peptide sequences (Fig 6C and 6D). Neither CDKN2AIP nor

P53 sequences tested were cleavable by NSP5 in our assay and their depletion in the SILAC

data may represent indirect effects of NSP5 activity. CWC22 is a component of the RNA spli-

ceosome required for pre-mRNA splicing via promotion of exon-junction complex assembly

[60,61]. FANCD2 is activated by ATM and localizes at BRCA1 foci during DNA damage [62].

These data suggest that SARS-CoV-2 may target host RNA splicing and DNA damage path-

ways via NSP5-mediated reduction in key proteins, namely CWC22 and FANCD2, that are

involved in these processes.

As noted, viral protease inhibitors are a powerful class of drugs that potently block viral rep-

lication by preventing processing of viral polyproteins into functional subunits. Inhibition of

viral proteases should also prevent cleavage of host proteins which may serve to blunt toxic

effects on infected cells. GC376 [63] is a NSP5 protease inhibitor developed against feline coro-

navirus, the causative agent of fatal feline infectious peritonitis. Recent reports showed GC376

to be effective against SARS-CoV-2 NSP5. We tested the effect of GC376 on the cleavage of the

ORF1ab-2 and FANCD2-2 peptide sequences. Using a range of concentrations up to 80 μM,

ORF1ab-2 showed a modest inhibition of NSP5 as compared to NSP5C145A in the FRET assay.

FANCD2-2 showed a dramatic reduction in cleavage by NSP5 even at concentrations of

20 μM (Fig 6E and 6F). These data support GC376 inhibition of SARS-CoV-2 NSP5 action on

viral and human host protein sequences cleavable by the viral protease.

Discussion

Here we present a compendium of human host proteins adjacent to 17 SARS-CoV-2 viral pro-

teins, with a goal to offer insight into potential mechanisms that these viral proteins may

engage during pathogenesis. These data encompass the less well understood SARS-CoV-2

accessory factors and predict the localization of each these viral proteins as well as identify sig-

nificant adjacencies to proteins that mediate core cellular processes, including translation, sig-

naling, RNA interactions, and intracellular transport. Further validation of viral protein

localization was confirmed by immunofluorescent microscopy for select proteins in infected

cells. For translation, SARS-CoV-2 NSP1 was found to be adjacent to subunits of the EIF3

translation initiation complex and proved a broad inhibitor of translation. For innate immune

signaling, viral ORF6 was found proximal to the RLR pathway component, MAVS, with ORF6

potently inhibiting induction of the IFNB1 promoter. Integration of GWAS data in COVID-

19 identified SNPs associated with natural variation in the expression of specific genes, includ-

ing the viral M protein-proximal TRIM4 activator of type I interferon, that may contribute to

disease susceptibility differences in the human population. Comparing wild type NSP5 with

its catalytically inactive point mutant helped identify proteins whose levels were decreased by

this viral protease and nominated cleavage sequences in human CWC22 and FANCD2,
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implicating specific candidates for viral disruption of normal pre-mRNA splicing and DNA

damage pathways, respectively. We also observed a number of SARS-CoV-2 proteins (M,

NSP2, NSP9, NSP15, ORF6, ORF7a, ORF7b, ORF8, ORF9c, and ORF10) vicinal to nuclear

pore proteins. Given that coronavirus replication takes place exclusively in the cytosol of cells,

these interactions, if functional, might point to a viral role in disrupting nuclear import/export.

This is further supported by several lines of genetic evidence. GWAS data suggest the impor-

tance of nuclear pore component Nup43 and overlap of our proteomics data with whole

genome CRISPR screen hits from recently studies [34–36] suggests that the mRNA export fac-

tors MCM3AP and NXF1 are important for viral replication. Taken together, these data indi-

cate potential intracellular locations and candidate functions of the SARS-CoV-2 viral proteins

studied and provide a resource for future studies of pandemic coronaviruses.

SARS-CoV-2, as the etiological agent of COVID-19, joins SARS-CoV and MERS-CoV as

an important coronavirus pathogen. Very minor mutations in the viral spike protein [64–67]

along with a number of animal reservoirs in endemic regions represent a significant risk for

new pandemic coronavirus strains to emerge [68], underscoring the need to understand coro-

naviral accessory protein functions and virus-host interactions. Comparative studies that ana-

lyze multiple coronaviruses [19,69], including both highly pathogenic and nonpathogenic, will

be very beneficial to understanding what can identify new possibly pandemic virus strains.

Such resources may allow the research community to not only address current concerns and

also provide insight to address with newly emerging coronaviruses in the future. Currently,

the ability of S proteins capable of binding to human ACE2 receptor has been seen both in

highly pathogenic coronaviruses such as SARS-CoV and SARS-CoV-2 as well as in relatively

non-pathogenic coronaviruses such as HCoV-NL63 [70]. Thus, comparing the actual molecu-

lar interactions and effects of viral proteins on the host between pathogenic and non-patho-

genic virus strains may provide actual insight on what makes certain coronaviruses more

dangerous and highlight critical virus-host interactions that may be targeted to reduce disease.

The viral envelope of SARS-CoV-2 must contain the proper structural components com-

prised of S, E, M, and N with a completed viral genome [71] and replication of both subge-

nomic and genomic RNA occurs in membranous compartments [72]. Accordingly,

coronaviruses devote substantial portions of its large genome to manipulating host processes

involved in ER-Golgi transport and endocytic and exocytic activity, which was captured in the

proximal interactome. We also found evidence of the interaction of SARS-CoV-2 with MHC

class I molecules with M, ORF7a, ORF7b, ORF8, and ORF10. Down-regulation of surface

expressed proteins has been reported for SARS [73]. It is still an open question to how SARS-

CoV-2 affects surface expression of important host receptors, which viral proteins affect this

process, and the effects on virus replication and disease.

Translation inhibition is a general strategy utilized by many virus families including other

RNA viruses like orthomyxoviruses [74], picornaviruses [75,76], rhabdoviruses [77], and toga-

viruses [78]. Host translational blockade may broadly block antiviral responses and can also

cause affect the viability of the infected cell. Some but not all viruses have strategies to over-

come translational shutoff, biasing translation of viral mRNA, including the use of IRES ele-

ments [79]. Lung tissue from COVID patients, in particular, displayed proteomic changes

associated with translation inhibition [80]. NSP1 from both SARS-CoV-1 [10] and SARS-

CoV-2 [39,40] have been shown to be potent inhibitors of host translation and are thought to

do so using at least two mechanisms: binding to and inhibition of EIF3 translation initiation

complex and direct cleavage of host mRNAs. Cryo-EM studies place a domain of NSP1 as sit-

ting in the mRNA channel of the 40S ribosome. Our proximity proteomics data shows NSP1

of SARS-CoV-2 binding to a significant number of EIF3 complex subunits and we demon-

strate that NSP1 is able to block translation of capped transcripts as well as transcripts
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containing host and viral IRES elements. We also observe, as another study has shown[39],

that NSP1-induced translational shutoff affects host and viral transcripts containing the leader

sequence found in the viral 5’ UTR. This element exists on all genomic and subgenomic viral

RNAs [81]. Whether other SARS-CoV-2 factors are necessary to overcome NSP1 translational

inhibition or if, during viral replication, the large number of viral transcripts simply outcom-

petes host transcripts, as seen in vesicular stomatitis virus [82], remains to be determined. A

recent study [80] from autopsies of COVID patients characterized whole proteome changes in

multiple organs.

Innate immune signaling is a central mechanism of host cell response to viral infection.

ORF6 of SARS-CoV-1 [12,50] and SARS-CoV-2 [49] were shown to be potent inhibitors of

such antiviral signaling. One proposed mechanism is that ORF6, through association with spe-

cific NPCs (Rae1-Nup98), blocks import of activated transcription factors needed to induce

IFNB1 transcripts and other primary interferon-stimulated genes. In this regard, we identified

MAVS proximal to ORF6 and ORF9b. We observed that ORF6, but not ORF9b, inhibited RLR

signaling downstream of RIG-I RNA-binding. However, Nup98/Rae1 is most commonly asso-

ciated with export of RNAs from the nucleus [83,84]. This study has identified both NSP15

and ORF6 as proximal interactors with many components of the nuclear RNA export pathway

including Nup43, Nup98, Rae1, MCM3AP, NXF1, and others. Additional evidence, from both

GWAS studies and genome-wide CRISPR screens has identified RNA export as important for

severe disease and viral replication. It will be important to reexamine the mechanism of ORF6

in impairment of interferon signaling as well as examining the effects NSP15 may have on

RNA export. Thus, targeting the ability of the virus to disrupt host RNA export pathways may

be an attractive therapeutic target and warrants more attention. The effects of SARS-CoV-2 on

host processes identified in this study are summarized in Fig 7.

Viral proteases, such as SARS-CoV-2 NSP5 studied here, have been shown to be potent

antiviral targets [85]. These proteases are essential for viral replication and escape has proven

difficult in resistance studies [86]. Coronaviruses encode two proteases NSP3 and NSP5, with

NSP5 classified as the main protease. They are both necessary for the processing of the

ORF1ab polyprotein containing the viral replicase proteins. NSP5 shows similarity to proteases

found in picornaviruses and noroviruses [87]. Beyond their importance in viral replication,

these viral proteases can target host proteins containing their target residues [88]. NSP5 recog-

nizes certain glutamine-serine/alanine/glycine residues, with added specificity being deter-

mined by two to three flanking residues [59]. Picornavirus virulence has been shown to be

mediated in part by 3C protease cleavage of host proteins [55]. Using both BioID and SILAC

metabolic labeling followed by mass spectrometry, we sought to identify candidate host pro-

teins and use a modified FRET-based cleavage assay to determine if these candidates contained

sequences cleavable by NSP5. We identified human CWC22 and FANCD2 as candidates; both

proteins contained sequences that could be cleaved by NSP5 in an assay used here which can

be used to rapidly assess other potential host targets. The proteomic studies also identified

clusters of host factors involved in DNA damage and repair and RNA splicing. Furthermore,

we show the effects of GC376 [63], a protease inhibitor of feline coronavirus, displays evidence

of inhibition of NSP5 cleavage activity. Consistent with this, GC376 has been shown to block

viral replication of SARS-CoV-2 in early studies [89] and we observe that this protease inhibi-

tor blocks NSP5 cleavage of both host and viral target peptide sequences.

The global impacts of the SARS-CoV-2 pandemic have focused attention on identifying

new treatments and interventions. Given both the newness of the virus and the relative dearth

of research into human coronaviruses, it is important that many resources are generated to

better understand aspects of the virus-host interaction. The present work contains a proximal

proteomic resource for 17 SARS-CoV-2 viral proteins and combining such proximal
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proteomics with TAP-based proteomics may be helpful in leveraging the strengths associated

with each technique. While proximity proteomics can identify transient, indirect, and weak

binding events, including those dependent on intact membranes, TAP-based approaches can

focus attention on complexes of proteins that stably associated with each other. We validate

the quality of the present proximity data set by corroborating spatial insights with biochemical

fractionation experiments. Taken together with other efforts to generate high-quality

resources, these data should prove helpful in both generating hypotheses and better under-

standing dynamics of virus-host interactions in regards to human disease.

Materials and methods

Cell culture

HEK293T were obtained from Takara Bio and were cultured on DMEM 10% FBS, 1%

Penicillin/Streptomycin and grown at 37C, 5% CO2. For SILAC experiments [90], the cells

were cultured in a medium containing [13C6,15N2]-lysine and [13C6]-arginine for at least 2

weeks to promote complete incorporation of the stable isotope-labeled amino acids. Cells were

Fig 7. SARS-CoV-2 proximal proteins in translation and interferon activation. Model of SARS-CoV-2 antagonism of host antiviral response.

ORF6 protein inhibits RLR signaling leading to decreased type I interferon and ISG transcription, M protein through TRIM4 interactions may also

alter host response. NSP1 disrupts host translation of transcripts containing both ISG 5’ UTR and stress responsive IRES elements.

https://doi.org/10.1371/journal.ppat.1009412.g007
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tested for mycoplasma prior to experiments using MycoAlert Mycoplasma Detection kit

(Lonza).

Transfection, biotin labeling, and streptavidin pulldown

All viral expression constructs were obtained from Addgene [17]. A summary of all plasmids

used in this study is listed in Table 1. HA-BASU was cloned in frame with either an N-terminal

or C-terminal linker as indicated. For BioID experiments 5x106 HEK293T were plated and

transfected with 5ug of each viral expression plasmid. 24 hours post transfection, biotin was

added (50 uM final concentration) for 4 hours, then media was exchanged twice with DPBS

and the cells harvested and lysed in RIPA buffer (Thermo Scientific) supplemented with prote-

ase inhibitors. Lysates were sonicated and then, using the Kingfisher Flex automated purifica-

tion, incubated for six hours with 100 uL of ReSYN (ReSYN Biosciences) streptavidin

microparticles and then washed sequentially with 2% LDS buffer, Triton X-100 buffer (1% Tri-

ton X-100 0.1%, Sodium Deoxycholate 500mM, 1mM EDTA, 50mM HEPES pH 7.5), Igepal

Wash Buffer (0.5% Igepal, 0.5% Sodium Deoxycholate, 10mM TRIS pH 7.5, 333.3mM LiCL,

20mM EDTA), and deposited into 50mM TRIS pH 7.4. Samples were washed with automated

mixing for 30 minutes for each step. A portion of the whole cell lysate was saved and ran on

Table 1. Plasmids used in this study.

Plasmid Origin Source

eGFP-HA_BASU This study Addgene 153996

SARS_COV2_nsp1_HA_BASU This study Addgene 154071

SARS_COV2_nsp2_HA_BASU This study Addgene 153988

SARS_COV2_nsp5_HA_BASU This study Addgene 153987

SARS_COV2_nsp9_HA_BASU This study Addgene 153986

SARS_COV2_nsp14_HA_BASU This study Addgene 153993

SARS_COV2_nsp15_HA_BASU This study Addgene 153985

SARS_COV2_M_HA_BASU This study Addgene 153990

SARS_COV2_N_HA_BASU This study Addgene 153989

SARS_COV2_ORF3a_HA_BASU This study Addgene 153994

SARS_COV2_ORF3b_HA_BASU This study Addgene 153992

SARS_COV2_ORF6_HA_BASU This study Addgene 153984

SARS_COV2_ORF7a_HA_BASU This study Addgene 153983

SARS_COV2_ORF7b_HA_BASU This study Addgene 153995

SARS_COV2_ORF8_HA_BASU This study Addgene 153982

SARS_COV2_ORF9b_HA_BASU This study Addgene 153981

SARS_COV2_ORF9c_HA_BASU This study Addgene 153991

SARS_COV2_ORF10_HA_BASU This study Addgene 153980

pRF-CRPV-IGR-IRES

pRF-ISG15-CRPV-IGR-IRES This study

pRF-IFIT1-CRPV-IGR-IRES This study

pRF-APAF1-CRPV-IGR-IRES This study

pRF-XIAP1-CRPV-IGR-IRES This study

pRF-5’SARS2-CRPV-IGR-IRES This study

ECFP-TevS-YPET Addgene 100097

pMODnano-IFNBpro This study

pGL4.13[luc2/TK] Promega Cat# E5061

Table 1. A list of plasmids used in this study along with source for plasmid where available.

https://doi.org/10.1371/journal.ppat.1009412.t001
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SDS-PAGE gel, transferred to PVDF, and then probed with anti-HA antibody with 800CW

anti-rabbit (LICOR) secondary along with 800CW streptavidin dye (LICOR) to confirm viral

protein expression and total biotinylation. A summary of antibodies used in this study is listed

in Table 2. For SILAC experiments with NSP5 and C145A, approximately 2×106 cells were har-

vested, washed with ice-cold PBS for three times, and lysed by incubating on ice for 30 min with

CelLytic M (Sigma) cell lysis reagent containing 1% protease inhibitor cocktail. The cell lysates

were centrifuged at 7,000g and at 4˚C for 15 min, and the resulting supernatants collected.

Sample preparation for mass spectrometry

After wash and purification samples contained bound proteins on beads in TRIS buffer. The

protein on the beads were reduced with dithiothreitol, and alkylated with iodoacetamide. The

processed proteins were subsequently digested with Trypsin/Lys-C (Promega) at an enzyme/

substrate ratio of 1:100 in 50 mM NH4HCO3 (pH 8.5) at 37˚C for overnight.

For SILAC samples, the protein lysates prepared from cells with WT or mutant NSP5 were

combined at 1:1 ratio (by mass), and 30 μg of the mixed protein lysate was loaded onto a 10%

SDS-PAGE gel. After electrophoresis, the gel lanes were cut into 11 slices according to appar-

ent molecular weight ranges of proteins (< 20, 20–25, 25–30, 30–37, 37–42, 42–50, 50–62, 62–

75, 75–100, 100–150, >150 kDa), reduced in-gel with dithiothreitol, and alkylated with iodoa-

cetamide. The processed proteins were subsequently digested in-gel with Trypsin/Lys-C (Pro-

mega) at an enzyme/substrate ratio of 1:100 in 50 mM NH4HCO3 (pH 8.5) at 37˚C for

overnight. Subsequently, peptides were recovered from gels with a solution containing 5%

Table 2. Antibodies Used in This Study.

Antibody Origin Catalog Number

HA-tag (C29F4) (Rabbit) Cell Signaling Technologies Cat# 3724; RRID:AB_1549585

HA-tag (Mouse) Abcam Cat# ab130275; RRID:AB_11156884

HA-tag (Mouse) Cell Signaling Technologies Cat # 2367

β-Actin Sigma-Aldrich Cat# A1978; RRID:AB_476692

Calnexin Cell Signaling Technologies Cat# 2679

Lamin A/C Cell Signaling Technologies Cat# 4777

NSP1 mrcppureagents Cat# SARS-CoV2 NSP1

NSP14 mrcppureagents Cat# NSP14 SARS-CoV2 PC

ORF6 mrcppureagents Cat# SARS-CoV2 ORF6

EIF3G Proteintech Cat# 11165-1-AP

Nup98 Atlas Antibodies Cat# HPA074810

Rae1 Atlas Antibodies Cat# HPA048795

MCM3AP Atlas Antibodies Cat# HPA021527

Goat Anti-Sheep 488 Thermofisher Cat# A-11015

Goat Anti-Rabbit 647 Thermofisher Cat# A32795

800CW Goat anti-Mouse IgG (H + L) LI-COR Cat# 926–32210; RRID:AB_621842

800CW Goat anti-Rabbit IgG (H + L) LI-COR Cat# 926–32211; RRID:AB_621843

680RD Goat anti-Mouse IgG (H + L) LI-COR Cat# 926–68070; RRID:AB_10956588

800CW Streptavidin LI-COR Cat# 926–32230;

RRID:AB_2877131

680RD Streptavidin LI-COR Cat# 926–68079; RRID:AB_2877132

680RD Goat anti-Rabbit IgG (H + L) LI-COR Cat# 926–68071; RRID: AB_10956166

Table 2. A list of primary and secondary antibodies used in this study with source and catalog number included where applicable.

https://doi.org/10.1371/journal.ppat.1009412.t002
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acetic acid in H2O and then with a solution containing 2.5% acetic acid in an equi-volume

mixture of CH3CN and H2O.

All the resulting peptide mixture was subsequently dried in a Speed-vac, and desalted by

employing OMIX C18 pipet tips (Agilent Technologies, Santa Clara, CA). LC-MS/MS experi-

ments were conducted on a Q Exactive Plus mass spectrometer equipped with an UltiMate

3000 UPLC system (Thermo Fisher Scientific).

LC-MS/MS analysis

Samples were automatically loaded at 3 μL/min onto a precolumn (150 μm i.d. and 3.5 cm in

length) packed with ReproSil-Pur 120 C18-AQ stationary-phase material (5 μm in particle

size, 120 Å in pore size, Dr. Maisch). The precolumn was connected to a 20-cm fused-silica

analytical column (PicoTip Emitter, New Objective, 75 μm i.d.) packed with 3 μm C18 beads

(ReproSil-Pur 120 C18-AQ, Dr. Maisch). The peptides were then resolved using a 180-min

gradient of 2–45% acetonitrile in 0.1% formic acid, and the flow rate was maintained at 300

nL/min.

The mass spectrometer was operated in a data-dependent acquisition mode. Full-scan mass

spectra were acquired in the range of m/z 350–1500 using the Orbitrap analyzer at a resolution

of 70,000 at m/z 200. Up to 25 most abundant ions found in MS with a charge state of 2 or

above were sequentially isolated and collisionally activated in the HCD cell with a normalized

collision energy of 28 to yield MS/MS.

Database search

Maxquant, Version 1.5.2.8, was used to analyze the LC-MS and MS/MS data for protein identi-

fication and quantification [91]. The database we used for search was human IPI database, ver-

sion 3.68, which contained 87,061 protein entries. The maximum number of miss-cleavages

for trypsin was two per peptide. Cysteine carbamidomethylation and methionine oxidation

were set as fixed and variable modifications, respectively. The tolerances in mass accuracy

were 20 ppm for both MS and MS/MS. The maximum false discovery rates (FDRs) were set at

0.01 at both peptide and protein levels, and the minimum required peptide length was 6 amino

acids. Spectral match assignment files were collapsed to the gene level and false positive

matches and contaminants were removed. SAINT analysis [18] was run with the following

parameters: 10,000 iterations, LowMode ON, Normalize ON and the union of MinFold ON

and OFF. Minimum interactome inclusion criteria were SAINT� 0.9, fold change over

matched cell type control� 4. Low normalized spectral count proteins were removed.

Gene ontology

Gene Ontology (GO) term analyses were produced using the clusterProfiler R package [92].

Proteins with SAINT score�0.9 were classified as likely interactions and used to identify

enriched GO terms for the individual SARS-CoV2 protein interactomes. Highly redundant

GO terms were removed for readability. Bar plots and heatmaps were produced with the

ggplot2 [93] and heatmap [94] packages respectively in R.

Host-virus interaction network

Host-virus interaction network produced from BASU BioID interactions with a SAINT

score� 0.9 in Cytoscape [95]. The network was further curated to emphasize the significantly

enriched GO terms for each SARS-CoV-2 protein. Edges denoting Host-virus protein interac-

tions are indicated in red. Host-host interactions were determined from high confidence
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(>0.700) STRING database interactions obtained from experimental evidence and database

interactions for all of the curated proteins. Cell endogenous protein interactions are denoted

by grey edges. Clusters were highlighted based on highly enriched GO terms for SARS-CoV-2

proteins.

Cellular fractionation

Cellular fractionations were generated using a previous protocol [96] with minimal modifica-

tion. Cells were transfected as described previously. Cell pellets were split into three separate

samples. The first was lysed using RIPA buffer (Thermo Scientific) and was labeled whole cell

lysate (WCL). The second sample was resuspended in buffer containing 0.3% Igepal, 10mM

HEPES, 10mM KCl, 1.5mM MgCl2. Sample was pelleted at 1500g and supernatant was col-

lected and labeled cytoplasm/membrane fraction. The remaining pellet was washed once and

then lysed in RIPA and labeled nuclear fraction. The third sample was lysed in buffer containing

100ug/mL Digitonin, 50mM HEPES, and 150mM NaCl. Sample was pelleted at 2400g and

supernatant was collected and labeled cytoplasm fraction. The remaining pellet was washed

once and lysed in RIPA and labeled nuclear/membrane fraction. Equal volumes of each fraction

along with 20ug of WCL were loaded and ran in a 4–12% Tris-Bis Polyacrylamide Gel (Invitro-

gen). Samples were transferred to PVDF and blotted for HA (Viral Proteins), Alpha tubulin

(cytoplasm control), calnexin (membrane control), Histone H3 (nuclear control) (Table 2).

Viral infection and immunofluorescent microscopy

SARS-CoV-2 (USA-WA1/2020) viral stocks were obtained from BEI and propagated on

VeroE6 cells (ATCC) in DMEM with 2% FBS. The virus was passaged 3 times on VeroE6 cells

and titers were calculated via plaque assay. Viral stocks were subject to sequencing to confirm

that no furin cleavage site or other mutations were acquired during passaging. A549-ACE2

cells were donated from Ralf Bartenschlager’s lab and cultured in DMEM supplemented with

10% FBS and 2% Geneticin (Thermo Fisher). Cells were plated on 8-well chamber slides

(ibidi) 24 hours before infection. On the day of infection, cells were inoculated with SARS-

CoV-2 at an MOI of 0.1 and incubated at 37˚C under 5% CO2. At 48 hours, chamber slides

were washed with PBS and submerged in 4% PFA for 30 minutes according to BSL3 fixation

and inactivation protocols. All SARS-CoV-2 live virus experiments were conducted under

BSL3 conditions at Stanford University. Cells were then permeabilized with PBS containing

2% BSA and 0.2% Triton X-100. Staining of primary antibodies against both viral (NSP1,

NSP14, ORF6) and host (EIF3A, Nup98, Rae1, MCM3AP) targets was done by incubating the

cells with dilutions (1:500 for all viral targets, EIF3A 1:200, Nup98 1:100, Rae1 1:100,

MCM3AP 1:100) at room temperature for 30 minutes followed by 3 washes with PBS contain-

ing 2% BSA and 0.2% Triton X-100. Goat anti-sheep conjugated to Alexa Fluor 488 was used

to detect viral primary antibodies and Goat-anti rabbit conjugated to Alexa Fluor 657 was used

to detect the host primary antibodies. Staining of secondary antibodies was done at 1:500 dilu-

tion for 30 minutes and followed by 3 washes and then Hoescht staining was performed at a

final concentration of 1ug/mL for 5 minutes and followed by 3 washes with PBS. After the

final PBS wash, fresh PBS was added to the chambers and images were taken on Zeiss 880 con-

focal microscope using the 63X oil immersion lens. Additional antibody information is listed

in Table 2.

GWAS COVID risk SNP analysis

COVID GWAS datasets were sourced from COVID-19 Host Genome Initiative (https://www.

covid19hg.org/), the Ellinghaus, Degenhardt, et al study [27], and from the UK Biobank
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(https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). GWAS hits were converted to hg19

coordinates and phenotypes for each GWAS study were noted. Gene locations are sourced

from gencode v19 exon coordinates. The GWAS SNPs were then expanded by LD r2 > 0.8

with phase 1000 Genomes LD information using LDlinkR [97], and phase 1 1000 Genome LD

information using HaploReg [98]. The expanded SNP list was then overlapped with GTEx

lung, spleen, blood, cis-eQTL data, DICE cis-QTL data, and eQTLGen cis-eQTL data

[29,99,100].

HiChIP data processing and virtual 4C visualization

HiChIP all valid pair matrices for GM12878, Naïve T cells, Th17 cells and Treg were down-

loaded from GEO (GSE101498,[101]). v4C plots were generated from HiChIP valid pair matri-

ces. The interaction profile of a specific 5-kb bin containing the TRIM4 anchor was then

plotted in R. H3K27ac ChIP-seq peaks for GM12878, Naïve T cells, Tregs and T helper cells

were downloaded from ENCODE as 1d peak sets. FitHiChIP pipeline was used to call loops

with 5kb bin, peak-to-all interaction type, loose background, and FDR< 0.01[102]. The

merged significant interaction files from FitHiChIP pipeline along with corresponding

ATAC–seq profiles were visualized in WashU Epigenome web browser. Browser shots from

WashU track sessions were then included in the v4C and interaction map anecdote.

Luciferase assays

For NSP1 translation assays, in-vitro transcribed transcripts were generated by first PCR

amplifying DNA containing T7 promoter followed by UTR or IRES elements and firefly or

renilla luciferase. Second, using HiScribe T7 ARCA mRNA Kit (with tailing) (NEB) capped

and polyadenylated transcripts were synthesized. 5x105 293T cells were transfected with 2ug

of plasmids expressing either GFP or NSP1 and then incubated overnight. The next day the

cells were transfected with 2ug of the corresponding IVT transcripts and were harvested 8

hours post second transfection. Cells were harvested with 400ul of Passive Lysis Buffer (Pro-

mega) and quadruplicate samples were plated on an opaque 96 well plate. 50ul of LARII firefly

luciferase substrate (Promega) was added and the plate was read on the luminescence setting

of the Spectramax i5 plate reader. 50ul of Stop & Glo renilla luciferase substrate was then

added and the plates reread. For IFNB1 promoter activity assays, 2.5x105 293T cells were

transfected with 2ug of plasmids expressing either ORF6 or ORF9b along with 1ug of plasmid

containing nanoluciferase under the control of a the human IFNB1 promoter and 50ng of a

plasmid containing firefly luciferase under the control of the constitutive TK promoter and

either 1ug of empty vector or 1ug of a plasmid expressing the 2-CARD domain of RIG-I. 24

hours post transfection cells were harvested in 200ul of Passive Lysis Buffer and triplicate sam-

ples were plated on an opaque 96 well plate. Nano-Glo Dual-Luciferase Reporter Assay System

(Promega) was used to obtain a firefly luciferase reading for IFN-beta promoter activity nor-

malized to the firefly luciferase transfection control.

NSP5 cleavage site prediction

Protein sequences for hits from SILAC and BASU-BioID proteomics experiments were run

through the NetCorona algorithm [59] using the web application: (https://services.healthtech.

dtu.dk/service.php?NetCorona-1.0). For Coronavirus Polyprotein controls, the SARS-COV-2

ORF1ab protein sequence (from Uniprot Fasta UP000464024) was run through the NetCor-

ona web application. A previously tested SARS-COV-1 sequence [59], VATLQAENV, was

found to be shared in the SARS-COV-2 protein sequence and was also used as a control.
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FRET-based NSP5 cleavage assay

Predicted NSP5 cleavage sites were cloned into ECFP-TevS-YPET (Addgene Plasmid

#100097) [103] Briefly, the plasmid was re-cloned to put the Tev Protease Site between an

XbaI site and a BsiWI site. Cleavage sequences were cloned in between XbaI and BsiWI sites,

restoring the XbaI and BsiWI sites, with one Glycine on each side of the predicted NSP5 cleav-

age sequences. This approach was based on a cloning strategy used previously to study norovi-

rus protease cleavage sites [104]. For protease cleavage assay, 3x10^4 HEK 293T cells were

plated in DMEM + 10% FBS into 96 well black, clear bottom plates (Greiner). 24 hours later,

cells were transfected in quadruplicate with 0.1ug of FRET plasmid containing the NSP5 cut-

site and 0.1ug of either WT-NSP5 or mutant NSP5C145A expression plasmids [17] with Lipo-

fectamine 3000 following manufacturer protocol for 96-well plates. 24 hours later, media was

removed and PBS was added to wells, and wells were imaged on a Spectramax i5 instrument

(Molecular Devices) with the following wavelengths: 420/485 nm for ECFP, 485/535 nm for

YPET and 420/535 nm for FRET as previously described [103]. After background subtraction

of un-transfected wells, FRET efficiency was calculated as FRET/ECFP.

Quantification and statistical analysis

Gene ontology adjusted p-values were produced using the Benjamini-Hochberg method. For

heatmaps, a threshold was set whereby at least one protein had a significant score for the pre-

sented GO terms. A -Log10 p-Value threshold of>5 for M proteins and>1.3 for all others

was used for ‘non-stringent’ heatmaps (with the exception of molecular function heatmaps,

which uses an M protein threshold of 3) and -Log10 p-Value > 5 for M proteins and>3 for all

others was used for more stringent heat maps presented in Figs 1D and 2A.

Graphed data are expressed as mean ± SEM and sample size (N) represents independent

experiments as noted. Statistical analysis was performed in GraphPad Prism 7 and described

in the figure legends.

Student’s t test was performed comparing the means between GFP controls and the experi-

mental conditions where N is three independent experiments. For IFNB1 reporter assays,

empty vector without RIG-I 2-CARD was set to one and all other conditions are relative to

that empty control and is the average of three independent experiments.

NSP5 FRET-cleavage was calculated as described previously and Student’s t test was per-

formed comparing the means between NSP5C145A mutant and NSP5 WT where N is three

independent experiments.

Supporting information

S1 Fig. Western Blots of samples used for BIOID-MS. A portion of each biological replicate

(depicted as 1, 2, or 3) for all SARS-CoV-2 BASU fusion expression constructs were run on

SDS-PAGE gels and samples were blotted for HA, Streptavidin, or Actin as a loading control.

GFP controls (high, med, low) were used as background and for blot-to-blot comparisons.

(TIF)

S2 Fig. Interaction Maps for SARS-CoV-2 proteins. Interaction maps for all SARS-CoV-2

proteins(A-Q) from this study. All host proteins with SAINT scores� 0.9 were included.

(PDF)

S3 Fig. Comparison of BioID-MS and TAP-MS. Comparison of hits (SAINT score�0.9)

between the current study and AP-MS (Gordon et al. 2020).

(TIF)
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S4 Fig. Proteomic Hits from TAP-MS Molecular Function. GO-term analysis Molecular

Function (MF) (full list) of proteomic hits from Gordon et al. 2020.

(TIF)

S5 Fig. Proteomic Hits from TAP-MS Biological Processes. GO-term analysis Biological

Processes (BP) (full list) of proteomic hits from Gordon et al. 2020.

(TIF)

S6 Fig. Proteomic Hits from TAP-MS Cell Component. GO-term analysis Cell Component

(CC) (full list) of proteomic hits from Gordon et al. 2020.

(TIF)

S7 Fig. Comparison of GO-term cell component analysis. Comparison of cell component

GO-term analysis between BIOID and TAP-MS (IP) data sets. Enrichment scores are given as

-Log10 p-values.

(TIF)

S8 Fig. SARS-CoV-2 association with druggable host genes. Interaction maps of SARS-

CoV-2 with druggable proximal host proteins. Intersection of SARS-CoV-2 proximal network

generated in this study with the druggable genome databases from https://pharos.nih.gov/.

(TIF)

S9 Fig. Western blot of SILAC samples expressing WT or mutant (C145A) NSP5. Western

blot of samples used for SILAC whole proteome enrichment/depletion. Light (L) or Heavy (H)

isotope labelled amino acids is indicated. Cells transiently expressing NSP5, but not C145A

mutant, displayed cell toxicity as early as 24 hours post transfection.

(TIF)

S1 Table. Proximal proteomic interactors of SARS-CoV-2 Proteins. List of proximal proteo-

mic interactors of SARS-CoV-2 proteins. Combined list contains all hits with SAINT score

�0.9. Fold change values represent fold change relevant to two closest GFP control samples in

regards to expression levels. Table of unique interactors lists host proteins only found as proxi-

mal interactors to a single SARS-Cov-2 protein. Remaining tables list full protein lists of each

SARS-CoV-2 protein with peptide counts found for each host proteins and all GFP controls.

(XLSX)

S2 Table. GO-term enrichment analysis. Complete list for each viral protein of Molecular

Function, Biological Process, and Cellular component GO-term analysis. Enrichment scores

are given as -Log10 p-values

(XLSX)

S3 Table. Druggable Gene List of SARS-CoV-2 Proximal Proteome. Complete table of host

genes found as proximal interactors of SARS-CoV-2 proteins. Drugs listed are reported inhibi-

tors of the indicated host protein.

(XLSX)

S4 Table. Key Oligos Used in This Study. Table of oligos used in this study for confirmation

of BASU-tagged constructs, sequences used in translation reporter assay, and peptide

sequences used in FRET-cleavage assay.

(XLSX)
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