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Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high
morbidity and mortality in China and worldwide. Long non-coding RNAs (lncRNAs) as the
competing endogenous RNA (ceRNA) play an essential role in the occurrence and
development of LUAD. However, identifying lncRNA-related biomarkers to improve the
accuracy of LUAD prognosis remains to be determined. This study downloaded RNA
sequence data from The Cancer Genome Atlas (TCGA) database and identified the
differential RNAs by bioinformatics. A total of 214 lncRNA, 198 miRNA and 2989 mRNA
were differentially identified between LUAD and adjacent nontumor samples. According to
the ceRNA hypothesis, we constructed a lncRNA-miRNA-mRNA network including 95
protein-coding mRNAs, 7 lncRNAs and 15 miRNAs, and found 24 node genes in this
network were significantly associated with the overall survival of LUAD patients.
Subsequently, through LASSO regression and multivariate Cox regression analyses, a
four-gene prognostic signature composed of GPI, IL22RA1, CCT6A and SPOCK1 was
developed based on the node genes of the lncRNA-mediated ceRNA network,
demonstrating high performance in predicting the survival and chemotherapeutic
responses of low- and high-risk LUAD patients. Finally, independent prognostic factors
were further analyzed and combined into a well-executed nomogram that showed strong
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potential for clinical applications. In summary, the data from the current study suggested
that the four-gene signature obtained from analysis of lncRNA-mediated ceRNA could
serve as a re l iab le b iomarker for LUAD prognos is and eva luat ion of
chemotherapeutic response.
Keywords: long non-coding RNAs, competing endogenous RNA, lung adenocarcinoma, prognostic signature,
ceRNA network
INTRODUCTION

Lung adenocarcinoma (LUAD) is one of the most common
malignant tumors with high morbidity and mortality in China
and worldwide, accounting for 40% of all lung cancers (1, 2).
Although tremendous progress has been achieved in diagnosis
and treatment strategies in the past 10 years, the 5-year overall
survival rate of patients with LUAD is still meager, less than 20%
(3). The prognosis of LUAD is closely related to many factors
such as lymph node metastasis, distant metastasis and diagnostic
time. At present, the insufficient understanding of the biological
characteristics of LUAD limits the further improvement of
therapeutic effects. Therefore, it is urgent to clarify the
pathogenesis of tumors and identify novel biomarkers and
treatment schemes to improve the prognosis.

Long non-coding RNAs (lncRNAs) are a type of transcripts
with little or no protein-coding potential, which are more than
200 nucleotides in length (4, 5). In recent years, increasing
evidence has demonstrated that lncRNAs can act as the
competing endogenous RNA (ceRNA) to indirectly regulate
downstream target mRNA expression by competing for shared
miRNAs and subsequently participate in the development of
complex disease phenotypes and various pathological processes,
including cancers (6–8). For example, lncRNA SHHG6-003
could bind with miR-26a/b/TAK1, promote the proliferation of
hepatocellular carcinoma (HCC) cells, and shorten the overall
survival of HCC patients (9). The lncRNA HOTAIR could
regulate the expression of human epithelial growth factor
receptor 2 (HER2) by competing for mir-331-3p, thus playing
an oncogenic role in gastric pathogenesis (10). Additionally, in
2019, Wang et al. reported that the dysregulated MMP9/ITGB1-
miR-29b-3p-HCP5 competing endogenous RNA (ceRNA)
network was closely linked to poor prognosis of pancreatic
cancer (11). In 2018, another study observed four ceRNA
based on lncRNA, which had significant prognostic value in
breast cancer (12). Together, these findings demonstrate that the
imbalance of the lncRNA-miRNA-mRNA network is involved in
the pathogenesis of various cancers. However, the overall
biological role and potential molecular mechanism of the
lncRNA-mediated ceRNA network in LUAD are still unclear.

In this study, LUAD-related gene expression profiles were
downloaded from the TCGA database. Differentially expressed
lncRNAs, miRNAs and mRNAs were analyzed using
bioinformatics methods. A LUAD-specific lncRNA-miRNA-
mRNA regulatory network was constructed following the
ceRNA hypothesis. Then, a 4-gene prognostic signature
composed of GPI, IL22RA1, CCT6A and SPOCK1 was
2

developed and validated using the node genes of the lncRNA-
mediated ceRNA network. Finally, independent prognostic
factors were further analyzed and combined into a nomogram,
which was confirmed to be highly accurate in predicting the
survival of patients with LUAD.
MATERIALS AND METHODS

Clinical Lung Adenocarcinoma and
Adjacent Nontumorous Lung Tissues
Forty paired LUAD and adjacent nontumorous tissues were
obtained from patients undergoing surgery at the First
Affiliated Hospital of Henan University and Puyang Hospital
of traditional Chinese medicine, China, between 2018 and 2020.
This study was approved by the Ethics Committee of Medical
School of Henan University, China. All methods in this study
were performed following the approved guidelines. Written
informed consent was obtained from each patient before
sample collection.

Cell Culture and Stable Transfection
of shRNA
All NSCLC cell lines (HCI-H1299 and A549), immortalized lung
epithelial cell line BEAS-2B and HEK293T were obtained from
the Cell Bank of Type Culture Collection of the Chinese
Academy of Sciences (Shanghai, China). The cells were
cultured in DMEM medium (Corning, USA) with 10% fetal
bovine serum (Pan biotechnology, Germany) at 37°C and 5%
CO2 (all cells were cultured under the same conditions) and were
not passaged more than 25 times after thawing. Cells growing at
an exponential rate were used for experiments. Cells were
periodically evaluated to confirm Mycoplasma-negative status,
and cell lines were authenticated by growth characteristics,
examination of morphology and short tandem repeat analysis.

CCT6A in H1299 and A549 cells were stably knockdown by
transduction with pre-made lentiviral short hairpin RNA (shRNA)
(TranSheepBio, Shanghai, China). The shRNA vectors included
TRCN0000062514 named as sh1CCT6A (target sequence: 5’-
CGTGTCATTAGAGTATGAGAA-3’) and TRCN0000062515 named
as sh2CCT6A (target sequence: 5’-CCAGAACATCTCTTCGT
ACTA-3’). The sequences of scramble control shRNA (shNC)
were 5’- TTCTCCGAACGTGTCACGTAAT-3’. According to the
manufacturer’s instruction, the recombinant lentiviral vector,
envelope plasmid (pMD2.G) and packaging vector (psPAX2)
were co-introduced into HEK293T cells through Lipofectamine
2000. After 48 h transduction, the culture supernatant was
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collected and filtered with 0.45mm filter, and then was used to
infect H1299 and A549. The infected cells were screened by
puromycin at 9.18 mmol/L. The efficiency of gene silencing was
detected by Western blot analysis.

Colony Formation Assay and Wound-
Healing Assay
Cell proliferation and migration were assessed by colony
formation and wound-healing assay. Details of the relevant
contents have been described previously (13)

Immunoblotting
Tissues or cells were lysed on ice in RIPA lysis buffer containing
500 mM NaCl, 50 mM Tris pH 8.0, 1mM EDTA, 1% NP-40 and
1×cocktail of protease inhibitors (Roche, Lewes, UK). Protein
concentrations were quantified according to the manufacturer’s
instructions (Pierce, Rockford, IL). Protein lysates were
separated by SDS-PAGE and transferred to polyvinylidene
fluoride membranes. Details of the relevant content have been
described previously (13). Information of antibodies used was
provided in Supplementary Table 1.

Analysis of Expression Profiles of
lncRNAs, miRNAs and mRNAs in LUAD
and Adjacent Nontumorous Tissues
Raw sequencing data of LUAD-related RNAs expression and
complete clinical data of the corresponding patients were
downloaded from the TCGA database (https://portal.gdc.cancer.
gov/). After homogenizing the TCGA raw data using the trimmed
mean ofM-values (TMM)method, the expression level of RNAwas
converted to a log2 value. Then, the R package of edgeR was used to
screen for differentially expressed lncRNAs, miRNAs and mRNAs
in LUAD and adjacent nontumorous tissues. Statistical significance
was defined as P<0.05 and absolute Log Fold Change ≥1. Heatmaps
and volcano plots of differentially expressed RNAs (DERNAs) were
drawn using ggplots and heatmap software packages.

Construction of a ceRNA Network in LUAD
ThemiRcod database (http://www.mircode.org/) was used to predict
the interaction between differentially expressed lncRNAandmiRNA
(14). The mRNA targeted by differentially expressed miRNA were
searched from the miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/
), miRDB (http://www.mirdb.org/), and TargetScan (http://www.
targetscan.org/) databases using the Perl program (version:5.26.1)
(15–17). A lncRNA-miRNA-mRNA ceRNA network based on the
“ceRNA hypothesis” was established and visualized by Cytoscape
software (http://cytoscape.org/).

Establishment and Validation of the
Prognostic Signature Based on the
ceRNA Network
The survival-related node genes in the ceRNA network were
extracted by univariate Cox regression analysis with the
threshold of Hazard Ratio ≠1 and P<0.05. To minimize
overfitting, the R package “glmnet” was used to further extract
prognostic genes for following multivariate Cox regression by a
Frontiers in Oncology | www.frontiersin.org 3
least absolute shrinkage and selection operator (LASSO)
regression analysis. Then, the R package “caret” was used to
randomly divide TCGA_LUAD patients into training and testing
cohorts (18). A prognostic signature based on the ceRNA
network was constructed in the training cohort by multivariate
Cox regression (19). The prognostic gene signatures were shown
as risk score=sum [gene expression×coefficient]. The risk score
for each patient was calculated. We divided the LUAD patients
into the high-risk and low-risk groups with the median risk
scores as our cut-off. To verify the prognostic value of the above
ceRNA-related genes signature, survival and ROC curve analyses
were performed using the testing cohort and entire cohort as the
validation set. Principal components analysis (PCA) was used to
explore the distribution patterns of the different risk groups. A
prognostic nomogram including risk scores and clinical features
for predicting the likelihood of 1-, 3-, and 5-year OS was
developed by R “rms” package. The calibration curves and C-
index were used to evaluate the predictive accuracy of the
nomogram. Finally, the mRNA expression levels of the
prognostic signature genes were validated using Oncomine
(http://www.oncomine.org/), TCGA and GSE32863 databases.
The protein expression of levels was further verified by western
blot analysis using 40 pairs of LUAD and adjacent
nontumorous tissues.

Gene Set Enrichment Analysis
To investigate the potential biological pathways and processes of
the ceRNA network-related genes signature, we conducted the
KEGG pathway analysis through Gene Set Enrichment Analysis
(GESA) for the training cohort, with FDR<0.05 as a threshold for
the significant pathways.

Analysis of 22 Immune Cell Types’
Infiltration Patterns and Correlation
Between the ceRNA Network-Associated
Genes Signature and Biomarkers for
Immunotherapy
The CIBERSORT algorithm was utilized to estimate the fraction
of 22 immune cell types in the LUAD samples from gene
expression data in the training cohort. Samples with a
CIBERPORT output value of P<0.05 were considered to meet
the conditions for further analysis. The difference of immune
cells in the proportion between the high- and low-risk groups
was analyzed by Wilcoxon rank sum test. Additionally, it is
worth noting that immune checkpoints are biomarkers for
selecting LUAD patients for immunotherapy. Therefore, in this
study, we analyzed the correlation between the ceRNA network-
associated genes signature and key immune checkpoints (PD-1,
PD-L1, CTLA-4, LAG3, TIM-3, TIGIT, CD80, CD276, TNFSF4
and VTCN1) using the R package “lmma”.

Prediction of Chemotherapeutic Response
Based on the ceRNA Network-Associated
Genes Signature
Chemotherapy is one of the effective methods for treating
advanced patients with LUAD. The clinical response of each
March 2022 | Volume 12 | Article 844691
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LUAD patient in high- and low-risk groups to chemotherapy
was estimated according to the Genomics of Drug Sensitivity in
Cancer (GDSC) data. Nine commonly used chemotherapy drugs,
cisplatin, docetaxel, doxorubicin, erlotinib, etoposide,
gemcitabine, paclitaxel, vinorelbine and cytarabine, were
selected for the chemotherapeutic response prediction through
the ridge regression using the “pRRophetic” R package. The half-
maximal inhibitory concentration (IC50) predicted of each
TCGA_LUAD patient was used to assess differential
chemotherapeutic response (20).

Statistical Analysis
SPSS21.0 (SPSS Inc., Chicago, IL, USA) and R software (version
3.6.0) were used for all statistical analyses. The difference
between the two groups was assessed using the Student’s t-test.
The continuous data are expressed as the mean ± standard
deviation (SD). All statistical tests were two-tailed, and
statistical significance was set at P<0.05.
RESULTS

Differential Expression Analyses of
lncRNAs, miRNAs, and mRNAs in LUAD
We analyzed the differential expression of lncRNA, miRNA, and
mRNA in LUAD by R software package using TCGA database
containing 497 LUAD and 54 paracancerous samples, with
P<0.05 and absolute Log2 Fold Change of 1 as the threshold.
A total of 214 lncRNA (51 down- and 163 upregulated), 198
miRNA (87 down- and 111 upregulated) and 2989 mRNA (1344
down- and 1645 upregulated) were identified between LUAD
and adjacent nontumorous samples (Supplementary Table 2).
The differentially expressed lncRNA, miRNA and mRNA
distribution were visualized by volcano plots and heatmaps
(Supplementary Figure 1).

Establishment of the ceRNA
Network in LUAD
To explore the potential regulatory mechanism of ceRNA in
LUAD, we tried to establish the ceRNA network for LUAD based
on the ceRNA hypothesis (19). Using miRcode, miRTarBase, and
miRDB databases, a total of interactions of 119 miRAN-mRNA
pairs and 15 lncRNA-miRNA pairs were identified
(Supplementary Table 3). Finally, a LUAD-specific lncRNA-
miRNA-mRNA ceRNA network, consisting of 7 lncRNAs, 15
miRNAs, and 95 mRNAs, including 117 nodes and 134 edges,
was constructed and visualized (Supplementary Figure 2).

Developing and Validation of the
Prognostic Signature Based on
the ceRNA Network
Because this ceRNA network constructed above is composed of
many genes and their interactions, it isn’t easy to clarify its
diagnostic and prognostic significance. Therefore, a univariate
Cox regression analysis (Hazard Ratio ≠1, p<0.05) was
performed to screen the node genes related to the overall
Frontiers in Oncology | www.frontiersin.org 4
survival (OS) of LUAD patients in the ceRNA network using
the TCGA_LUAD database. The results showed that 24 node
genes were significantly associated with the OS (Figure 1A and
Supplementary Table 4). Subsequently, to reduce the complexity
of the risk model, Lasso regression analysis was used to remove
genes with relatively lower correlation, and 9 of the 24 prognostic
genes were screened out (Figures 1B, C). Then, we randomly
divided 462 TCGA_LUAD patients with survival data into
training and testing cohorts using the R package “caret”. A
prognostic signature model was developed in the training cohort
based on multivariate Cox regression analysis (Supplementary
Table 5). Then, four candidate signature genes were identified,
namely, GPI, IL22RA1, CCT6A, and SPOCK1. Figures 1D, E
presented the forest plots and heatmap of the four prognostic
genes. Furthermore, a 4-gene signature-based risk score formula
was constructed as Risk score=0.314∗GPI+0.127∗ IL22RA1
+0.330∗CCT6A+0.104∗SPOCK1. According to the median risk
scores, 232 LUAD patients in the training cohort were divided into
high-risk and low-risk groups. As depicted in Figures 2A, B, the
increase of risk score was related to the poor OS of patients with
LUAD. Kaplan-Meier curve showed that OS decreased in patients
in the high-risk group (Figure 2C). Time-dependent ROC analysis
observed that compared with each of the above genes, the four-
gene prognostic signature had larger AUC values (Figure 2D and
Supplementary Figure 3). Moreover, principal component
analysis (PCA) clearly identified a significantly different
distribution between the two risk groups (Figure 2E).

Finally, to verify the predictive value of the four-gene
signature, we used the testing cohort (n=230) and the entire
cohort (n=462) as the validation set to evaluate the findings from
the training cohort. Similar to the results of the training cohort,
the KM curves of the two validation sets demonstrated that
patients in the low-risk group exhibited better OS (Figures 2F, I).
The AUC of the four-gene signature was 0.633, 0.635, 0.665, 0.673,
0.672 and 0.668 at the 1-year, 3-year, and 5-year timepoints in the
testing cohort and the entire cohort, respectively (Figures 2G, J). In
addition, PCA also showed similar results as the training cohort
(Figures 2H, K).

Verification of the Expression of
Prognostic Signature Genes Between
LUAD and Adjacent Nonumorous
Lung Tissues
We performed external validation of four prognostic signature
genes. The Oncomine database analysis observed that compared
to normal lung tissues, the expression levels of GPI, IL22RA1,
CCT6A, and SPOCK1 mRNA in LUAD tissues were significantly
higher (Figure 3A). Moreover, we further confirmed mRNA
expression of these four genes in LUAD from TCGA’ paired
samples and GSE32863 databases (Figures 3B, C). Additionally,
we investigated the protein expression levels of these four genes
in 40 pairs of LUAD tissues and adjacent nontumorous tissues by
Western blot analysis. The results showed that GPI, IL22RA1,
CCT6A, and SPOCK1 expression in the tumor tissues (T) was
markedly higher than in the control tissues (N) (n=40, P<0.05;
Figures 3D, E and Supplementary Figure 4).
March 2022 | Volume 12 | Article 844691
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Performance Comparison of the ceRNA
Network-Related Genes Signature With
Other Reported Gene Signatures in
Prognosis Evaluation
To further evaluate the prediction performance of the ceRNA
network-related genes signature, we selected four other published
gene signatures obtained from Li’s (21), Mo’s (22), Sun’s (23) and
Zhang’s (24) for comparison. The risk score of each patient was
calculated according to the corresponding genes in these four
models using the same method (multivariable Cox regression
analysis) in the training cohort and then evaluated the time-
dependent ROC. Figure 2D and Figures 4A–D revealed that the
AUC of the ceRNA network-related gene signature for 5-year OS
was 0.678, which was significantly larger than that of Li’s (0.616),
Mo’s (0.576), Sun’s (0.603) and Zhang’s (0.622) gene signatures.
The C-index of all prognostic signatures calculated by the
restricted mean survival (RMS) package showed that our model
had the highest C-index with 0.668 (Figure 4E). Moreover, the
RMS time curve of all five prognostic models also demonstrated
that our 4-gene signature performed best at a time period greater
than 8 years (Figure 4F). These results suggested that the ceRNA
network-related genes signature might provide better prognosis
evaluation performance for LUAD.
Frontiers in Oncology | www.frontiersin.org 5
Construction and Validation of a Predictive
Nomogram Based on the Risk Signature
Univariate Cox regression analysis showed that tumor
stage (HR=1.706, 95% CI=1.353-2.150, P<0.001), recurrence
(HR=3.133, 95% CI=1.908-5.143, P<0.001), and the risk
score (HR=2.144, 95% CI=1.563-2.941, P<0.001) were closely
correlated with OS in training cohort (Figure 5A). Multivariate Cox
regression analysis further confirmed the above results (Figure 5B).
Therefore, these three factors were combined to construct a compound
nomogram for predicting the OS of patients with LUAD at 1-, 3- and
5-year (Figure 5C). The calibration plot of the nomogram for
predicting 3-year OS of LUAD patients in the training cohort
showed great consistency between actual observation and nomogram
prediction (Figure 5D), and the nomogram model’s C-index for
prediction of OS was 0.778 (95% CI=0.728-0.829, P=1.97e-27).
Moreover, the AUC value of the nomogram for predicting 3-year
OS was larger than that of the stage, recurrence and risk score,
suggesting that using this nomogram to predict OS might bring
more net benefit (Figure 5E). Finally, we further assessed the
predictive value of the four-gene prognostic nomogram using the
testing cohort and the entire cohort. The calibration plots (Figures 5F,
H) and the time-dependent ROC curves of risk score (Figures 5G, I)
were consistent with the results derived from the training set.
A B

D E

C

FIGURE 1 | Identification of four significantly prognostic genes and their expression in LUAD. (A) Forest plot of node genes based on lncRNA-mediated ceRNA
network by univariate Cox regression analysis. (B) LASSO coefficient patterns of the 24 node genes in TCGA_LUAD database. (C) LASSO regression with tenfold
cross-validation obtained 9 prognostic genes using minimum lambda value. (D) Multivariate Cox regression analysis of 9 prognostic genes from LASSO regression
analysis. (E) Heatmap of the prognostic signature genes expression profiles for TCGA_LUAD.
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A

B

D

E

C

HGF

KJI

FIGURE 2 | Prognostic analysis of four-gene signature in the training cohort, testing cohort and entire cohort. (A, B) The distribution of risk score (A) and patient’s
survival time (B) in the training cohort. (C, F, I) Kaplan-Meier survival analysis of the four-gene signature in the training cohort (C), testing cohort (F) and entire cohort
(I), respectively. (D, G, J) Time-dependent ROC analysis of the four-gene signature in the training cohort (D), testing cohort (G) and entire cohort (J), respectively.
(E, H, K) Principal components analysis (PCA) of whole gene expression data between low- and high-risk groups in the training cohort (E), testing cohort (H) and
entire cohort (K), respectively. ROC, receive operating characteristic; AUC, area under curve.
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Functional Annotation of the
Risk Signature
To further explore the potential biological pathways and
processes related to the four-gene signature, we conducted
gene set enrichment on samples within the training cohort by
Frontiers in Oncology | www.frontiersin.org 7
GSEA. We found that critical pathways associated with
tumorigenesis, including cell cycle, DNA replication, P53
signaling pathway, proteasome, and spliceosome, were
significantly enriched in the high-risk group (Figure 6A and
Supplementary Table 6). Additionally, we investigated whether
A

B C

E

D

FIGURE 3 | Validation of the gene expression contained in prognostic signature. (A) Expression levels of GPI, IL22RA1, CCT6A and SPOCK1 in each study based
on the Oncomine database. (B) The mRNA expression levels of GPI, IL22RA1, CCT6A and SPOCK1were evaluated using 52 matched LUAD samples from the
TCGA_LUAD database. (C) The mRNA expression levels of GPI, IL22RA1, CCT6A and SPOCK1were estimated using GSE32863 dataset. (D, E) Representative
Western blotting analysis of the protein expression levels of GPI, IL22RA1, CCT6A and SPOCK1 in 40 paired LUAD tissues and adjacent nontumor tissues (D).
Taking GAPDH as the loading control, the quantitative results of grayscale scanning were displayed (E).
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the risk model was related to the tumor immune
microenvironment. We plotted the heatmap of 22 tumor-
immune cell types, showing the distribution of these immune
cells (Figure 6B). Then, Wilcoxon rank-sum test was used and
revealed that high-risk LUAD patients had significantly higher
proportions of T cells CD4 memory activated, NK cells resting,
macrophages M0 and macrophages M1 and lower proportions of
T cells CD4 memory resting, monocytes, and Mast cells resting
(Figure 6C). Furthermore, we further analyzed the correlation
between the risk groups and the expression of immune
checkpoint molecules, including programmed death-1 (PD-1),
programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), lymphocyte activation gene-3
(LAG3), T-cell immunoglobulin and mucin-domain containing-
3 (TIM-3), T cell immunoreceptor with Ig and ITIM domains
(TIGIT), CD80, CD276, tumor necrosis factor superfamily
member 4 (TNFSF4), and V-set domain-containing T-cell
activation inhibitor-1 (VTCN1). The results showed that
compared with the low-risk group, the high-risk group had
markedly higher expression levels of TNFSF4, CD274, PD-L1,
and LAG3 (Figure 6D). Therefore, the heterogeneity of immune
cell infiltrations and immune checkpoint molecules expression
observed in these results may provide potential prognostic
indicators and targets for immunotherapy in patients
with LUAD.
Frontiers in Oncology | www.frontiersin.org 8
Analysis of Chemotherapeutic Responses
Between High- and Low-Risk Patients
With LUAD
Besides immune checkpoint blockades therapy, chemotherapy is
still an effective treatment for advanced LUAD patients. Thus, we
attempted to investigate the response to the common
chemotherapeutic drugs in low- and high-risk patients with
LUAD in the entire cohort. The IC50 values of the high- and
low-risk groups were calculated based on the GDSC data. The
results demonstrated that high-risk LUAD patients showed
increased sensitivity to cisplatin, docetaxel, doxorubicin,
erlotinib, etoposide, gemcitabine, paclitaxel and Vinorelbine,
while there was no significant difference in IC50 value of
cytarabine between the high-risk group and low-risk group,
which indicated that the four-gene risk model might act as a
potential predictor for chemosensitivity (Figure 7).

GPI, IL22RA1, CCT6A and SPOCK1, Which
Constitute the Risk Signature, Affect LUAD
Prognosis in Association With Activation
of PI3K/AKT Signaling Pathway
Finally, to obtain more mechanistic insights into the impact of
GPI, IL22RA1, CCT6A and SPOCK1 on the progression of
LUAD, Gene Set Enrichment Analysis (GESA) was performed
A

E F

B DC

FIGURE 4 | Comparison of the four-gene prognostic signature risk model with other reported risk models. (A–D) Time-dependent ROC analysis of four other
published gene signatures. (E) Concordance index (C-index) of five prognostic risk models. Our prognostic risk model (red histogram) has the highest C-index.
(F) Restricted mean survival (RMS) time curve of all five risk models.
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A

C
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FIGURE 5 | Correlation between indicated variables and prognosis of LUAD patients. (A, B) Analyses of correlations between the indicated variables and overall
survival of LUAD patients by univariate and multivariate Cox regression, respectively. (C) Nomogram for predicting the 1-, 3-, and 5-year overall survival of LUAD
patients. (D, F, H) The calibration plots for predicting 3-year survival in the training cohort (D), testing cohort (F) and entire cohort (H), respectively. (E, G, I) The
time-dependent ROC curves of the stage, recurrence, risk score and nomogram in 3-year OS prediction in the training cohort (E), testing cohort (G) and entire
cohort (I), respectively. OS, overall survival; ROC, receiver operating characteristic.
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using TACG_LUAD database to compare the high expression
and low expression of GPI, IL22RA1, CCT6A and SPOCK1,
respectively. We observed that many important regulatory genes
involved in the PI3K-AKT-mTOR signaling pathway, which
plays an important role in regulating various oncogenic
processes (25), were markedly enriched in cells with high GPI,
IL22RA1, CCT6A and SPOCK1 expression (Figure 8A). In view
of the highest normalized enrichment score (NES) of CCT6A
(NES) (NES=2.21, P= 6.19e-4), we mainly chose CCT6A to
explore the relevant mechanism. We first examined the
expression level of CCT6A in BEAS-2B, A549 and H1299 cell
lines by Western blot (Figure 8B). Due to the high expression
level of CCT6A in two non-small cell lung cancer (NSCLC) cell
lines, A549 and H1299, we used short hairpin RNA (shRNA)
targeting CCT6A to silence CCT6A. The results showed that
CCT6A knockdown substantially reduced proliferation and
migration of A549 and H1299 (Figures 8C–F). Moreover,
Western blot analysis revealed that CCT6A silencing
significantly inhibited epithelial-mesenchymal transition
(EMT) of A549 and H1299, evidenced by a marked reduction
in the protein levels of N-cadherin and marked increase of
Frontiers in Oncology | www.frontiersin.org 10
E-cadherin. Notably, we also observed that CCT6A
knockdown markedly decreased the protein levels of p-PI3K
and p-AKT (Figure 8G), suggesting that CCT6A may affect the
EMT of LUAD cells by activating PI3K/AKT pathway and then
affect the malignant of LUAD and prognosis of LUAD patients.
In the future, we will continue to focus on the specific
mechanism of GPI, IL22RA1 and SPOCK1 in LUAD.
DISCUSSION

The ceRNA networks consist of protein-coding mRNAs and non-
coding RNAs (ncRNAs), such as miRNAs and lncRNAs (19). After
Salmena et al. first proposed the ceRNA hypothesis, increasing
investigations regarding ceRNAs have documented that
dysregulated ceRNAs play critical roles in cancer initiation and
progression. Nevertheless, an extensive analysis of the prognostic
value and clinical significance of node genes based on lncRNA-
mediated ceRNA network in LUAD samples has not been reported.
The present study is the first systematic analysis of the expression
levels of 117 node genes of the ceRNA network in LUAD. Then,
A B

C D

FIGURE 6 | Functional analyses of the high- and low-risk groups. (A) Differences in biological functions by GSEA analysis. (B) Heatmap of the 22 immune cell types
in high- and low-risk groups. (C) The fractions of 22 immune cell types estimated with CIBERSORT and the differences between low- and high-risk LUAD patients.
(D) Differential expression analysis of immune checkpoint genes. *p < 0.05; **p < 0.01; ***p < 0.001.
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according to the multi-step selection, a prognostic risk model
significantly associated with the survival rate, chemotherapeutic
responses and tumor immunemicroenvironment of LUAD patients
was constructed based on four the ceRNA network-related
candidate signature genes.

Given the functional interdependence between the different
RNA molecules, in recent years, the focus of cancer pathology
research has shifted from individual RNAs carrying cancer-
related dysregulation to network-based potential mechanisms
and clinical significance, such as the lncRNA-mediated ceRNA
network hypothesis. In 2018, Fang et al. reported a lncRNA-
miRNA-mRNA network, which was demonstrated to be strongly
associated with certain clinical characteristics of human head
and neck squamous cell carcinoma (26); In addition, Liu et al.
comprehensively investigated the gain and loss of ceRNAs in
prostate cancer (PC) and proposed its role in identifying
potential biomarkers and treatment options for PC (27). In
this study, we used bioinformatics analysis to identify the
ceRNA networks, which could regulate the survival and
prognosis of LUAD patients through 95 protein-coding
mRNAs, 7 lncRNAs, and 15 miRNAs. In the ceRNA networks,
Frontiers in Oncology | www.frontiersin.org 11
24 node genes, such as CPS1, DEPDC1, MYBL2, MYBL2,
LOXL2, etc., were significantly associated with overall survival
in LUAD. According to the hypergeometric testing and
correlation analysis, the results of the ceRNAs network
revealed that GPI, IL22RA1, CCT6A, and SPOCK1 were
prognostic signature genes used to construct the prognostic
risk model. Subsequently, the correlation analysis between the
risk model and the survival rate, immune cell infiltration, the
expression of immune checkpoint genes and chemotherapeutic
responses of LUAD patients discovered that this four-gene
signature could provide a new method for evaluating LUAD
patients, guiding prognosis prediction and the choice of
immunotherapy and chemotherapy.

Prior work has reported these model genes’ biological
function and expression patterns. GPI (glucose-6-phosphate
isomerase) is a housekeeping cytoplasmic enzyme. The
expression of GPI is induced by HIF-1 (28, 29) and c-Myc (30)
and is frequently up-regulated in many types of cancer (31). GPI
catalyzes the interconversion between glucose-6-phosphate and
fructose-6-phosphate and plays a vital role in glycolytic and
gluconeogenic pathways. Besides its role as a glycolytic enzyme,
A B C

D E F

G H I

FIGURE 7 | Differential chemotherapeutic responses in low- and high-risk LUAD patients (A–I). The IC50 values of the high- and low-risk groups were calculated
based on the GDSC (Genomics of Drug Sensitivity in Cancer) data (https://www.cancerrxgene.org/). IC50, half maximal inhibitory concentration.
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mammalian GPI can function as a tumor-secreted cytokine and
an angiogenic factor that stimulates endothelial cell motility (32).
IL22RA1 (interleukin-22 receptor subunit a-1) is a component
of IL20, IL22 and IL24 receptors. The IL22 receptor formed by
IL22RA1 and IL10RB realizes IL22 signal to activate Signal
Transducers and Activators of Transcription (STATs), nuclear
factor kappa B (NF-kB), mitogen-activated protein kinase
(MAPK) and phosphatidylinositide 3-kinase-Akt mammalian
target of rapamycin (PI3K-Akt-mTOR) pathways (33, 34),
Frontiers in Oncology | www.frontiersin.org 12
modulates a variety of biological properties closely related to
tumorigenesis, development and metastasis, such as
inflammation, mitosis, proliferation, survival, apoptosis and
angiogenesis (35). CCT6A (chaperonin containing TCP1
subunit 6A) is one of eight subunits of the critical molecular
chaperone, T-complex protein 1 Ring complex (TRiC). It is
estimated that TRiC can directly help fold up to 10% of cytosolic
proteins (36, 37) and provide the unique ability to fold certain
proteins that simpler chaperone systems cannot fold. This strict
A

B

C

E

D F

G

FIGURE 8 | To explore the potential mechanism of the risk model-related genes GPI, IL22RA1, CCT6A and SPOCK1 on the progression of LUAD.
(A) GSEA analysis was conducted using TCGA_LUAD database to compare the high expression and low expression of GPI, IL22RA1, CCT6A and SPOCK1,
respectively. (B) Western blotting analysis of the protein expression level of CCT6A in BEAS-2B, A549 and H1299 cells. (C, D) The effect of CCT6A silencing on
colony formation in A549 and H1299. (E, F) The effect of CCT6A knockdown on cell migration was analyzed by wound healing assay in A549 and H1299 (scale bar,
100mm). (G) Western blot analysis of indicated protein expression level. GSEA, Gene Set Enrichment Analysis.
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requirement of TRiC is essential for folding critical proteins
involved in tumorigeneses, such as tumor suppressor Von
Hippel-Lindau (VHL) (38), p53 (39) and the pro-oncogenic
protein STAT3 (40). Recently, Hallal et al. observed that the
expression level of CCT6A was markedly increased in
glioblastoma patients, and its expression was associated with
EGFR, speculating that CCT6A might be a potential biomarker
of glioblastoma with prognostic significance (41). SPOCK1
(SPARC/osteonect in , cwcv and kazal- l ike domains
proteoglycan 1), also referred to as testincan-1, is a crucial
regulator of the dynamic balance of extracellular matrix (ECM)
and mediates epithelial-to-mesenchymal transition (EMT) in
cancer cells. It can activate many molecular signaling
pathways, such as Wnt/b-catenin (42), EMT process (43), and
mTOR/S6K (44) signaling pathways, leading to ECM
remodeling, cancer cell proliferation and invasion, but
inhibiting cell apoptosis. Moreover, Miao et al. found that lung
cancer patients with high SPOCK1 expression have decreased life
expectancy compared to those with low expression (42).
Importantly, we verified that GPI, IL22RA1, CCT6A, and
SPOCK1 were overexpressed in 40 pairs of LUAD tissues and
adjacent normal lung tissues by Western blotting analysis.

The PI3K/AKT signaling pathway, which plays a crucial role in
regulating cell growth, differentiation, apoptosis and metastasis, is
frequently activated in multiple human cancer, including lung
adenocarcinoma (45, 46). Moreover, recent studies have
demonstrated that activation of the PI3K/AKT signaling pathway
can induce EMT, which is usually considered to be an activator of
cancer progression (47, 48). In this study, we found that the high
expression of GPI, CCT6A, IL22RA1 and SPOCK1 was closely
related to the activation of PI3K/AKT pathway through GSEA
analysis , while CCT6A knockdown caused reduced
phosphorylation of PI3K/AKT, increased expression of E-
cadherin and decreased N-cadherin. We speculated that PI3K/
AKT signaling pathway activation might be a critical process
involved in the progression of GPI, CCT6A, IL22RA1 and
SPOCK1-overexpression tumors. Our findings indicate that these
genes may play critical roles in the progression of LUAD. Therefore,
it is necessary to further study the biological functions of these four
genes in LUAD. Our current research is mainly based on public
databases and limited clinical tissue specimens of LUAD. In the
future, additional studies employing retrospective design are
required to verify the robustness and reproducibility of this four-
gene signature.

In conclusion, An LUAD-specific lncRNA-mediated ceRNA
network was constructed by bioinformatics methods. Then, a
Frontiers in Oncology | www.frontiersin.org 13
four-gene prognostic signature was developed based on node
genes of this network, demonstrating high performance in
predicting the survival and chemotherapeutic responses of
LUAD patients. Finally, independent prognostic factors were
further analyzed and combined into a well-executed nomogram
that showed strong potential for clinical applications.
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