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Background: Atrial fibrosis caused by long-term atrial fibrillation influences the outcomes of clinical 
treatment. An improved understanding of the mechanisms underlying atrial fibrillation may reveal new 
therapeutic targets. This study was conducted to analyze the changes in protein levels in the atrial tissue of a 
rat model of atrial fibrillation based on proteome sequencing.
Methods: Sprague–Dawley rats were used to develop a model of atrial fibrillation induced by chronic 
intermittent hypoxia (CIH). Histopathological changes were detected using hematoxylin and eosin staining 
and Masson’s staining, and immunohistochemistry and western blotting for the levels of fibrosis biomarkers. 
Atrial fibrosis tissue samples were also evaluated by proteome sequencing. Differentially expressed proteins 
(DEPs) between the CIH and control groups were evaluated in functional assay. The expression levels of 
several key proteins were validated using western blotting. 
Results: CIH resulted in atrial fibrosis and induced atrial fibrillation. We identified 145 DEPs between the 
CIH and control groups. These included Myh7, Myl2, Myl3, and Atpla3, which are involved in signaling 
pathways related to hypertrophic cardiomyopathy, glycerolipid metabolism, and cardiac muscle contraction. 
Western blotting revealed the upregulation of Myh7, Myl2, and Myl3 and the downregulation of Atpla3 in 
the CIH group compared with the control group. These results were consistent with the sequencing results.
Conclusions: Myh7, Myl2, Myl3, and Atpla3 may play key roles in the progression of atrial fibrillation 
through their involvement in cardiovascular-disease-related signaling pathways.
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Introduction

Atrial fibrillation (AF) is a common type of tachyarrhythmia 
with an occurrence rate of 2% (1). As the global population 
ages, the prevalence of AF is increasing (2). Disordered 
contraction of the atria in AF may lead to thrombus 
shedding, resulting in cerebral and pulmonary embolisms. 
Moreover, a long-term rapid ventricular rate can induce 
heart failure, seriously affecting patients’ quality of life (3). 
The current clinical treatment for AF includes medical and 
surgical interventions. The goal of medical interventions 
is to convert the sinus rhythm or control the ventricular 
rate and prevent thrombosis. Treatment methods mainly 
involve radiofrequency ablation or left atrial appendage  
occlusion (4). However, the cure rate of AF remains low, 
and atrial fibrosis caused by long-term AF influences 
the outcomes of clinical treatment (5). An improved 
understanding of the mechanisms underlying AF may reveal 
new therapeutic targets.

Proteins play key roles in many cellular processes, 
and dysregulation of proteins may lead to disease (6).  
Characterizing specif ic  proteins is  important for 
understanding disease development (7). Proteomics based 
on mass spectrometry (MS) has been widely performed over 

the past decade (1) and has revealed detailed information on 
the pathological mechanisms underlying the development 
of AF. For instance, Mayr et al. identified 17 differentially 
expressed proteins (DEPs) between patients with persistent 
AF and those with sinus rhythm using proteome analysis (8). 
Additionally, Zhang et al. analyzed proteins in the left and 
right atria of patients with AF resulting from mitral valve 
disease and identified 223 DEPs in these patients compared 
with patients with sinus rhythm (9). Although these 
dysregulated proteins are potential targets for AF treatment, 
few proteins have been validated as targets for AF treatment 
by using alternative technologies (10).

As a characteristic change in atrial structural remodeling 
in AF, atrial fibrosis provides a basis for the induction and 
maintenance of AF. We previously constructed a rat model 
of atrial fibrosis using the chronic intermittent hypoxia 
(CIH) method (11). In the current study, we performed 
proteome sequencing and detected DEPs in atrial samples 
between CIH and control groups. Additionally, the 
functions and pathways associated with these DEPs and 
their interactions were identified. The expression levels 
of several key proteins were further validated. This study 
was conducted to understand the changes occurring in 
protein levels in the atrial tissue in AF and determine 
the mechanism whereby atrial fibrosis contributes to AF 
progression. We present this article in accordance with 
the ARRIVE reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-23-704/rc).

Methods

Animal experiments

Thirty-two male Sprague-Dawley rats aged 6 weeks 
(weighing 150–200 g) were provided by the Second Hospital 
of Tianjin Medical University and Tianjin Institute of 
Cardiology, China. The rats were allowed to acclimate for  
1 week at 25±2 ℃ with a photoperiod of 12 h/12 h. They 
were then weighed, sorted by weight, and randomly 
assigned to CIH (n=16) or control groups (n=16) with 
random number table. The rats were maintained under 
sterile conditions and given free access to water and food. 
Rats in the CIH group were subjected to 7 h of intermittent 
hypoxia every day for 8 weeks to establish an AF model, 
as previously described (12). After 8 weeks, the rats were 
weighed, and echocardiography was performed. Atrial 
tissues were collected from the rats after intraperitoneal 
anesthesia with 3% amobarbital sodium and the tissues 
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were stored at −80 ℃ until analysis. The animals died 
during model establishment were excluded from analysis. 
Experiments were performed under a project license 
(No. TMUaMEC2016012) granted by the Animal Care 
and Ethics Committee of Tianjin Medical University, in 
compliance with institutional guidelines for the care and 
use of animals. A protocol was prepared before the study 
without registration.

Hematoxylin-eosin staining, Masson’s trichrome staining, 
and immunohistochemistry

Histopathological changes were determined using 
hematoxylin and eosin staining, and myocardial fibrosis was 
visualized using Masson’s trichrome staining.

For immunohistochemistry, the atrial tissues were 
cleaned with a phosphoric acid buffer solution, followed 
by paraformaldehyde fixation, ethanol dehydration, and 
paraffin embedding. The paraffin block was sectioned at 
a thickness of 0.05 mm, and the sections were immersed 
in citrate buffer for antigen retrieval. They were then 
incubated with primary and secondary antibodies (Table 1)  
to detect the expression of fibrosis indicators, including 
connective tissue growth factor (CTGF), collagen I (Col I), 

Col III, matrix metalloproteinase 2 (MMP2), MMP9, alpha-
smooth muscle actin (α-SMA), and transforming growth 
factor-β1 (TGF-β1). Histological slices were observed 
under a microscope (Olympus, Tokyo, Japan), and areas of 
positive staining were quantified using Image-Pro software 
(Media Cybernetics, Rockville, MD, USA).

Western blotting

Proteins were extracted from atrial tissues (50 mg), and their 
concentrations were determined using the bicinchoninic 
acid method. The proteins were then transferred onto a 
methanol-activated polyvinylidene fluoride membrane, 
which was blocked with 5% bovine serum albumin. The 
membrane was incubated with primary antibodies (rabbit 
polyclonal anti-Col I, -Col III, -CTGF -MMP2, -MMP9, 
-α-SMA, -TGF-β1, -Myh7, -Atp1a3, -Myl2, and -Myl3 
antibodies) overnight in a shaker at 4 ℃. After rinsing, the 
membrane was incubated with a horseradish-peroxidase-
labeled secondary antibody (1:10,000) for 45 min. Finally, 
the bands were visualized using an EZ-ECL kit. ImageJ 
software (NIH, Bethesda, MD, USA) was used for grayscale 
measurements. Detailed information on the primary and 
secondary antibodies is presented in Table 1.

Table 1 Primary and secondary antibodies used in immunohistochemical assay and western blot

Antibodies Dilution (IHC/WB) Solvent (IHC/WB)

Primary antibodies

Rabbit anti-collagen I antibody (ab270993) 1:500/1:1,000 PBS/TBST

Rabbit anti-collagen III antibody (ab7778) 1:200/1:5,000 PBS/TBST

Rabbit anti-CTGF (ab227180) 1:100/1:1,000 PBS/TBST

Rabbit anti-TGF-β1 (ab170874) 1:150/1:1,000 PBS/TBST

Mouse anti-MMP2 (ab86607) 1:200/1:1,000 PBS/TBST

Rabbit anti-MMP9 (ab76003) 1:1,000/1:5,000 PBS/TBST

Mouse anti-α-SMA (ab7817) 1:200/1:1,000 PBS/TBST

Rabbit anti-Myh7 (ab172967) –/1:5,000 –/TBST

Mouse anti-Atp1a3 (ab2826) –/1:1,000 –/TBST

Rabbit anti-Myl2 (ab92721) –/1:10,000 –/TBST

Rabbit anti-Myl3 (ab108516) –/1:10,000 –/TBST

Mouse anti-β-actin (ab8226) –/1:5,000 PBS/TBST

Secondary antibodies

Goat anti-rabbit IgG-HRP (ab7090) 1:5,000 PBS/TBST

Goat anti-mouse IgG-HRP (ab97040) 1:5,000 PBS/TBST

IHC, immunohistochemistry; WB, western blotting; PBS, phosphate buffer saline; TBST, Tris buffered saline tween; CTGF, connective 
tissue growth factor; TGF, transforming growth factor; MMP, matrix metalloproteinase; SMA, smooth muscle actin; Myh, myosin heavy 
chain; Atp1a3, ATPase Na+/K+ transporting subunit alpha 3; Myl, myosin light chain; IgG, immunoglobin G; HRP, horseradish peroxidase. 
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Tandem mass tag-based quantitative proteomics

Protein extraction and quantification
Three atrial samples from rats in each of the two groups 
were randomly selected and used for quantitative 
proteomics. The samples were transferred into centrifuge 
tubes, to which radioimmunoprecipitation assay lysis buffer 
(300 μL) and phenylmethylsulfonyl fluoride (Sigma, St. 
Louis, MO, USA) were added, followed by centrifugation 
at room temperature. The protein concentration in the 
supernatant was determined using the bicinchoninic acid 
method (13).

Protein (10 μg) was extracted and separated using 12% 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 
The gel was stained with Coomassie brilliant blue (14) and 
scanned using an ImageScanner scanner (GE Healthcare, 
Chicago, IL, USA) in full-color mode.

Tandem mass tag labeling
After quantification, 100 μg of protein was added to a  
10 K ultrafiltration tube, and 120 μL of reducing agent 
buffer (10 mM dithiothreitol, 8 M urea, 100 mM tetraethyl-
ammonium bromide, pH 8.0) was reacted with the protein 
sample at 60 ℃ for 1 h. Iodoacetamide was added to a final 
concentration of 50 mM and reacted for 40 min in the 
dark. After centrifugation, the supernatant was collected,  
100 μL of tetraethyl-ammonium bromide buffer (300 mM) 
was added, and the mixture was centrifuged for 20 min. 
Next, 100 μL of tetraethylammonium bromide (TEAB) 
buffer (300 mM) and 2 μL of sequence-grade trypsin 
solution (1 μg/μL) were added. After performing the 
reaction for 12 h, centrifugation was performed, and the 
peptides were collected following enzymatic hydrolysis. 
TEAB buffer was added again, and the bottom layer was 
collected, centrifuged, and lyophilized. Next, 100 μL of 
TEAB buffer (200 mM) was added to the lyophilized 
sample, and 40 μL of the resulting sample was transferred 
to a 1.5 mL tube for the labeling reaction. Anhydrous 
acetonitrile (41 μL) was added to the tubes containing the 
tandem mass tags and the resulting mixture was added to 
the sample and allowed to react for 1 h. Finally, 8 μL of 
5% hydroxylamine was added to quench the reaction. The 
samples were then lyophilized and stored at −80 ℃.

Reversed-phase chromatographic separation
Samples were fractionated using an Agilent 1100 HPLC 
system (Agilent Technologies, Santa Clara, CA, USA). 
The peptide mixture was loaded onto an Agilent Zorbax 
Extend-C18 reversed-phase column (2.1×150 mm, 5 μm). 

The detection wavelengths were 210 and 280 nm. Solvent 
A was acetonitrile-H2O (2:98, v/v), and solvent B was 
acetonitrile-H2O (90:10, v/v). The flow rate was set at  
300 μL/min. The gradient elution conditions were: 
98% A (0–8 min); 98–95% A (8–8.01 min); 95–75% A  
(8.01–38 min); 75–60% A (38–50 min); 60–10% A  
(50–50.01 min); 10% A (50.01–60 min); 10–98% A  
(60–60.01 min); and 98% A (60.01–65 min). Ten fractions 
were collected each minute for 8–50 min.

Liquid chromatography-tandem MS analysis
The samples were injected into a C18 column (75 μm ×  
150 mm, C18, 2 μm, 100 Å; Acclaim PepMap RSLC; 
Thermo Fisher Scientific, Waltham, MA, USA) for gradient 
elution (flow rate: 300 nL/min). Solvent A was H2O-
formic acid (99.9:0.1, v/v), and solvent B was acetonitrile-
H2O-formic acid (80:19.9:0.1, v/v/v). The gradient elution 
conditions were 8% B (0–55 min), 30% B (55–79 min), 
50% B (79–80 min), and 100% B (80–90 min).

The first stage of MS quality resolution was 70,000, and 
the automatic gain control value was 1e6. MS scanning was 
set to m/z 300–1,600, and the 10 highest peaks were subjected 
to tandem MS (MS/MS) scanning. All MS/MS maps were 
collected via high-energy collision cracking in the data-
dependent positive ion mode (collision energy, 32; MS/MS 
resolution, 17,500; automatic gain control, 2e5; maximum ion 
accumulation time, 80 ms; dynamic exclusion time, 15 s).

Data analysis

Data were analyzed using Proteome DiscovererTM 2.2 
software (Thermo Fisher Scientific). The UniProt rat 
database was used for this study.

Bioinformatics analysis

The results of liquid chromatography-MS/MS analysis 
were screened using a  Sequest  HT score >0 and  
≥1 unique peptides after removing blank values. The DEPs 
between the CIH and control groups were identified based 
on thresholds of fold-change >1.2 or <5/6 and P<0.05. 
Correlations among the DEPs were analyzed based on 
Pearson’s algorithm.

The OmicsBean omics database platform was used to 
perform Gene Ontology (GO) (15) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway (16) enrichment 
analyses of the DEPs. The GO annotations included 
biological process (BP), molecular function (MF), and 
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cellular component (CC). The top ten BP, CC, and MF 
items and the top 11 KEGG pathways were displayed.

The interactions between the DEPs and pathways were 
analyzed using OmicsBean. The interaction network of the 
ten most significant pathways in the KEGG results and their 
interacting proteins were visualized using Cytoscape (17).

Enzyme-linked immunosorbent assay (ELISA)

The serum concentrations of key DEPs, including Myh7, Myl2, 
Myl3 and Atpla3, of the rats in the Cont and CIH groups were 
determined using ELISA kits according to the manufacturer’s 
instructions (Cloud-Clone Corp., Wuhan, China).

Statistical analysis

Statistical analyses were performed using SPSS 19.0. 
Student’s t-tests were used to assess differences between 
the two groups. Statistical analysis was performed by 
authors who were not aware of the group allocation of the 
experiment. Data points with a high degree of dispersion 
were excluded from analysis. P<0.05 was considered to 
indicate statistical significance.

Results

Model validation

The echocardiography results showed that the left atrial 
diameter (5.08±0.29 vs. 4.58±0.39 mm), left ventricular 
end-diastolic diameter (7.92±0.50 vs. 7.50±0.41 mm), left 
ventricular end-systolic diameter (4.94±0.44 vs. 4.42±0.31 mm),  
diastolic left ventricular volume (338.76±46.72 vs. 
299.39±35.70 μL), and systolic left ventricular volume 
(116.00±23.35 vs. 89.36±14.74 μL) in the CIH group 
increased significantly compared with those in the control 
group (n=15, P<0.05). Additionally, the interventricular septal 
thickness (1.78±0.13 vs. 2.07±0.22 mm), systolic ventricular 
septal thickness (2.79±0.27 vs. 3.16±0.25 mm), left ventricular 
posterior wall depth (1.95±0.21 vs. 2.19±0.26 mm), left 
ventricular posterior wall thickness during systole (2.95±0.30 
vs. 3.21±0.28 mm), left ventricular fractional shortening 
(37.70%±3.15% vs. 41.03±2.62%), and left ventricular 
ejection fraction (65.83%±3.88% vs. 70.17%±3.11%) in the 
CIH group decreased significantly compared with those in 
the control group (n=15, P<0.05). Ultrasound data showed 
that CIH led to left atrial enlargement and a decline in 
left ventricular function in the rats (Table 2, Figure 1A). AF 

Table 2 Rat caudal artery blood pressure and echocardiography data

Variables CONT (n=15) CIH (n=15) P

mPAP (mmHg) 69.63±2.22* 66.62±2.86 0.003

LAD (mm) 4.58±0.39 5.08±0.29* <0.001

IVS-D (mm) 2.07±0.22* 1.78±0.13 <0.001

IVS-S (mm) 3.16±0.25* 2.79±0.27 <0.001

LVEDD (mm) 7.50±0.41 7.92±0.50* 0.018

LVESD (mm) 4.42±0.31 4.94±0.44* <0.001

LVPW-D (mm) 2.19±0.26* 1.95±0.21 0.009

LVPW-S (mm) 3.21±0.28* 2.95±0.30 0.022

LVvol-D (µL) 299.39±35.70 338.76±46.72* 0.015

LVvol-S (µL) 89.36±14.74 116.00±23.35* 0.001

LVEF (%) 70.17±3.11* 65.83±3.88 0.002

FS (%) 41.03±2.62* 37.70±3.15 0.004

BP-S (mmHg) 124.07±10.12 128.00±6.88 0.224

BP-D (mmHg) 88.27±12.07 94.60±14.04 0.196

Data are presented as mean ± standard deviation. *, P<0.05 compared with CONT (n=15). CONT, control; CIH, chronic intermittent 
hypoxia; mPAP, mean pulmonary artery pressure; LAD, left atrial diameter; IVS-D, interventricular septal thickness during diastole; 
IVS-S, interventricular septal thickness during systole; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic 
diameter; LVPW-D, left ventricular posterior wall thickness during diastole; LVPW-S, left ventricular posterior wall thickness during systole; 
LVvol-D, left ventricular volume during diastole; LVvol-S, left ventricular volume during systole; LVEF, left ventricular ejection fraction; FS, 
fractional shortening; BP-S, systolic blood pressure; BP-D, diastolic blood pressure.
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Figure 1 Establishment of a rat model of AF induced by CIH. Echocardiography (A) and representative electrocardiograms (B) of rats in 
the two groups. (C) AF inducibility in rats in the two groups. Morphological changes in the atrial tissue detected using hematoxylin-eosin 
staining, magnification times: 400× (D); and Masson’s trichrome staining, magnification times: 400× (E). (F) Masson’s trichrome staining 
revealed interstitial collagen (stained blue) and the collagen volume fraction was determined. *, P<0.05 compared with the CONT group 
(n=15). CONT, control; CIH, chronic intermittent hypoxia; AF, atrial fibrillation.
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was successfully induced in the CIH group (Figure 1B,1C). 
There was no significant difference in systolic or diastolic 
blood pressure in the rat caudal artery between the CIH 
and control groups (n=15, P>0.05).

Hematoxylin and eosin staining revealed that, after  
8 weeks of CIH, the rat atrial muscle was disrupted, 
myocardial fibers were thick, cell arrangement was disordered, 
and intercellular spaces were enlarged (Figure 1D).  
After Masson’s trichrome staining, the aniline-blue-
stained area of the atrial tissue and collagen deposition 
were significantly greater in the CIH group than the 
control group (Figure 1E). The collagen volume fraction 
was significantly higher in the CIH group than the control 

group (P<0.001; Figure 1F).
Immunohistochemistry and western blotting results 

revealed that the expression levels of fibrosis-related 
proteins (Col I, Col III, CTGF, MMP2, MMP9, α-SMA, 
and TGF-β1) in the CIH group increased significantly 
compared with those in the control group (Figure 2A-2D, 
P<0.05 or 0.01). These results suggested that the AF model 
was successfully established.

General characteristics of proteins

Atrial tissues from rats in the two groups were subjected 
to proteome sequencing. The number of proteins 
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corresponding to different molecular weights is shown in 
Figure 3A. The distribution of the number of peptides for 
each protein is shown in Figure 3B. The different peptide 
lengths corresponding to each protein are shown in  
Figure 3C. Qualitative analysis was used to compare 
the peptide fragments with those from the background 
database, and database search software was used to obtain 
the complete protein sequence based on the coverage index. 
As shown in Figure 3D, most proteins (46.3%) had a peptide 
coverage rate of 1–10%.

DEP identification

Using thresholds of fold-change >1.2 or <5/6 and P<0.05, 
145 DEPs were identified between the CIH and control 

groups, including 29 up- and 116 down-regulated proteins. 
The heatmap, volcano map, and histogram of the DEPs are 
shown in Figure 4A-4C. Pearson’s correlation analysis was 
performed for the DEPs, and a heatmap of the top 50 DEPs 
is presented in Figure 4D.

Function and pathway analyses of DEPs

GO and KEGG analyses were performed to understand 
the functions of the DEPs. The numbers of BP, CC, and 
MP terms and the KEGG pathways identified are shown 
in Figure 5A. A GO chord diagram was constructed to 
represent the relationship between the GO terms and 
the DEPs (Figure 5B). The top three GO terms were 
translation, cardiac muscle contraction, and complement 

Figure 2 Expression levels of Col I, Col III, CTGF, TGF-β1, MMP2, MMP9, and α-SMA detected by immunohistochemistry (A,B) and 
western blotting (C,D). *, P<0.05, **, P<0.01 compared with the CONT group (n=15). CONT, control; CIH, chronic intermittent hypoxia; 
Col, collagen; CTGF, connective tissue growth factor; MMP, matrix metalloproteinase; SMA, smooth muscle actin; TGF, transforming 
growth factor; IHC, immunohistochemistry. 
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activation, with classical pathway for BP; extracellular space, 
protein-containing complex, and endoplasmic reticulum for 
CC; and RNA binding, structural constituent of ribosome, 
and serine-type endopeptidase inhibitor activity for MF 
(Figure 5C). These DEPs were also involved in some 
cardiovascular-related pathways, such as hypertrophic 
cardiomyopathy (HCM), glycerolipid metabolism, cardiac 
muscle contraction, dilated cardiomyopathy, and adrenergic 
signaling in cardiomyocytes (Figure 5D).

Protein-pathway interaction network analysis

The interactions between the 10 most significant pathways 
and DEPs are shown in Figure 6. The adrenergic signaling 

in cardiomyocytes, HCM, and dilated cardiomyopathy 
pathways interacted with Myh7, Myl2, and Myl3. 
Glycerolipid metabolism interacted with Agpat3, Agpat4, 
and Akr1b10. Cardiac muscle contraction interacted with 
Atp1a3, Myl2, and Myl3. Additionally, Rps5, Rps28, and 
ribosomal protein L3 showed high degrees of interaction 
with other proteins or pathways.

Validation of protein levels

According to the KEGG results, Myh7, Atp1a3, Myl2, 
and Myl3 were closely correlated with cardiac muscle 
contraction and adrenergic signaling in cardiomyocytes. 
Additionally, Myh7, Myl2, and Myl3 were closely related 

Figure 3 General characteristics of proteins determined by sequencing. (A) Number of proteins corresponding to different molecular 
weights. (B) Qualitative distribution of peptides corresponding to each protein. (C) Length of the peptides corresponding to each protein. (D) 
Peptide coverage (%).
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to dilated cardiomyopathy and HCM. Four DEPs were 
selected for expression-level validation by western blotting 
and ELISA. As shown in Figure 7A,7B, Myh7, Myl2, and 
Myl3 were upregulated, whereas Atpla3 was downregulated 
in the atrial tissue and serum of the CIH group compared 
with those in the control group (n=15, P<0.05), which is 
consistent with the sequencing results.

Discussion

We determined the proteins predominantly expressed in 
an AF model. We identified 145 DEPs between the CIH 
and control groups. Myh7, Atp1a3, Myl2, and Myl3 have 
important roles in several cardiovascular-related pathways, 
such as HCM, glycerolipid metabolism, and dilated 
cardiomyopathy. The protein levels of Myh7, Myl2, Myl3, 
and Atpla3, determined by western blotting, were consistent 
with those determined by sequencing.

Various animal models have been used to investigate 
the pathophysiology of AF (18,19). AF, which exhibits 
a high recurrence rate after ablation, is associated with 
atrial fibrosis (20). We simulated the progression of atrial 
fibrosis through CIH. Fibrosis manifests as an increased 
amount of fibrous connective tissue in the cellular matrix 
and the deposition of collagen fibers, mainly Col I and 
Col III (21). Additionally, CTGF and TGF-β1 play 
important roles in tissue fibrosis and can induce collagen 
production and deposition (22,23). MMPs are extracellular 
matrix proteolytic enzymes that regulate the extracellular 
environment and degrade collagen (24). MMPs, particularly 
MMP2 and MMP9, are associated with diabetic cardiac 
fibrosis (25,26). We established a rat model of atrial fibrosis, 
which was verified by assessing biomarkers of fibrosis.

The DEPs between the CIH and control groups were 
significantly involved in several cardiovascular disease 
signaling pathways. For instance, the HCM pathway 

Figure 4 DEPs identified via sequencing. (A) Heat map of the DEPs. (B) Volcano plot of the DEPs. (C) Number of upregulated and 
downregulated proteins. (D) Correlation analysis diagrams of the top 50 DEPs. Red indicates a positive correlation; blue indicates a negative 
correlation; and a darker color indicates a stronger correlation. FC, fold change; DEPs, differentially expressed proteins. 
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Figure 5 GO and KEGG analysis results. (A) Number of DEPs enriched in GO and KEGG analyses. (B) Chord diagram of GO enrichment 
analysis. Red indicates upregulated DEPs and blue indicates downregulated DEPs. (C) Top 10 “biological processes”, “cell components”, and 
“molecular functions” GO terms. The x-axis is the GO entry, and the y-axis is the number of proteins and their percentage in the corresponding 
item. (D) Top 11 KEGG pathways. The x-axis is the enrichment fraction and the y-axis is the path information. A larger bubble indicates a 
larger difference and a change in the bubble color from red to purple-blue-green indicates a smaller P value, indicating greater significance. FC, 
fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEPs, differentially expressed proteins. 

interacted with Myh7, Myl2, and Myl3. AF is a common 
sequela of HCM (27). Although Myh7 expression is robust 
in the ventricles, multiple studies have shown an association 
between the switching of atrial myosin heavy chain protein 
isoforms and the development of AF (28,29). Additionally, 
genetic variation in Myh7 is related to high levels of the 
propeptide of type I collagen in the early stages of HCM, 
suggesting that fibrosis mediates the association between 

Myh7 and AF (30). Myl2 is a sarcomeric protein that 
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During early embryogenesis, Myl2 plays essential roles 
in maintaining cardiac morphology and in regulating 
cardiac contractile function (31,32). Moreover, MLC-
2v phosphorylation has been shown to play direct roles 
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Figure 6 Protein-pathway interaction network. Red circles represent upregulated proteins; green circles represent downregulated proteins; 
and rounded rectangles represent biological processes, cellular components, molecular functions, or signaling pathways. The from dark blue, 
light blue, green, and yellow colors represent statistical significance, from high to low. The solid lines represent protein-protein interactions 
and the dashed lines represent protein-pathway interactions.

Figure 7 Protein expression levels of Myh7, Atp1a3, Myl2, and Myl3 detected by western blotting (A) and enzyme-linked immunosorbent 
assays (B). *, P<0.05 compared with the CONT group (n=15). CONT, control; CIH, chronic intermittent hypoxia; Atp1a3, ATPase Na+/K+ 

transporting subunit alpha 3; Myh, myosin heavy chain; Myl, myosin light chain.
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function, and various cardiac diseases (31-33). Moreover, 
variations in Myl2 and Myl3 can cause HCM or restrictive 
cardiomyopathy and increase the risk of sudden cardiac 
death (32,34). However, the molecular mechanism still 
warrants further investigation.

Furthermore, adrenergic signaling in cardiomyocytes 
and cardiac muscle contraction pathways were correlated 
with Atp1a3. Atp1a3 maintains the electrochemical gradient 
of the resting plasma membrane in neurons. Variants in 
human Atp1a3 can lead to ventricular arrhythmias (35).  
β-adrenergic receptors belong to the superfamily of G-protein-
coupled receptors. Signaling via these receptors plays a 
key role in regulating cardiovascular system function (36).  
β-Adrenergic receptor signaling is abnormal in patients with 
heart failure, and dysfunction of β-adrenergic receptors is an 
important determinant of age-related cardiac alterations (37).  
Anti-β1-adrenergic-receptor autoantibodies cause 
atrial structural remodeling and are associated with the 
development of AF (38). The cardiac muscle contraction 
pathway is involved in the pathogenesis of AF (39). 
Importantly, the expression levels of four DEPs associated 
with this pathway (Myh7, Atp1a3, Myl2, and Myl3) were 
consistent between western blotting and sequencing results. 
These proteins may serve as biomarkers of AF, as they may 
be involved in the pathogenesis of atrial fibrosis and AF via 
cardiovascular-related signaling pathways.

This study has some limitations. First, experiments were 
performed in a rat model, and not in humans. Therefore, 
the conclusions may be not applicable in humans. Second, 
the functions of the four proteins differentially expressed 
in AF were not explored in in vivo and in vitro experiments. 
Third, as cell sorting was not applied, it was difficult to 
distinguish between transcriptional regulation and altered 
cellular composition due to the invasion and proliferation 
of fibroblasts and immune cells. Therefore, additional 
experiments should be conducted to obtain more robust 
conclusions.

Conclusions

We identified DEPs between the CIH and control 
groups by establishing a rat model of AF. Four proteins 
that may play a critical role in the progression of AF via 
cardiovascular-related signaling pathways. These findings 
improve our understanding of the pathogenesis of AF and 
provide potential treatment targets for AF.
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