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Control of finite critical behaviour in a small-scale
social system
Bryan C. Daniels1, David C. Krakauer1,2 & Jessica C. Flack1,2

Many adaptive systems sit near a tipping or critical point. For systems near a critical point

small changes to component behaviour can induce large-scale changes in aggregate structure

and function. Criticality can be adaptive when the environment is changing, but entails

reduced robustness through sensitivity. This tradeoff can be resolved when criticality can be

tuned. We address the control of finite measures of criticality using data on fight sizes from

an animal society model system (Macaca nemestrina, n¼48). We find that a heterogeneous,

socially organized system, like homogeneous, spatial systems (flocks and schools), sits near a

critical point; the contributions individuals make to collective phenomena can be quantified;

there is heterogeneity in these contributions; and distance from the critical point (DFC)

can be controlled through biologically plausible mechanisms exploiting heterogeneity.

We propose two alternative hypotheses for why a system decreases the distance from the

critical point.
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O
ver the last decade new technologies for making large
numbers of fine-grained measurements have led to the
surprising discovery that many biological systems sit near

a critical point1,2. When a system is near the critical point small
changes to component behaviour can induce large-scale changes
in aggregate structure and function3–5. Examples of systems in
which this behaviour has been observed include networks of
neurons6, ant groups cooperatively carrying a load5 and animal
groups forming flocks and schools7–10. Accounting for criticality
remains a challenge as sensitivity to perturbation suggests a lack
of robustness. Furthermore, change induced by perturbation
may not be adaptive. Complicating matters further, critical
phenomena can result from history-dependent stochastic
processes11. A question central to distinguishing among these
conflicting views of criticality is to what degree criticality can be
controlled by the components of the system2.

We address the control of criticality using data on fight sizes
from an animal society model system (Macaca nemestrina,
n¼ 48). Like many biological systems, it contains relatively few
individuals, which means we cannot use standard physics
measures to define critical behaviour. Instead, we introduce a
two-component operational definition of criticality for finite
systems that uses (1) the Fisher information to capture sensitivity
across scales and (2) a measure of collective instability. We ask
whether conflict behaviour in the model system is critical
using empirically grounded equilibrium (maximum entropy)
and dynamic (branching process) models of the monkeys’
fight-joining behaviour. We find that the system does sit near a
critical point, and we quantify this distance in terms of the
number of individuals that would need to be perturbed to reach
the point of maximal sensitivity and instability.

Results
Study system and modelling framework. Our analysis begins
with a time series of fights from a large, captive pigtailed macaque
group collected over multiple observation periods during a four
month period (see ‘Methods’ section). The data consist of a series
of binary fight participation vectors x of length n. For each vector
an individual is assigned a ‘1’ if it participated in that fight and a
‘0’ if it did not (see ‘Methods’ section).

To study criticality we modify tools from statistical mechanics.
These tools are best deployed when the study system can be
described using a simple, tractable and well-understood
modelling framework like a spin-glass or branching process.
Hence our first task is to assess whether these models are
empirically justified descriptions of our study system. To assess

this, we ask whether our data are consistent with any of three
basic fight-joining models: (1) decisions to join fights are
independent, (2) decisions to join are correlated (equilibrium
model) and (3) decisions to join fights are strategic with
correlations resulting from one individual joining in response
to a second individual joining (dynamical branching process)12.
We evaluate these models by determining how effectively
each recovers a key social feature—the distribution of fight
sizes s (ref. 13)—when parameterized by the empirical data.

The independent model simply takes into account the
individual fight-joining frequencies hxii (see ‘Independent model
inference’ in Methods).

The correlated decision-making model (see ‘Model descrip-
tions and justification’ in Methods) is an equilibrium maximum
entropy model that fits all pair-wise correlations and corresponds
to a spin-glass model14. The word equilibrium is used here to
indicate that interactions governing fights do not change over
time (stationarity) and that time within fights does not play an
explicit role (simultaneity). The resulting probability distribution
over possible fights has relative negative log likelihood

LðxÞ ¼ �
X

xiJijxj; ð1Þ

where the coefficients Jij are numerically fit to match individual
and pairwise frequencies hxii and hxixji (see ‘Pairwise maximum
entropy model inference’ in Methods).

In the dynamical branching process (see ‘Model descriptions
and justification’ in Methods), the dominant causes of conflict are
temporal pairwise interactions—an individual joins the current
fight with some finite probability only when it sees another
individual join. Fight initiation is assumed to occur at a slower
timescale, when a random individual becomes aggressive.
Individuals join the fight by receiving aggression from or
initiating aggression against an individual already in the fight.
Parameters include individual initiation parameters p0i, each
denoting the relative probability that individual i begins a fight,
and conditional redirection parameters pij, each denoting the
probability that j joins a fight due to i having just joined. We
consider only the relative ordering of individuals joining fights,
not direct interactions, and estimate parameters by fitting
conditional frequencies Pij—the frequency of seeing individual
j at any later time in a fight sequence given that i appeared first
(see ‘Branching process inference’ in Methods).

We test the performance of each model through its ability to
predict the distribution of fight sizes (Fig. 1) and correlations up
to 3rd order (Supplementary Fig. 7, Supplementary Note 2).
We rule out the independent model (Supplementary Note 2).
We find the empirically parameterized maximum entropy (as in
prior work14) and branching process models recover the observed
distribution of fight sizes, indicating that these models are
mechanistically consistent with the data. We can now use these
empirically parameterized models to investigate whether the
system is near critical.

Criticality as sensitivity and instability. Critical behaviour is
closely linked to what in physics is called a phase transition.
A phase transition (Supplementary Note 3) can be thought of
as a point at which the system becomes infinitely sensitive to
perturbations when the number of individuals becomes infinite.
This diverging sensitivity is caused by a collective instability,
meaning that perturbations to individuals spread to change the
behaviour of the entire system (Supplementary Note 3, details on
collective instability).

Phase transitions are typically identified by examining the
asymptotic behaviour of the infinite limit (for a review of
definitions, see ref. 2). Social systems like the one studied here are,
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Figure 1 | Testing fit of fight-joining processes to individual-level data.

Models that include social correlations (the equilibrium maximum entropy

and dynamic branching process models) can reproduce the relatively

long tail of the observed distribution of fight sizes, whereas assuming

independent fight-joining events (the independent model) cannot.

Shaded regions indicate 95% confidence intervals.
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however, not large enough to be well described by the infinite
limit. In addition, it is natural in these systems to focus on the
effects caused by individual components, which is different from
the typical case in physics, where tuning parameters are external
and applied at a macroscopic level. These differences make the
limit of an infinite number of components awkward in social
systems. For these reasons we move to an operational definition
of critical points that captures the core idea of criticality in
infinite systems appropriate in the finite case. This definition
takes into account two quantities—sensitivity and collective
instability.

We define sensitivity as the derivative of the average fight
size with respect to an individual’s agitation, averaged over
individuals. In the equilibrium model, the control parameter
associated with the average fight size hsi is an external ‘field’ hext,
which we interpret as uniformly increasing each individual’s
agitation, making it more likely to become involved in
fights. Adding an external field to equation (1), we have
LðxÞ ¼ �

P
xiJijxj�

P
hixi, where hi¼ hext for all i. The

corresponding sensitivity is equal to the susceptibility w:

1
n

X
i

dhsi
dhi
¼ w ¼ 1

n
dhsi
dhext

: ð2Þ

A sharp peak in susceptibility is one indicator that a phase
transition may be present in the corresponding infinite system.
Typically this is verified by measuring the growth of the peak with
increasing system size15. Instead, for a system with a fixed
number of individuals, we will later verify that the peak is caused
by an instability that would lead to such growth.

Results for the equilibrium model are shown in Fig. 2a. For fit
parameters (hext¼ 0), there is increased sensitivity compared with
a non-interacting model with the same mean fight size, meaning
that an amplification process is occurring that makes changes to
patterns of aggression at the individual level ‘visible’ at the global
system level. This amplification process cannot be attributed to
external events as these data were collected in a captive setting
in which such disturbances were minimized (see ‘Model
descriptions and justification’ in Methods).

The susceptibility can also be interpreted as a Fisher
information, an information theoretic quantity that describes
how sensitive a distribution is to the parameters that describe it
(Supplementary Note 5). A large w implies faster learning: large

susceptibility means that aggregate level statistics are informative
about conflict dynamics at the individual level16,17.

Analogously to the susceptibility in the equilibrium model,
we can define sensitivity in the dynamic model as how
quickly fight sizes grow following perturbation of redirection
probabilities pij:

1
nðn� 1Þ

X
i

X
j 6¼ i

dhsi
dpij
� wdyn ¼

1
nðn� 1Þ

dhsi
dp

; ð3Þ

where p adds probability uniformly to all redirection probabilities.
We define collective instability using perturbation theory. This

is straightforward in the branching model: when the system is
perturbed by one individual becoming active, the average number
of other individuals triggered in the next time step, R0, indicates
whether perturbations are amplified or decay. If R0 is above 1,
perturbations grow exponentially and the peaceful state of the
system is unstable. In our dynamic model, this linear stability of
the peaceful state is indicated by the largest eigenvalue R0 of the
redirection probability matrix pij (corresponding to the least
stable mode of the system).

In the case of the equilibrium model, an analogous quantity l
measures the stability of the mean-field solution, corresponding
to the eigenvalue with largest magnitude of the matrix
Mij¼ � 2(1–dij)Jijhxii(1–hxii) (see Supplementary Note 3, details
on collective instability). Results for the equilibrium model
stability at increasing hext are shown in Fig. 2b.

In each model, the stability factor (R0 or l) becoming 41
indicates a true phase transition in the case when the number of
individuals in the system becomes infinite. In a finite system, the
stability, like the sensitivity, is a useful measure in its own right,
one that we use as an indicator of whether a peak in sensitivity is
caused by a collective instability.

Distance from criticality. Figure 2 suggests that the system is
near a transition. Comparing to a simple homogeneous system of
the same size that is poised directly at instability (red dashed lines
in Fig. 2), we see in the inferred model a similar peak in sensi-
tivity, but one that is shifted to occur when the system is exposed
to a field that increases overall agitation. The magnitude of the
field necessary to reach the peak defines a distance from the
transition, but one that is measured in units that are not easily
related to biology.
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Figure 2 | The system is near a sensitive and unstable region of parameter space. (a) The susceptibility w, measuring the sensitivity of average fight size

to an external perturbation, has a peak near the fit parameters (at hext¼0). The susceptibility is also equal to the Fisher information F(hext), describing how

quickly the distribution over fights becomes distinguishable as hext is varied. (b) Instability of the lowest order mean-field solution is indicated by the

eigenvalue l becoming larger than 1. Yellow dashed lines indicate a system of the same size with independent individuals, and red dashed lines indicate a

homogeneous system of the same size tuned to be marginally unstable at hext¼0. (c) The transition is associated with large changes in mean fight size.
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To quantify in a biologically meaningful way how much
agitation is required to move the system towards the critical
point, we measure how sensitivity and stability vary as we force-
through parameterized-simulation (Supplementary Note 3) some
number of individuals to fight continuously (while allowing the
system to consist only of the non-forced individuals). The
number of individuals required to reach a peak in sensitivity
corresponding to a collective instability (Supplementary Note 3)
is a measure of the distance of the system from the critical
point (DFC). Beyond this peak lies saturation and decreasing
sensitivity.

In the equilibrium model forcing is accomplished by removing
the forced individuals and adding their interaction terms to the
fields acting on the remaining individuals: the new fields are
given by J�ii ¼ Jiiþ

P
forced k 2Jik. In the dynamic model this is

accomplished by explicitly including the forced individuals at
each time step in the simulation but only recording the behaviour
of the remaining individuals. The change in sensitivity caused by
forcing each individual also provides ‘sensitivity scores’ that
quantify the extent to which each individual brings the system
closer to criticality.

As shown in Fig. 3, both models predict a substantial
increase in sensitivity when a few individuals are forced to be
continuously involved in conflict. The system begins to saturate
in sensitivity after 3–5 individuals are simultaneously forced.
This result is similar to the finding that bird flocks require only a
small proportion of informed individuals to correctly choose
direction18,19. We use perturbation theory to demonstrate
that this sensitivity arises from instability in each model
(Supplementary Note 3, details on collective instability),
a conclusion that is robust to uncertainties in model parameter
estimates (Supplementary Note 1).

We find for both models that individuals vary in their
sensitivity scores such that forcing participation of individuals
with the top two to three sensitivity scores is sufficient to move
the system close to a critical point (purple lines in Fig. 3).

Discussion
Social systems must learn to tune the benefits of flexibility with
the need for robustness. This can be achieved through collective
forms of interaction that in effect tune the distance of a system
from a critical point.

We are able to quantify through simulation the distance of a
population from a finite critical point. The number of individuals
(or, in principle, subgroups) that must be forced to reach peak
sensitivity provides an operational definition of DFC and has the
advantage of allowing the measurement of DFC in units that are
natural to the system and hence mechanistically meaningful.

We find three to five individuals are sufficient, with significant
individual variation in sensitivity scores. In both the equilibrium
and branching process models, individuals with higher sensitivity
scores are those who (by definition) exert greater influence on
how far a system sits from the critical point. We find that
individuals inducing the largest increase in average fight sizes
correspond to those who promote the largest increase in
sensitivity, as might be expected in any system with largely
excitatory interactions.

The question of whether biological systems can control how
responsive they are to environmental change is an ongoing debate
in the criticality community (for example, refs 1,20) and the
closely related evolvability community (for example, refs 21–24).

The sensitivity scores generated by each model are capturing
different tuning mechanisms. In the case of the branching process
model, we capture the spread of fight joining through direct
interactions: one individual through its behaviour triggers the
involvement of a second individual. Hence this model only allows
that the target individuals, through their own fight-joining
decisions, can up or down regulate their fight involvement.
When a high sensitivity individual up or down regulates its own
behaviour moving the system respectively closer to or further
from the critical point, we call this direct tuning.

The equilibrium model, on the other hand, is agnostic to cause,
recording any pairwise correlation in fight joining regardless of
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Figure 3 | Simulation of forced individuals provides a biologically meaningful measure of distance from criticality. In equilibrium (a–c) and dynamic (d–f)

models, forcing a few individuals to become simultaneously aggressive leads to a more sensitive system. (a,d) In each model, peak sensitivity is reached when

on average 3–5 individuals are forced. Shaded regions indicate the standard deviation around the mean over different realizations of the chosen individuals.

Purple and blue dotted lines indicate choices of forced individuals that maximize and minimize the resulting mean fight size. (b,e) The lowest-order stability

measured in each model, corresponding to the eigenvalue l0 in the equilibrium model and R0 in the dynamical model (Supplementary Note 3). A value above 1

in each case indicates instability to linear order. (c,f) The mean fight size. See Supplementary Note 4 for details about the ordering of forced individuals.
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which individual triggered the joining event. As such it captures
the full space of behavioural mechanisms leading to fight-joining:
individuals can become involved in fights by up regulating their
own fight involvement and also through changes to third-party
behaviour. For example, policing (by third parties to the fight,
see ‘Operational definitions’ in Methods25) and other conflict
management mechanisms reduce the frequency of redirected and
directed aggression in the system and, in particular, towards the
high sensitivity individuals, and hence dampen the fight-joining
behaviour of these individuals. When a third party, like a policer,
up or down regulates the behaviour of high sensitivity individuals
we call this indirect tuning.

A natural question raised by the discovery that DFC can be
tuned and that there are behavioural mechanisms in place that
allow for this tuning is whether to favour robustness (increase
DFC) or criticality (decrease DFC). This decision depends on
three factors: (1) the adaptive utility of criticality—when does it
make sense to sit near the critical point?, (2) the true state of the
environment—is it uncertain or stable and predictable? and
(3) the perceived state of the environment—the accuracy
with which system components can detect and encode the
environmental state.

The consequences of being near or at the critical point is that
information can propagate quickly or more completely, with
small changes to component behaviour inducing large-scale
changes in both structure and function. Hence criticality allows
the system to more easily reconfigure. We propose two
hypotheses for tuning.

The first hypothesis we call the unspecified reconfiguration or
evolvability hypothesis. The idea is that if the environment
becomes uncertain after a period of stability, strategies adapted to
the previously stable environmental state will be ill-suited to both
the increasing uncertainty as well as to any new state the
environment settles into. Hence the system moves toward the
critical point to allow a reconfiguration to take place. To make
this more concrete consider the model system studied here.
Moving towards criticality changes the distribution of fight sizes
such that there are more large fights. Social reconfiguration
becomes more likely with large fights because large fights cost
more13 and costly conflict can lead to changes in alliances,
coalitions and the power structure, which controls the cost of
conflict management26,27. Hence the opportunity for large-scale
reorganization of social structure becomes possible, though it is
not possible to predict the specific form the social structure will
take. We predict that unspecified reconfiguration is adaptive
when the environment is uncertain. Hence when the state of the
environment is stable or very slowly changing (represented, for
example, by a delta function), we expect the optimal choice is to
increase DFC. When the state of the environment is uncertain,
the system should decrease DFC. Unspecified reconfiguration can
be thought of as an evolvability mechanism.

The second hypothesis we call directed reconfiguration. The
idea here is that if a change occurs in the environment and this
change has been observed before (for example, a predator
appears), it may make sense to quickly switch from the current
social configuration (say foraging) to one more appropriate
for the perturbation7,28. Decreasing DFC allows information
about the perturbation to quickly spread across the system
so that components can rapidly exhibit behaviour appropriate
for the new, but ‘understood,’ environmental state. Directed
reconfiguration is a mechanism for switching between
behavioural states at the aggregate level as described in refs 7,10.

For tuning to be adaptive, the state of the environment must
also be correctly perceived by the tuning agent(s). To make this
clear, consider the following: a flock of birds in search of food
with high and low sensitivity individuals. Some individuals in the

flock have poor eyesight and so misjudge the location of food and
others have good eyesight. If the high-sensitivity birds (those
whose position in the network means changes to their behaviour
can be felt globally) are also those with poor eyesight, the system
may be inappropriately driven away from food sources. If on the
other hand the good eyesight birds are also highly sensitive, the
system will be appropriately driven towards food. In a similar
way, tuning DFC will require accurate perception of the most
beneficial change. Hence in order for DFC to be tunable and for
that tuning to be adaptive in a biological system these two types
of heterogeneity must be aligned: high sensitivity score indivi-
duals must also be good detectors of environmental state. Neither
of these types of heterogeneity has received much attention in the
collective behaviour, criticality, or biological phase transition
literatures. Consequently little is known about how common it is
for these types of heterogeneity to be aligned or whether there are
in some systems mechanisms to bring them into alignment.

In our model system, both types of heterogeneity appear to be
aligned. Results of earlier work29 suggest the individuals with the
highest sensitivity scores also are those who serve as good
detectors of environmental state, with environmental state in this
case corresponding to whether the underlying ‘social order’ is
stable or uncertain. The idea is as follows: some individuals
register stressful periods more visibly (in their ‘health state’) than
the other group members due to their social position30. In our
study system, these individuals are those perceived least capable
of winning fights and who consequently sit in the lowest 10% of
the social power distribution—these individuals pay a relatively
high cost (in terms of aggression received) for social
interactions25,31. ‘Health state’, which fluctuates over days and
weeks, is a slow variable29,32, compared with behaviours like
aggression and submission which fluctuate on an hourly or daily
scale. When these low-power individuals are healthy, the system
can be said to be in a stable, low variance period. When these
individuals are stressed above some baseline level, social
dynamics are becoming uncertain. In our study system, the
high sensitivity score individuals tend to be these weak
individuals. Other individuals can adjust their propensity to
attack or protect (for example, through policing26) these
weak individuals based on their perceived health state and, in
doing so, efficiently adjust DFC.

All biological systems need to balance stability and robustness
with the need for rapid adaptive change (for example,
refs 22,33,34). Yet many biological systems are observed to sit
near a critical point1, which suggests a lack of robustness. This
apparent conflict can be resolved by the discovery that DFC can
be tuned (or computed) through realistic biological mechanisms.
Tuning DFC allows for switching between stability and criticality,
providing a means for accessing alternative social structures that
may be more appropriate if and when the environment should
change29,32.

This discovery raises many new questions: it is one thing for
tuning to be possible and another to tune adaptively. We propose
robustness is a good strategy when the environment is stable and
low variance. Criticality is a good strategy when the environment
is uncertain. In addition, in order for tuning to be adaptive the
state of the environment must be accurately perceived by, or
mirrored in, the individuals whose behaviour changes the DFC.
This appears to be the case in our system but may present a
crucial evolutionary challenge for other systems. Future com-
parative studies are required to quantify the range of DFC across
social groups within a species, as well as across biological systems
more generally, and to study how DFC might be controlled in
other systems. We can then assess whether variation in DFC and
its control are correlated with the rate of change in the
environment and or environmental uncertainty.
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Methods
Ethics statement. The data collection protocol was approved by the Emory
University Institutional Animal Care and Use Committee and all data were
collected in accordance with its guidelines for the ethical treatment of nonhuman
study subjects.

Study system. The data were collected by JCF in 1998 from a large group of
captive pigtailed macaques (Macaca nemestrina) socially housed at the Yerkes
National Primate Center in Lawrenceville, Georgia. Pigtailed macaques are
indigenous to south East Asia and live in multi-male, multi-female societies
characterized by female matrilines and male group transfer upon onset of
puberty35. Pigtailed macaques breed all year. Females develop swellings when in
Œstrus. Macaque societies more generally are characterized by social learning at
the individual level, social structures that arise from nonlinear processes and feed
back to influence individual behaviour, frequent non-kin interactions and
multiplayer conflict interactions, the cost and benefits of which can be quantified at
the individual and social network levels25,26,31,36–38.

The study group contained n¼ 48 socially mature individuals (we exclude
non-mature individuals because their behavioural strategies are still developing and
so are non-stationary over short timescales) and 84 individuals in total. Socially
mature males were at least 48 months and socially mature females were at least
36 months by study start. These thresholds correspond to approximate onset of
social maturity in pigtailed macaques. The study group had a demographic
structure approximating wild populations and subadult and adult males were
regularly removed to mimic emigration occurring in wild populations. All
individuals, except 8 (4 males, 4 females), were either natal to the group or had
been in the group since formation. The group was housed in an indoor–outdoor
facility, the outdoor compound of which was 125� 65 ft.

Pigtailed macaques have frequent conflict and employ targeted intervention and
repair strategies for managing conflict25. Data on social dynamics and conflict were
collected from this group over a stable, four month period. Operational definitions
are provided below.

Operational definitions. Fight. It includes any interaction in which one individual
threatens or aggresses a second individual. A conflict was considered terminated if
no aggression or withdrawal response (fleeing, crouching, screaming, running away
and submission signals) was exhibited by any of the conflict participants for 2 min
from the last such event. A fight can involve multiple individuals. Third parties can
become involved in pair-wise conflict through intervention or redirection, or when
a family member of a conflict participant attacks a fourth-party. Fights in this data
set ranged in size from 2 to 31 individuals, counting only the socially mature
animals. Fights can be represented as small networks that grow and shrink as
pair-wise and triadic interactions become active or terminate until there are no
more individuals fighting under the above described two minute criterion. In
addition to aggressors, a conflict can include individuals who show no aggression
or submission (for example, third-parties who simply approach the conflict or
show affiliative/submissive behaviour upon approaching, and recipients of
aggression who show no response to aggression (typically, threats) by another
individual). Because conflicts involve multiple actors, two or more individuals can
participate in the same conflict but not interact directly.

In this study only information about fight composition (which individuals were
involved) is used. Only fights that included two or more socially mature individuals
were used in the analysis; the data includes N¼ 994 such fights. We do not
consider internal aspects of the fight, such as who does what to whom, except
for the order of each individual’s first involvement in the fight (used to estimate
time-ordered conditional probabilities for use in the dynamical branching process
model). Time data were collected on fight onset and termination but are not used
in these analyses.

Power. The degree of consensus among individuals in the group about whether
an individual is capable of using force successfully26,27. In previous works,
we showed that consensus can be quantified by taking into account the total
number of subordination signals an individual receives and multiplying this
quantity by a measure of the diversity of signals received from its population of
signalers (quantified by computing the Shannon entropy of the vector of signals
received by individual i)26. In pigtailed macaque societies, the subordination
signal is the silent bared teeth display36 emitted outside the conflict context
during pass-byes and affiliative interactions. The distribution of power in our
study group is heavy tailed, such that a few individuals are disproportionately
powerful.

Policing. A policing intervention is an impartial intervention performed by a
third party into an ongoing conflict25. Three males and one female perform the
majority of effective policing interventions but only the three males (Eo, Qs, Fo)
specialize on policing12. These four individuals occupy the top four spots in the
power distribution25,27.

Redirection. A redirection occurs when an aggressor, recipient, or intervener
directs aggression at a third (or fourth) individual who was not its original target or
attacker. The target of the redirection may not have been involved in the fight until
the redirection, or may have been involved in the fight but interacting with
individuals other than the redirecting individual.

Data collection protocol. The data were collected by a trained observer
(J.C. Flack). The observer spent roughly 100 h before data collection learning to
recognize individuals and accurately code their behaviour from the observation
tower above the monkey compound. Accuracy was validated by a second trained
observer (F.B.M. de Waal). J.C.F. also evaluated coding accuracy using video.
Coding accuracy was nearly 100%.

During observations all individuals were confined to the outdoor portion of the
compound and were visible to the observer. The E150 h of observations occurred
for up to 8 h daily between 1,100 and 2,000 h over a 20-week period from June
through October 1998, and were evenly distributed over the day. Conflict and
signalling data were collected using all-occurrence sampling in which the entire
conflict event is followed from start to finish and all participants and their
behaviour are recorded.

Provisioning occurred before observations and once during observations at
approximately the same time each day. The group was stable during the data
collection period (defined as no reversals in status signalling interactions resulting
in a change to an individual’s power score; see ref. 26).

Model descriptions and justification. We first evaluate which of three basic,
empirically grounded fight-joining models explain our macroscopic observable, the
distribution of fight sizes. We only accept a model if it is both consistent with the
measured, microscopic data and can recover in simulation the observed, measured
macroscopic output. Hence all of our models are closely tethered to the measured
data and biological details of our model system.

It is important to realize that the parameters in the maximum entropy and
branching models come from the microscopic data. The models do not assume
prescribed values for parameters but are perhaps better viewed as hypotheses about
the ways in which the measured, microscopic detail is connected to observed
macroscopic patterns.

All models assume that events external to the system do not create correlations
in behaviour. The data were collected in a controlled, captive setting designed to
minimize the influence of external events, and we have no evidence for important,
consistent external forcers of conflict.

The independent model assumes individuals do not respond to each other but
instead join fights without regard to who else is fighting. In this case, perturbations
to individual conflict behaviour would have no additional effect on group
behaviour.

The independent model fails to recover both the observed distribution of fight
sizes (Fig. 1) and the observed significant pairwise correlations (Supplementary
Fig. 7).

Individuals sometimes randomly join fights and sometimes the decision to fight
reflects strategic interactions at a pairwise level13. We capture this interpretation of
the microscopic data using a maximum entropy approach, which corresponds to
the spin-glass model of magnetic systems in physics. Because the model is
parameterized by the data, it is empirically grounded and serves as a valid
biological hypothesis. However we note that it is less mechanistically specific than
the branching process described below: spin-glass interactions are not directional
or time-ordered, but rather operate symmetrically and over the timescale of an
entire fight bout.

The pairwise maximum entropy model, with parameters fit from the
microscopic data, recovers well the distribution of fight sizes (Fig. 1). The good
performance of the model leads to the prediction that the sensitivity w is about
twice that of a system with the same conflict frequencies but no strategic
interactions.

Another reasonable interpretation of the microscopic data is that the random
component of fight-joining decisions is very small and the decision to fight reflects
strategic interactions at a pairwise level. This leads to a branching process model
that, with parameters fit from the microscopic data, also recovers the observed
distribution of fight sizes. The collective behaviour produced by this model can be
simply understood in terms of a single parameter, the branching ratio.
Additionally, branching process models like this one have been used in previous
work to explore other aspects of conflict dynamics in this system, including the role
of policing and other forms of third-party intervention in the infectivity of
aggression12.

Independent model inference. The independent model consists of individuals
participating in conflict randomly, with the frequencies of individual appearance
equal to their empirically measured, heterogeneous values fi¼hxii. Naively, this
can be written as a relative negative log likelihood LindðxÞ ¼

P
i � hixi , and is

equivalent to a maximum entropy model that matches only the frequencies fi.
(The relative negative log likelihood L(x) of state x is related to the likelihood p(x)
by p(x)¼ exp(� L(x))/Z, where Z is a normalization constant set by the constraint
that the sum of likelihoods over all states is one. In statistical physics, Z is the
partition function and L(x) is proportional to the free energy of state x.)

However, as detailed in ‘Operational definitions’ in the Methods section, a fight
was operationalized for these analyses as involving two or more socially mature
individuals. (Observed fights that involved only juveniles and 0 or 1 mature
individuals are therefore excluded.) Correspondingly, we forbid our models from
producing fights of size smaller than two. We treat this as an additional constraint
on the model. The resulting maximum entropy model is then the one in which the
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likelihood of states with fewer than two individuals present is taken to zero. This
corresponds to a relative negative log likelihood

Lind
a!1 ¼ lim

a!1

X
i

hixi þ aY 2�
X

j

xj

 !" #
; ð4Þ

where Y(z) is 0 when zr0 and 1 when z40.
In the unconstrained case (a¼ 0), we can easily solve for hi:

Lind
a¼0 ¼

X
i

hixi ð5Þ

hi ¼ � log
hxiia¼0

1�hxiia¼0

� �
: ð6Þ

We must now solve numerically for hi to match the empirically measured
fi¼hxii¼ hxiia-N. To accomplish this, note that the unconstrained model will
have modified statistics:

hxiia¼0 ¼ ð1� f0 � f1Þhxiiþ fi1

hxixjia¼0 ¼ ð1� f0 � f1Þhxixji;
ð7Þ

where f0 is the frequency of size zero fights, fi1 is the frequency of size one fights
consisting solely of individual i, and f1 ¼

P
fi1 is the overall frequency of size one

fights (all measured in the unconstrained model). In terms of unconstrained
individual frequencies, these are

f0 ¼
Y

i

1�hxiia¼0

� �
ð8Þ

fi1 ¼ hxiia¼0
f0

1�hxiia¼0
: ð9Þ

We use an iterative procedure to solve equation (7) for hxiia¼ 0, which are then
used in equation (6) to find the fields. Finally, samples from the independent model
(equation (4)) are produced by sampling using equation (5) and simply discarding
samples in which fewer than two individuals appear. For our data, this results in
discarding about 17% of samples produced with equation (5).

Pairwise maximum entropy model inference. We next constrain our equilibrium
maximum entropy model to match the frequencies of appearance of both indivi-
duals and pairs of individuals. This model is known to be the spin-glass Ising
model39, with relative negative log likelihood

LSG
a¼0ðxÞ ¼

X
ij

� xiJijxj: ð10Þ

As in the independent model, the likelihood of fights with fewer than two
individuals is taken to zero:

LSG
a!1ðxÞ ¼ lim

a!1

X
ij

� xiJijxjþ aY 2�
X

k

xk

 !" #
: ð11Þ

The statistics we fit in the equilibrium model are the individual and pairwise
frequencies of appearance:

fi ¼ hxii ¼
NðxiÞ

N
; ð12Þ

fij ¼ hxixji ¼
Nðxi; xjÞ

N
for i 6¼ j; ð13Þ

with N(xi) and N(xi, xj) representing, respectively, the observed number of
appearances in unique fights of the individual i and the pair i, j.

We would like to fit the individual and pairwise frequencies of appearance to
the precision that the data supports. As a measure of the goodness of fit, we use the
average of normalized residuals

hw2
SGi ¼

2
nðnþ 1Þ

X
i

X
j�i

ðf data
ij � f model

ij Þ2

s2
fij

; ð14Þ

where

s2
fij
¼ fijð1� fijÞ

N
ð15Þ

is the expected variance of each residual due to finite N, and repeated indices
are understood as individual frequencies: fii¼ fi. A good fit is expected to have
hw2iE1.

To perform fitting, we use a simplified method that starts with the
mean-field solution and varies a single parameter corresponding to weighting a
non-interacting prior. Specifically, we make use of the L2-regularized mean-field
entropy of ref. 40. The regularization consists of a Gaussian prior with a form
designed to make the mean-field case easily solvable, corresponding to an
additional term in the relative negative log-likelihood

Lprior ¼ g
X

i

X
j4i

J2
ij fið1� fiÞfjð1� fjÞ; ð16Þ

where g is the strength of the prior, which favors interactions Jij that are smaller in
magnitude. The mean-field solution under this regularization is ref. 40

JMF
ij ¼

J 0ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fið1� fiÞfjð1� fjÞ

p ; i 6¼ j

JMF
ii ¼

X
j 6¼ i

JMF
ij ðfij � fifjÞ

fi � 1
2

fið1� fiÞ
� fj

� �
;

ð17Þ

where J0 is the matrix that has the same eigenvectors vq as the correlation matrix

C ¼ fij � fifjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fið1� fiÞfjð1� fjÞ

p ð18Þ

and eigenvalues jq ¼ 1=ĉq , where ĉq are regularized versions of C’s eigenvalues cq:

ĉq ¼
1
2

cq � gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcq � gÞ2 þ 4g

q� �
: ð19Þ

This regularization is typically used in a Bayesian sense to avoid overfitting,
where a typical value of the regularization strength is g¼ 1/(10N f2(1–f)2), with
N the number of samples and f¼ n� 1P

i fi the average individual frequency40.
Avoiding overfitting, however, still typically requires either enormous N (for
example, ref. 39) or restricting the effective number of fit parameters via an
expansion (for example, ref. 40). In our case, N is fundamentally limited in that
we are describing a stable social epoch of finite duration. In addition, typical
high-temperature expansions cannot easily incorporate the restriction that fights
have a minimum number of participants (the a term in equation (11)).

Alternatively one can treat g as a fitting parameter that interpolates between the
mean-field solution (which we find overestimates the strength of interactions) and
the case of independent individuals. Although it is not a priori obvious that varying
this single parameter will be enough to fit the observed statistics within expected
statistical fluctuations, we find that this is true for our data. Numerically sampling
from the distribution defined by equation (11) with the regularized mean-field
J from equation (17), we minimize hw2i from equation (14) as a function of g.
Sampling is performed using a standard Metropolis Markov Chain Monte Carlo
approach. In evaluating the fit, we choose the number of samples to scale with the
number of data samples, using Nsamples¼ 20N.

As a simple check that this inference approach is not biased to find more
sensitive systems, we infer a pairwise model using data produced by the
independent model and compare its susceptibility to the known exact value
(equation (11) in Supplementary Note 3) in Supplementary Fig. 1. The resulting
inferred model has susceptibility that stays close to the true value for small hext and
remains smaller than the true value for larger hext.

The variation in inferred Jij parameters over individuals can be seen in the
lefthand plot of Supplementary Fig. 3. Interaction terms are slightly more often
positive than negative, corresponding to excitatory interactions.

Branching process inference. In the branching process model, we use
time-ordered appearance data, fitting the time-ordered conditional appearance
probabilities

Pij ¼
Nðxt

i ; xT
j Þ

NðxiÞ
; ð20Þ

where Nðxt
i ; x

T
j Þ counts the number of times individual j appears in the same fight

bout as individual i, but at a later time T4t. Note that this is different than
previous work in inductive game theory13: there (time directed) correlations were
measured between individual appearances in separate fight bouts, whereas here we
measure correlations within fight bouts.

The parameters we vary in the heterogeneous branching process model are the
single-step conditional probabilities pij, which measure the probability that
individual j appears in step tþ 1 of the branching process given that individual i
appeared in step t. Being probabilities, pij are constrained to values 0rpijr1.
(Note that the branching model is thus limited in the extent to which it can
represent inhibitory interactions, for example, if i’s involvement in the fight deters
j from joining.) We modify this constrained optimization problem into an
unconstrained one by defining �pij ¼ j tanh� 1pij j and performing the
optimization over the (unconstrained) �pij parameters.

In the branching process simulation, the first individual to join each fight bout
is chosen randomly with probability proportional to the frequency with which each
individual appears at the beginning of fights in the data. At each subsequent time
step in the branching process, each individual j who has not yet been activated in
the current fight has a probability of joining equal to the sum of pij for all i active in
the previous time step. The fight bout concludes when no individuals are active in a
given time step. As discussed above, fight bouts that do not grow beyond a single
individual are discarded.

Analogously to the case of the equilibrium maximum entropy model, the
branching process parameters are fit by minimizing

hw2
Branchingi ¼

1
nðn� 1Þ

X
i

X
j 6¼ i

Pdata
ij � Pmodel

ij

� �2
s2

Pij

; ð21Þ
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where

s2
Pij
¼ Pijð1� PijÞ

NðxiÞ
: ð22Þ

We use a standard Levenberg–Marquardt algorithm (scipy.optimize.leastsq)
that uses individual residuals and a lowest-order approximation for the Jacobian
with respect to parameters. We find that restarting the Levenberg–Marquardt
routine every 10 steps (effectively resetting its damping parameter to avoid
unnecessarily small steps arising from its assumption of a non-stochastic objective
function) produces faster convergence with fewer samples required for each
estimate of the residuals and Jacobian. Minimization is stopped once hw2i defined
in equation (21) falls below 1. In addition, we find that switching between simple
gradient descent steps and Levenberg–Marquardt minimizations allows for more
efficient fitting of larger Pij.

The resulting inferred redirection probabilities pij are visualized in
Supplementary Fig. 2 and the righthand plot of Supplementary Fig. 3.

Data availability. The data that support the findings of this study are available
from J.C.F. upon reasonable request.
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