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Wound repair is a complex and tightly regulated physiological process, involving

the activation of various cell types throughout each subsequent step (homeostasis,

inflammation, proliferation, and tissue remodeling). Any impairment within the correct

sequence of the healing events could lead to chronic wounds, with potential effects on the

patience quality of life, and consequent fallouts on the wound care management. Nature

itself can be of inspiration for the development of fully biodegradable materials, presenting

enhanced bioactive potentialities, and sustainability. Naturally-derived biopolymers are

nowadays considered smart materials. They provide a versatile and tunable platform

to design the appropriate extracellular matrix able to support tissue regeneration,

while contrasting the onset of adverse events. In the past decades, fabrication

of bioactive materials based on natural polymers, either of protein derivation or

polysaccharide-based, has been extensively exploited to tackle wound-healing related

problematics. However, in today’s World the exclusive use of such materials is becoming

an urgent challenge, to meet the demand of environmentally sustainable technologies to

support our future needs, including applications in the fields of healthcare and wound

management. In the following, we will briefly introduce the main physico-chemical and

biological properties of some protein-based biopolymers and some naturally-derived

polysaccharides. Moreover, we will present some of the recent technological processing

and green fabrication approaches of novel composite materials based on these

biopolymers, with particular attention on their applications in the skin tissue repair field.

Lastly, we will highlight promising future perspectives for the development of a new

generation of environmentally-friendly, naturally-derived, smart wound dressings.
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INTRODUCTION

Skin is our major external defense system, in charge of protecting our inner body structures
from microorganisms’ attacks, and the adverse effects of the external environment. Adult skin is
composed of three layers: epidermis or stratum corneum, mainly consisting of keratinocytes; dermis,
the connective tissue rich in collagen; and hypodermis or subcutaneous layer, composed of fat tissue,
which provides thermal isolation and mechanical protection to the body (Gurtner et al., 2008).
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Wounds are breaks or defects within the skin, which may form
due to physicochemical or thermal damage. Acute wounds define
injured tissues that need a healing period over 8–12 weeks,
(e.g., burns, chemical injuries, cuts). In contrast, chronic wounds
are a fallout of diseases, such as venous or arterial vascular
insufficiency, pressure necrosis, cancer, and diabetes (Sen et al.,
2009; Moura et al., 2013). They require longer healing time
(weeks-months to years) and often fail to reach a normal healthy
state, persisting in a pathological condition of inflammation
(Guo and Dipietro, 2010). Therefore, delayed or impaired wound
healing poses a significant socio-economic burden on patients
and health care systems worldwide, in terms of treatment costs
and waste production (Sen et al., 2009).

Insight into the intricate biochemical events activated during
skin repair is crucial to design appropriate wound dressings
(Weller and Sussman, 2006; Gurtner et al., 2008; Pereira et al.,
2013). The healing process can be divided into the following,
overlapping stages: homeostasis, inflammation, proliferation,
and remodeling (Martin, 1997; Gurtner et al., 2008; Bielefeld
et al., 2013; Das and Baker, 2016). Homeostasis is the immediate
response of the body to an injury, in order to stop blood loss at
the wound site, by means of fibrin cloths as temporary barriers
(Sinno and Prakash, 2013). Inflammation (form 24 h to 4–6 days)
is mediated by neutrophils and macrophages (Broughton et al.,
2006), that sweep the wound bed from foreign particles and
tissue debris. Cytokines and enzymes are released to stimulate
fibroblasts and myofibroblasts (Das and Baker, 2016), while
the wound exudate provides the essential moisture for the
recovery. In the proliferation phase epithelialization occurs and
newly formed granulation tissue begins to fill the wound area,
producing new extracellular matrix (ECM). Finally, during the
remodeling phase, collagen-based cross-linking is responsible for
a tight 3D network formation, increasing the tensile strength of
the new tissue (Sinno and Prakash, 2013).

Given the multiple mechanisms involved in the skin wound
healing and the interplay of several external factors, the choice
of suitable dressing materials is compelling. Specifically, for
biodegradable natural materials, their degradation needs to
follow the dynamics of the wound repair, guaranteeing the
physiological healing evolution, and releasing active principles
when needed. At last but not least, proper consideration
should be put onto the environmental sustainability of
these biomaterials, in terms of green chemistry fabrication
approaches, and complete biodegradation without harmful
by-products. While numerous reviews on traditional wound
dressing biomaterials have been extensively published (Sell et al.,
2010; Mogoşanu and Grumezescu, 2014; Norouzi et al., 2015;
Mele, 2016), in this mini-review we will focus our attention on
the most recent naturally-derived, active systems, pursuing the
quest for an environmentally sustainable wound management.

MIMICKING NATURE AS A THERAPEUTIC
STRATEGY

Successful wound management relies on understanding the
healing process combined with a know-how on the properties of
the various dressing materials available. Principal purpose of any

wound treatment is to maximize the treatment efficiency (Weller
and Sussman, 2006). Currently, standard care procedures consist
of swabbing the infection, cleaning the wound bed from tissue
debris, and applying the dressing (Dreifke et al., 2015). In case
of extended skin lesions, the use of split-thickness skin autografts
or allografts might be required, carrying safety issues related to
disease transmission and immune rejection.

An ideal dressing should remove excessive exudate to avoid
tissue maceration and promote autolytic debridement, while
keeping moisture, adequate oxygen and water vapor permeability
within the wound. It should be adhesive and flexible, to favor
mechanical compliance to the patient body and ease the
application/removal. Deliverable bioactive compounds, such as
antibiotics, essential oils, and natural antioxidants, stimulate
the dressing interaction with the wound microenvironment
and further enhance the therapeutic action via antimicrobial,
antifungal, and antiseptic activities (Pereira et al., 2013).
A number of fabrication techniques, such as film-casting,
electrospinning, self-assembly, freeze-drying, emulsions,
microsphere injection, have been employed to produce wound
dressings, either based on synthetic macromolecules or on
materials of natural origin (Sell et al., 2007, 2010; Wei and Ma,
2008; Huang and Fu, 2010; Zhong et al., 2010; Rieger et al., 2013;
Mogoşanu and Grumezescu, 2014; Norouzi et al., 2015; Liakos
et al., 2016; Mele, 2016).

Recently, natural biopolymers have largely attracted the
scientific community interest. On top of their notable
biocompatibility and biodegradability, natural occurring
proteins and polysaccharides allow to achieve the highest level
of biomimicry, recapitulating the native ECM biological and
physico-chemical features. Further architectural resemblance
can be obtained with an appropriate processing (e.g., nanofibers,
sponge-like hydrogels; Huang and Fu, 2010; Mogoşanu and
Grumezescu, 2014; Liakos et al., 2015; Mele, 2016). Despite their
batch-to-batch variations in terms of mechanical properties and
their rather limited shelf-life, naturally-derived biopolymers
confer ECM support (collagen, gelatin, hyaluronic acid),
present cell-recognition domains and biomolecule binding
sites (RGD and LDV sequences in silk fibroin and keratin),
and may possess inherent antibacterial and anti-inflammatory
properties (chitosan, alginate). Moreover, in the past decades,
clinical understanding advancements have directed significant
exploitation of natural materials in clinical trials (Vyas and
Vasconez, 2014; Dhivya et al., 2015). By looking into our natural
surroundings and by re-using some of the discarded natural
resources, several functional biomaterials can be easily identified
and implemented for promising wound healing applications,
with a reduced impact on the environment (Figure 1).

PROTEIN-BASED BIOPOLYMERS

Collagen and Gelatin
Collagen is the most abundant animal protein, which provides
mechanical strength to tissues and stimulates cell-adhesion
and proliferation (Neel et al., 2013; An et al., 2016). Twenty-
nine different types of collagen have been identified, displaying
a triple-helical tertiary structure of polypeptide sequences
(Figure 2a), but only a few are used in the production of
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FIGURE 1 | The circularity concept of Nature-mimicking for an environmentally-friendly wound healthcare. Self-growing biomaterials panel is adapted from Haneef

et al. (2017). This material is licensed under the Creative Commons Attribution 4.0 International Public License (https://creativecommons.org/licenses/by/4.0/

legalcode).

collagen-based biomaterials. As animal-derived proteins may be
responsible for allergic reactions and pathogen transmissions
(Koide, 2007), an alternative is constituted by collagen from
heterologous expression in mammalian, insect and yeast cells
(Olsen et al., 2003), or produced by Escherichia coli (Pinkas
et al., 2011). High biocompatibility and biodegradability by
endogenous collagenases make collagen ideal for biomedical
applications (Parenteau-Bareil et al., 2010; Chattopadhyay and
Raines, 2014). During wound healing, fibroblasts produce
collagen molecules that aggregate to form fibrils with diameter
in the range of 10–500 nm. This fibrous network facilitates cell
migration to the wounded site, actively supporting tissue repair
(Baum and Arpey, 2005).

Thanks to a facile chemical functionalization of the protein
structure, various dressing architectures have been exploited.
Collagen-based wound dressings, either in forms of hydrogels,
electrospun fibers, or nanocrystal-containing scaffolds, have been
applied to cover burn wounds, treat ulcers (Ghica et al.,
2017; Guo et al., 2017; Bhowmick et al., 2018; Yoon et al.,
2018), reduce tissue contraction and scarring, and increase
epithelialization rate (Powell et al., 2008). Collagen sponges
and fibrous membranes were found particularly promising, due
to their wet-strength that allows suturing to soft tissues and
provides a template for new tissue growth. Composites with
other natural materials, such as dextran, chitosan, hyaluronic
acid, and alginate (Karri et al., 2016; Ghica et al., 2017;
Wei et al., 2018) or constructs based on collagen and
synthetic biopolymers, such as poly-α-hydroxyl esters (Hall
Barrientos et al., 2017; Albright et al., 2018; Bhowmick et al.,
2018) have been extensively exploited. Moreover, acetylated,
succinylated, methylated, or biotinylathed collagen have been

used to immobilize therapeutic enzymes or growth factors
and to control drug delivery (Lima et al., 2015; Mele, 2016;
Qu et al., 2018; Zhu et al., 2018). Albright and coworkers
(Albright et al., 2018) proposed a multi-structured nanofibrous
dressing, composed of poly-ε-caprolactone/collagen electrospun
matrix, loaded with transforming growth factor TGF-β1 and
modified with polypeptide-based nanocarriers incorporating
tannic acid and gentamicin. The multifunctional platform
showed anti-bacterial and anti-inflammatory properties, while
retaining a favorable topography for cell proliferation, thus
accelerating healing and wound closure. A similar construct was
proposed by Karri et al. (2016), where a composite scaffold
of collagen and alginate was impregnated with curcumin-
loaded chitosan nanoparticles to obtain an all-natural wound
dressing.

A collagen-derivative with promising biomedical values is
gelatin. Gelatin is obtained by an incomplete denaturalization
of collagen extracted from connective tissues, skin, and
boiling bones (Jaipan et al., 2017). It has been employed to
fabricate strong hydrogel-like membranes (Thanusha et al.,
2018), microspheres (Thyagarajan et al., 2017), sponges,
and electrospun mats (Chen et al., 2016), for dermal tissue
applications and to treat severe burn wounds. Various
combinations of gelatin and modified chitosan have been
proposed (Han et al., 2014; Agarwal et al., 2016), as well as blends
with poly-vinyl alcohol based via enzymatic crosslinking, to
support fibroblast culture and proliferation (Hago and Li, 2013).

Despite their rather extensive usage as biomaterials for
scaffold design, collagen and gelatin remain sustainable materials
with highly engineering potential yet unexplored (Hall Barrientos
et al., 2017; Golser et al., 2018).
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FIGURE 2 | Naturally-derived biopolymer-based structures with potential application as wound healing systems. (a) examples of protein-based biopolymers primary

structures—aminoacidic sequence of collagen type I molecules and aminoacidic sequence of silk fibroin molecules: Gly, glycine; Ala, alanine; Pro, proline; Ser, serine;

Hyp, hydroxyproline; (b) natural polysaccharide structures—hyaluronic acid, chitosan, and alginate; (c,d) Biocompatible silk/parsley electrospun fibers (average

diameter 50 nm) able to grow NIH3T3 fibroblast cells adapted with permission from Guzman-Puyol et al. (2016) Copyright©2016 American Chemical Society;

(e,f) wool keratin sponges, reprinted from Patrucco et al. (2016) Copyright©2016 with permission from Elsevier; (g) calcium cross-linked alginate beads and (h) film

incorporating antiseptic PVPI complex, reprinted from Liakos et al. (2013) Copyright©2013 with permission from Elsevier; (i,l) mycelia material from P. ostreatus after

20 days of growth on potato-dextrose broth and cellulose, presenting a 3D network of hyphae. Panels (i,l) are adapted from Haneef et al. (2017). This material is

licensed under the Creative Commons Attribution 4.0 International Public License (https://creativecommons.org/licenses/by/4.0/legalcode).

Silk Fibroin
Silks are proteins produced in the epithelial cells of specialized
glands of various arthropods, such as spiders and silkworms.
The secreted silk fibers present a highly repetitive sequence,
consisting mainly of glycine (43%), alanine (30%), and serine
(12%)—[GAGSGA]n motifs, arranged in β-sheets regions
embedded in an amorphous matrix (Chutipakdeevong et al.,
2013; Reimers et al., 2015), which confer high toughness and
elasticity (Figure 2a). Regarding more specifically silk from the
cocoons of Bombyx mori silkworms, two kinds of proteins
are its major components: the fibroin and the sericin. The
fibroins are composed of three types of protein fibers: 350 kDa-
heavy chain, 30 kDa-glycoprotein, and 25 kDa-light chain, the

latter conferring hydrophilicity, water uptake ability and cell
adhesion properties. Light and heavy chains are connected by
disulfide bonds, while the glue protein sericin coats the silk
fibers. Thanks to high mechanical resistance, enzymatic-driven
biodegradability and favorable cell attachment, silk fibroins have
been successfully exploited for skin tissue engineering andwound
healing applications.

Bombyx mori silkworm-derived fibroins are obtained from
cocoon and separated from sericin by degumming in alkaline
boiling water and following solubilization in hot LiBr solution
(Reimers et al., 2015). Regenerated silk water soluble form, silk
I, can be converted into insoluble silk II, by modifying the
α-helical chain arrangements into β-sheets via alcohol treatment
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or water vapor annealing (WVA; Min et al., 2006; Wharram
et al., 2010; Hu et al., 2011). In fact, by controlling the protein
secondary structure, fibroin scaffolds’ biodegradation can be
properly tuned, in order to modulate the release of bioactive
molecules (Hofmann et al., 2006), such as antibiotics (Pritchard
et al., 2013; Chouhan et al., 2017), growth factors (Schneider
et al., 2009; Chouhan et al., 2017; Pignatelli et al., 2018), and
anti-oxidant compounds (Fan et al., 2012; Sheng et al., 2013; Lin
et al., 2016). In their study, Pignatelli and coworkers (Pignatelli
et al., 2018) encapsulated human platelet lysate into electrospun
silk-PEO patches, to prolong the growth factor shelf life and
ease its handling during wound management. By changing the
crystallinity degree of the fibrous matrices via WVA from 21 to
35 or 44%, the 24-h drug release drastically decreased from 100
to 80 and 46%, respectively.

Proteins’ versatile nature allows for a plethora of processing
techniques, with the consequent fabrication of multiple scaffold
morphologies, such as films (Srivastava et al., 2015), foams and
sponges (Roh et al., 2006), gels, and fibrous matrices. In the last
decade, electrospun fibroin has been extensively proposed for
the design of anti-bacterial, anti-inflammatory and anti-oxidant
patches (Lin et al., 2016; Selvaraj and Fathima, 2017; Yang et al.,
2017). To ease a water-based electrospinning process, silk has
been processed either in combination with natural polymers,
such as cellulose (Guzman-Puyol et al., 2016; Figures 2c,d),
gelatin (Shan et al., 2015), sericin (Hang et al., 2012), chitosan
(Cai et al., 2010), alginate (Roh et al., 2006), elastin (Zhu
et al., 2016), and hyaluronic acid (Yan et al., 2013), or mixed
with synthetic materials, such as polyethylene oxide (Schneider
et al., 2009; Wharram et al., 2010; Chutipakdeevong et al.,
2013), polyvinyl alcohol (PVA; Chouhan et al., 2017), and poly-
hydroxy esters (Lian et al., 2014; Shahverdi et al., 2014; Suganya
et al., 2014; Shanmugam and Sundaramoorthy, 2015). Silk/PVA
mats loaded with Ciprofloxacin and epidermal growth factors
(Chouhan et al., 2017) enhanced human dermal fibroblasts and
keratinocytes proliferation in vitro, and favored re-epithelization,
mature collagen deposition and complete wound closure at 14
days in a in vivo wound healing rabbit model. In a different
work, Ju and coworkers (Ju et al., 2016) investigated the intrinsic
anti-inflammatory effects of a porous fibroin/PEO electrospun
nanomatrix in a mice burn-model, observing downregulation of
pro-inflammatory cytokines IL-1α and IL-6.

Keratin
Keratins (Ker) are the most abundant group of insoluble
and filament-forming proteins produced in epithelial cells of
mammals, birds, reptiles, and humans. As structural components
of wool, nails, horn, feathers, and hair, they exploit mechanical
support and protective functions against the environment
(Reichl, 2009; Wang et al., 2016). Keratins present a complex
intermediate filament (IF)-matrix hierarchical structure and
are categorized according to the polypeptide chain secondary
assembly. α-Ker (40–68 kDa) comprise α-helices arranged in
coiled-coil heterodimers to form 7-nm IF, while β-Ker (10–22
kDa) consist of packed β-sheets disposed in 3-nm IF. The high-
sulfur containing matrix (γ-Ker, below 10 kDa), rich in cysteine,
tyrosine, glycine and phenylalanine residues, present a globular

assembly (Dowling et al., 1986; Fraser et al., 1986; Steinert
and Marekov, 1993; Rouse and Van Dyke, 2010; Wang et al.,
2016). The secondary structure of keratinous materials largely
affects their mechanical resistance, solubility, and hydration
sensitivity (Wang et al., 2016). Tons of Ker-containing biomasses
are produced every year, from meat and poultry market, wool
industry and hair salons, leading to continuous accumulation
of wastes in the ecosystem. The challenges associated with
this waste disposal have been considered by the European
Parliament and Council regulation EC 1774/2002 (Sharma
and Gupta, 2016). Due to the presence of strong disulfide
and H-bonds, keratin extraction from biomasses involves
rather complicated methods, such as microbial and enzymatic
hydrolysis, mechanical treatments, or chemical protocols with
alkali, reducing agents or ionic liquids (Yamauchi et al., 2003;
Ozaki et al., 2014; Sharma andGupta, 2016; Shavandi et al., 2017).

However, thanks to its biocompatibility, biodegradability,
and hemostatic properties, keratin constitutes a potential green
secondary raw material for wound healing, tissue repair, drug
delivery, and cosmetics applications (Sharma and Gupta, 2016;
Arslan et al., 2017; Shavandi et al., 2017). Since its earliest
documented use in medicinal applications (China, sixteenth
century; Rouse and Van Dyke, 2010), in the past decades
several Ker-based biomaterials have been proposed, given the
ability of this biopolymer to self-assembly into 3D networks
favorable for cell infiltration, and its intrinsic bioactivity for the
presence of cell binding motifs (such as EDS, LDV, and RGD;
Rouse and Van Dyke, 2010). Keratin extracted from chicken
feathers, wool and human hair have been processed in films
(Yamauchi et al., 2003; Fujii and Ide, 2004; Tonin et al., 2007;
Reichl, 2009; Cui et al., 2013), sponge-like and hydrogel-like
scaffolds for tissue engineering and wound healing (Figures 2e,f;
Tachibana et al., 2002; Verma et al., 2008; Hill et al., 2010;
Saul et al., 2011; Richter et al., 2012; Wang et al., 2012; Xu
et al., 2013; Patrucco et al., 2016; Singaravelu et al., 2016).
Electrospun fibers have also been obtained in combination with
PEO (Aluigi et al., 2007, 2008; Fan et al., 2016; Ma et al., 2017),
PVA (Choi et al., 2015; He et al., 2017; Wang et al., 2017),
fibroin (Zoccola et al., 2008; Yen et al., 2016), poly-caprolactone
(Boakye et al., 2015; Edwards et al., 2015; Li et al., 2016;
Zhu et al., 2017), poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(Yuan et al., 2015), chitosan (Singaravelu et al., 2016), and gelatin
(Yao et al., 2017).

NATURALLY-DERIVED
POLYSACCHARIDES

Hyaluronic Acid
Hyaluronic acid (HA) is a non-immunogenic polysaccharide
consisting of glucuronic acid and N-acetyl-D-glucosamine
units (Figure 2b). This glycosaminoglycan is one of the main
components of the connective tissue in mammals (Mele, 2016).
Due to its hygroscopic nature, HA has been used to prepare
hydrogel-like constructs, to support keratinocyte migration and
angiogenesis, and promote a scar-free wound healing (Mogoşanu
and Grumezescu, 2014; Dreifke et al., 2015). The molecular
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weight (MW) plays a key role in the process (Tolg et al.,
2014): low MWHA degradation products were found to be pro-
inflammatory (Campo et al., 2010; Dreifke et al., 2015), while
high MWHA appeared to inhibit nutrient supply. Interestingly,
medium MWHA (100–300 kDa) showed enhanced wound
closure capability through up-regulation of adhesion molecules
(Ghazi et al., 2012). Moreover, the hydrophilicity of the HA
chains allows the 3D network swelling and the consequent
gradual release of encapsulated active compounds, making
this biomaterial suitable as drug delivery platform (Maeda
et al., 2014). HA-based electrospun fibers, either pure or in
combination with other biomacromolecules (Xu et al., 2009; Hsu
et al., 2010; Uppal et al., 2011; Dogan et al., 2016), have been
proposed for tunable degradation and sustained release in vitro
and in vivo.

Chitosan
Chitosan (CS), a deacetylated chitin-derivative found in
the exoskeletons and shells of crustaceans, is a linear
polysaccharide consisting of β(1-4)-D-glucosamine
and N-acetyl-D-glucosamine groups randomly distributed
(Figure 2b). Owing to its intrinsic antifungal, antibacterial,
hemostatic, and muco-adhesive properties, chitosan has been
widely exploited in the biomedical field for wound and burn
treatments (Dash et al., 2011; Croisier and Jérôme, 2013; Norouzi
et al., 2015; Zhao et al., 2015). Several dressing architectures
have been proposed: CS-Aloe vera membranes (Wani et al.,
2010), thyme oil-CS films (Altiok et al., 2010), CS-gelatin
sponges (He et al., 2007), CS-silk hydrogels (Silva et al., 2012),
CS-cellulose films (Niyas Ahamed and Sastry, 2011; Romano
et al., 2015a), cinnamon oil-CS/polyethylene oxide nanofibers
(Rieger and Schiffman, 2014), and CS/poly(3-hydroxybutyrate-
co-3-hydroxyvalerate) scaffolds (Veleirinho et al., 2012). In
addition, water-soluble derivatives, such as carboxymethyl-
CS and methacrylate glycol CS have been synthetized and
investigated for wound healing applications (Romano et al.,
2015b).

Alginate
Alginate (Alg) is a linear co-polymer of β-D-Mannuronic
acid and α-L-Glucuronic acid (Figure 2b). This polysaccharide
is mostly abundant in Brown Algae or produced by some
bacteria (Khan and Ahmad, 2013). It is highly hydrophilic,
biocompatible, and able to absorb wound exudate, maintaining
a moist microenvironment (Chiu et al., 2008). The combination
of alginate with antimicrobial and enzymatic components can
promote elimination of necrotic tissues and microbial bodies,
while the polysaccharide base can stimulate reparative wound
processes (Patel et al., 2007). Alginate dressings are also useful
as delivery platforms, in order to provide a controlled release of
therapeutic substances to exuding wounds (e.g., pain-relieving,
antibacterial, and anti-inflammatory agents; Maver et al., 2015;
Szekalska et al., 2016; Setti et al., 2018). Biodegradable Na-
Alg/PVPI (povidone iodine complex) films and Ca-Alg/PVPI
beads have displayed antimicrobial and antifungal activities
(Liakos et al., 2013; Figures 2g,h). Moreover, Na-Alg/PVPI films
have shown to reduce the inflammatory response and accelerate

the wound healing providing a controlled release of PVPI
(Summa et al., 2018). To treat UV-induced skin burns, instead,
electrospun nanofibers loaded with lavender essential oil have
been used: the composite mats exhibited antibacterial and anti-
inflammatory properties, being able to reduce the production of
pro-inflammatory cytokines both in vitro and in vivo (Hajiali
et al., 2016).

SELF-GROWING MYCELIUM-BASED
BIOMATERIALS

Mycelium, the fungi vegetative part, comprises a network of
filamentous hyphae, which penetrate the substrate. Hyphae
are tubular structures of micrometric diameter, composed of
aligned and elongated cells, separated by walls, called septa
(Figures 2i,l). A continuous cell wall protects the hyphae and
confers mechanical strength and shape to the mycelium (Haneef
et al., 2017; Jones et al., 2017). Being constituted of chitin,
chitosan, glucans, mannoproteins, and glycoproteins (Synytsya
and Novák, 2013), the cell wall is a biopolymer composite that
prevents the hyphae from collapsing during their sprouting and
movement (Cairney, 2005).

Peculiarity of these living, self-growing composites is the
possibility to tune the physico-chemical properties during
their growth phase, reducing sophisticated processing and by-
product formation, while allowing for ready-to-use systems.
Throughout its dynamic growth, the mycelium “senses” the
substrate and responds to the surrounding, depending on
edaphic conditions, substrate pH and composition, or the
presence of other living organisms (Krull et al., 2013). A
polarized extension of the cell wall occurs at the apical region
of the hyphae, as the mycelium secretes a variety of enzymes,
hydrolyzes the substrate and absorbs the solubilized nutrients.
By properly exploiting different feeding substrates for hyphae
digestion, the resulting properties of the interwoven fibrous
mycelium material can be efficiently tailored. Type and amount
of absorbed nutrients may affect mycelia growth rate, extension
and biological activity (Frimpong-Manso et al., 2011; Da Silva
et al., 2012; Larsen, 2015; Anderson andCairney, 2018). Similarly,
culture conditions and feeding substrate highly influence the
final chemical composition (Krull et al., 2013; Haneef et al.,
2017), either stimulating plasticizer biosynthesis (lipids and small
glycoproteins) or promoting rigid macromolecule production
(chitin, β-D-glucans; Synytsya and Novák, 2013). In this regard,
mycelia can be considered as 3D smart, micro-reactors, able to
bio-convert various agro-residues into enzymes, polysaccharides,
and bioactive metabolites (Vassilev et al., 1995; Krull et al., 2013;
Vamanu, 2014; Yan et al., 2014; Salati et al., 2017), with potential
bio-pharmaceutical and neutraceutical relevance.

In the past, mycelia-derived scaffolds have been exploited (Su
et al., 1999, 2005; Hung et al., 2001). Su et al. (1997) developed a
filament-structured membrane from the residue of Ganoderma
tsugae, called Sacchachitin, composed of β-1,3-glucan (60%),
and N-acetylglucosamine (40%), to be used as skin substitute.
The new biomaterial demonstrated wound healing potential in
vivo, by promoting fibroblast proliferation and migration. In a
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following study (Su et al., 2005), the Sacchachitin membranes
appeared to boost keratinocytes proliferation and prevent
metalloproteinase-related ECM degradation, contributing to
accelerate the healing process of a chronic wound in vivo
model. Furthermore, a micronized Sacchachitin nanogel has
been investigated to treat superficial chemical corneal burns in
vivo (Chen et al., 2012), while the anti-oxidant and immuno-
modulating effects of extracts from mycelia of some medicinal
fungi have been investigated for skin aging (Kim et al., 2014),
dermatitis (Hwang et al., 2012), and UV-protection (Nanbu et al.,
2011; Bae et al., 2012), suggesting a promising mycelia biological
value yet unexplored.

CONCLUSIONS - A QUEST FOR AN
ENVIRONMENTALLY SUSTAINABLE
WOUND MANAGEMENT

Environmental sustainability has nowadays become an
imperative issue to front, in an effort to balance both the
industrial productivity and the planet ability to generate
resources, with the neutralization of wastes and the mitigation
of polluting processes. Material and energy consumption related
to the healthcare industry, ranging from complex material
manufacturing processes, to drug packaging, to high-volume

medical wastes, might heavily contribute to increase the
overall pollution, with an unsought negative impact on the
human health (Jameton and Pierce, 2001). Nature itself can
be of inspiration to develop cost-competitive, low-energy
consumption and fully biodegradable materials, presenting
greater environmental sustainability. The increasing interest
of the scientific community in the use of either protein-based
or polysaccharide-derived dressings is striking, and it reflects
the growing perspective of giving back what we borrowed
from Nature. In this regard, self-growing mycelia, which are
biocomposites constituted of both proteins and polysaccharides,
can represent a smart strategy to fabricate healthcare products
of the future, as economically and environmentally valid
alternatives to synthetic materials. In conclusion, naturally
derived biopolymers provide a versatile, multifunctional,
and tunable platform to design appropriate extracellular
environments, able to actively contrast the onset of infections and
inflammations, while promoting tissue regeneration, and scar
remodeling.
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