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A disintegrin and metalloproteinases (ADAMs) are a Zn2+-dependent transmembrane
and secreted metalloprotease superfamily, so-called “molecular scissors,” and they
consist of an N-terminal signal sequence, a prodomain, zinc-binding metalloprotease
domain, disintegrin domain, cysteine-rich domain, transmembrane domain and
cytoplasmic tail. ADAMs perform proteolytic processing of the ectodomains of diverse
transmembrane molecules into bioactive mediators. This review summarizes on their
most well-known members, ADAM10 and 17, focusing on the kidneys. ADAM10 is
expressed in renal tubular cells and affects the expression of specific brush border
genes, and its activation is involved in some renal diseases. ADAM17 is weakly
expressed in normal kidneys, but its expression is markedly induced in the tubules,
capillaries, glomeruli, and mesangium, and it is involved in interstitial fibrosis and tubular
atrophy. So far, the various substrates have been identified in the kidneys. Shedding
fragments become released ligands, such as Notch and EGFR ligands, and act as
the chemoattractant factors including CXCL16. Their ectodomain shedding is closely
correlated with pathological factors, which include inflammation, interstitial fibrosis,
and renal injury. Also, the substrates of both ADAMs contain the molecules that
play important roles at the plasma membrane, such as meaprin, E-cadherin, Klotho,
and CADM1. By being released into urine, the shedding products could be useful
for biomarkers of renal diseases, but ADAM10 and 17 per se are also notable as
biomarkers. Furthermore, ADAM10 and/or 17 inhibitions based on various strategies
such as small molecules, antibodies, and their recombinant prodomains are valuable,
because they potentially protect renal tissues and promote renal regeneration. Although
temporal and spatial regulations of inhibitors are problems to be solved, their inhibitors
could be useful for renal diseases.
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ADAM10 AND ADAM17

A disintegrin and metalloproteinases (ADAMs), a superfamily of Zn2+-dependent transmembrane
and secreted metalloproteases, are responsible for a large proportion of transmembrane protein
cleavage. ADAMs are approximately 750 amino acids long and evolutionarily conserved, and 22
ADAM genes have already been identified in humans. ADAMs cleave a variety of transmembrane
proteins at the plasma membrane, a process which is known as ectodomain shedding (Wetzel et al.,
2017). ADAM10 and 17 consist of an N-terminal signal sequence, prodomain, metalloprotease
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(or catalytic) domain, disintegrin domain, cysteine-rich region,
transmembrane region and cytoplasmic tail (Klein and Bischoff,
2011; Figure 1). In the catalytic active metalloprotease domain,
a characteristic HExxHxxGxxH is commonly found (x: any
amino acid residue) as a zinc-binding motif (Bode et al., 1993).
Although these ADAMs are close relatives, their protein sequence
homology is less than 30% (Gooz, 2010).

ADAM10 is ubiquitously expressed in various mammalian
cells and reacts with more than 40 substrates (Dreymueller et al.,
2012; Saftig and Lichtenthaler, 2015). ADAM10 is indispensable
for embryonic development, because ADAM10 knockout (KO)
mice die at embryonic day 9.5 and display a defective neuronal
and vascular phenotype (Hartmann et al., 2002). With respect
to the kidneys, ADAM10 is expressed in renal tubular cells, and
its activity affects the expression of specific brush-border genes
(Cong et al., 2011). Furthermore, ADAM10 has effects some renal
diseases such as lupus nephritis, arterionephrosclerosis, and DN
(Gutwein et al., 2009a; Hu et al., 2016; Lattenist et al., 2016; Orme
et al., 2016).

ADAM17, also named TACE (TNF-α converting enzyme), is
the most widely studied, and releases the ectodomain of various
substrates from their transmembrane preforms to produce active
soluble ligands. After ectodomain shedding, these ligands bind
to receptors, which lead to downstream signaling. ADAM17 is
widely expressed in various tissues including the kidney, and its
expression changes during embryonic development and adult life
(Black et al., 1997). Especially, ADAM17 is required for normal
development, as its KO mice die during late development or
soon after birth (Peschon et al., 1998). Since ADAM17 KO mice
have a similar phenotype to EGFR KO mice, defects of the eyes,
skin, heart, lungs, and hair (Miettinen et al., 1995), the precursor
forms of the EGFR ligands are likely to be the main substrates
of ADAM17. In addition, many reports suggest critical roles
of ADAM17 in immunity, inflammation, and bone formation
(Scheller et al., 2011; Dreymueller et al., 2012; Rose-John,
2013). ADAM17 is weakly expressed in proximal convoluted
tubules (PCT), peritubular capillaries, glomerular endothelium,
and podocytes in normal kidneys (Mulder et al., 2012; Perna
et al., 2017). However, in the presence of interstitial fibrosis and
tubular atrophy, ADAM17 expression is markedly upregulated in
the tubules, capillaries, glomeruli, and in mesangium de novo.

SUBSTRATES OF ADAM10 AND 17 IN
KIDNEYS (SUMMARIZED IN TABLE 1)

Cell Adhesion Molecule 1 (CADM1)
Cell adhesion molecule 1 (CADM1) is an intercellular adhesion
molecule that belongs to the immunoglobulin (Ig) superfamily,
and it is localized on the lateral cell membrane and mediates
neighboring cell–cell binding (Murakami, 2005; Ito et al.,
2012). It functions by transmitting cell attachment signals to
promote actin reorganization in the cytoplasm (Kato et al.,
2018). Various types of epithelial cells express CADM1,
including pulmonary cells and renal distal tubules (Nagata
et al., 2012; Kato et al., 2018). CADM1 is cleaved at its
ectodomain, yielding a C-terminal fragment, αCTF (Mimae

et al., 2014). ADAM10-dependent CADM1 shedding occurs in
emphysematous lungs, and αCTF contributes to apoptosis of
lung epithelial cells (Nagara et al., 2012; Mimae et al., 2014).
Similarly, CADM1 α-shedding and αCTF enhancement were
found in human nephropathies, such as arterionephrosclerosis
(AS) and diabetic nephropathy (DN) (Kato et al., 2018).
In particular, reduction of the full-length CADM1 (FL-
CADM1) level was correlated with tubular epithelial cell (TEC)
apoptosis and increases of blood urea nitrogen (BUN) and
serum creatinine (sCre). By conducting the in vitro studies,
it may be found that CADM1 ectodomain shedding could
contribute to the development of chronic kidney disease
(CKD).

E-cadherin
E-cadherin forms adherens junctions between areas of cell–
cell contact through its ectodomain, and it plays crucial roles
in the integrity of cellular polarity and cell–cell adhesions
(Gall and Frampton, 2013). It can be removed from the
cell surface by proteolytic cleavage as soluble E-cadherin
(sE-cad), which has been reported in patients with organ
failure. ADAM10 is one of several proteases that cleave
E-cadherin (Crawford et al., 2009; Ma et al., 2016). The
increased shedding of E-cadherin was blocked by ADAM10
inhibition (Xu et al., 2015). The effects of ADAM10 activation
on E-cadherin shedding was actually reported in ADPKD
(autosomal dominant polycystic kidney disease). Pkd1 (an
ADPKD responsible gene) mutation or deletion promotes the
maturation of ADAM10 via Gα12 activation, which increases
E-cadherin shedding and results in the cystogenesis of renal
TECs.

CXCL16
CXCL16 not only functions as an adhesion molecule for
CXCR6, but also plays an important role as a scavenger
receptor for oxidized low-density lipoprotein (oxLDL) (Minami
et al., 2001; Shimaoka et al., 2004; Gutwein et al., 2009b).
The human kidneys highly express CXCL16 mainly in the
distal convoluted tubule (DCT), connecting tubule (CNT),
and collecting duct, and CXCL16 and ADAM10 are also
expressed in podocytes (Gutwein et al., 2009b). Elevated
CXCL16 cleavage was accompanied by increased levels of
oxLDL in an atherosclerosis and CKD model (Okamura et al.,
2007). ADAM10 and 17 are mainly involved in CXCL16
release from the cell membrane (Abel et al., 2004; Gough
et al., 2004). Thus, both ADAMs promoted the accumulation
of oxLDL, which activates proinflammatory pathways, and
then causes collagen synthesis and fibrosis. The increase of
urinary CXCL16 has been detected in patients with acute
tubular necrosis or with lupus nephritis (Wu et al., 2007;
Schramme et al., 2008), revealing that CXCL16 could be
a useful biomarker for these diseases. A soluble form of
CXCL16, proteolytically released, acts as a chemotactic factor.
Renal allograft biopsies with acute interstitial rejection showed
increased ADAM10 expression. Thus, CXCL16 and ADAM10 are
involved in the recruitment of T cells to the kidney and play a
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FIGURE 1 | Structure and physiopathology of ADAMs. ADAMs display common domains (prodomain, metalloprotease, disintegrin, cysteine-rich, transmembrane,
and cytoplasmic), and their activities are regulated by the prodomain. Active ADAMs cleave various membranous proteins as substrates in the kidneys. Some
shedding fragments are detected in urine, and thus useful for the diagnosis of renal injuries.

TABLE 1 | Substrates for ADAM 10 and 17 in the kidneys.

Substrates ADAMs Associated diseases

CADM1 10 Diabetic nephropathy,
arterionephroscrelosis

E-cadherin 10 Autosomal dominant polycystic kidney
disease

CXCL16 10 Lupus nephritis, acute tubular necrosis

TNF-α 17 Lupus nephritis, diabetic nephropathy,
acute kidney injury

EGFR ligands 17 Renal fibrosis, polycystic kidney disease

ACE2 17 Diabetic nephropathy

KIM-1 17 Acute kidney injury

Notch 10, 17 Renal fibrosis, glomerulosclerosis,
diabetic nephropathy

Meprin 10, 17 Acute kidney injury

Klotho 10, 17 Hyperphosphatemia

substantive role in inflammatory renal diseases (Schramme et al.,
2008).

Tumor Necrosis Factor (TNF)-α
Proinflammatory tumor necrosis factor (TNF)-α belongs to
a family of both soluble and cell-bound cytokines, and it is
produced by immune cells and vascular endothelial cells, but
also renal TECs and mesangial cells (Mehaffey and Majid,
2017). TNF-α and its receptors may be related to kidney
injury (Ernandez and Mayadas, 2009). The involvement of
TNF-α in renal injuries has been suggested in the presence
of various renal injuries, such as lupus nephritis, DN,

acute kidney injury (AKI), cisplatin-induced renal injury,
renal ischemia/reperfusion injury, and kidney allograft
rejection (Sanchez-Niño et al., 2010). TNF-α activation is
closely correlated with ADAM17’s activity in the kidney.
Actually, TNF-α cleavage and release were significantly
downregulated in proximal TEC-specific conditional ADAM17
KO mice, and they exhibited markedly suppression in renal
proinflammatory markers and the infiltration of macrophages
and neutrophils following renal injury (Kefaloyianni et al.,
2016).

Epidermal Growth Factor Receptor
(EGFR) Ligands
Two epidermal growth factor receptor (EGFR) ligands, heparin-
binding (HB)-EGF and transforming growth factor (TGF)-α,
are involved in proliferative, migratory, and fibrotic responses
of tubular cells. Elevated ADAM17 activity causes sustained
EGFR activation and fibrosis after kidney injury (Kefaloyianni
et al., 2016). The increased EGFR signaling through TGF-
α or HB-EGF was shown in several renal diseases including
polycystic kidney disease (PKD) (Richards et al., 1998). In
a model mouse of autosomal recessive PKD, increased TGF-
α expression was noted in the PCTs of cystic kidneys (Dell
et al., 2001). Actually, an ADAM-17 inhibitor could significantly
decrease cyst formation and improve the renal function (Nemo
et al., 2005). Increased ADAM17 activity in the cystic kidneys,
especially the collecting duct epithelial cells, leads to constitutive
shedding of several growth factors, including HB-EGF and TGF-
α. Their shedding maintains a higher cell proliferation rate in
PKD cells. PKD cells then display increased lactate formation and
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extracellular acidification, indicative of aerobic glycolysis (Gooz
et al., 2014).

Angiotensin-Converting Enzyme 2
(ACE2)
Angiotensin-converting enzyme 2, highly expressed in renal
PCTs, degrades the vasoconstrictor angiotensin II (ANG II) to
ANG-(1-7) (Chodavarapu et al., 2013). It is shed from renal
tubular cells into the urinary space, and two enzymatically active
glycosylated fragments may be enhanced via ADAM17 activation
in diabetes (Xiao et al., 2014). This shedding is stimulated by high
glucose and Ang II, can increase Ang II-degrading products in
the urine of DN patients, and could serve as a biomarker of early
kidney injury (Xiao et al., 2014). Furthermore, urinary ADAM17
and its substrate, ACE2, are increased in diabetic patients and its
model mice (Chodavarapu et al., 2013; Gutta et al., 2018), and the
shedding fragments could also be an early biomarker to predict
DN-induced CKD.

Kidney Injury Molecule-1 (KIM-1)
Kidney injury molecule-1 is a receptor for phosphatidylserine,
an efferocytosis signal on the surface of apoptotic cells that
labels them for phagocytic clearance. Its expression is induced
on PTECs in ischemic AKI, and KIM-1 ectodomain shedding
generates a soluble fragment that serves as an important
biomarker for AKI. Oxidative stress accelerated KIM-1 shedding
(Gandhi et al., 2014). Of note, ADAM17 mediated this shedding
of KIM-1 during injuries, and accelerated shedding inhibits
efferocytosis (Gandhi et al., 2014).

Notch
Notch is a critical regulator of renal development, and its
signaling is involved in both acute and chronic kidney
injuries (Sweetwyne et al., 2014). Its overexpression is causally
associated with fibrosis in diverse organs and tissues, especially
tubulointerstitial fibrosis and glomerulosclerosis (Sweetwyne
et al., 2014). Notch functions via its ligand-receptor binding,
but also as ectodomain shedding fragments by ADAM10 and 17
(Brou et al., 2000; Hu and Phan, 2016). This ectodomain shedding
product is further cleaved by a γ-secretase complex, and released
as the intracellular domain of Notch (NICD) (Fortini, 2002;
Okochi et al., 2002). NICD translocates into the nucleus and then
it modifies target gene expression, mainly Hes family members,
which correlates with transforming growth factor-β-mediated
epithelial-mesenchymal transition (Artavanis-Tsakonas et al.,
1999; Zavadil et al., 2004). Both ADAMs thus play essential roles
in Notch signal activation and renal fibrosis.

Meprin
Meprins are also Zn2+-dependent metalloproteinases that are
highly expressed at the brush-border membranes of the kidney
and evolutionarily related to other proteases, MMPs and ADAMs
(Stöcker et al., 1995), but possess unique structural and functional
properties (Broder and Becker-Pauly, 2013). They can degrade
numerous substrates such as basement membrane proteins
(collagen, laminin, and fibronectin) and pro-cytokines, growth

factors, and protein kinases (Herzog et al., 2014). Meprin A,
composed of α and β subunits, is anchored to the plasma
membranes via the transmembrane domain of the β subunits,
and is the major form in the apical membranes of renal
PCTs (Kumar and Bond, 2001; Bond et al., 2005; Sterchi
et al., 2008). In IR-induced AKI, meprin β was shed from
PCT membranes, and excreted into the urine. Thus, released
meprin β may become detrimental during renal injury for its
protein degradation activities. The meprin inhibitor actinonin
exhibited strong protection against renal IR injury and hypoxia-
reoxygenation injury (Carmago et al., 2002). Actinonin protected
the renal morphology and lowered BUN and sCre levels in
the presence of renal sepsis (Wang et al., 2011). ADAM10 is
responsible for meprin β shedding, and thus the prevention of
ADAM 10 activity could be of therapeutic benefit in AKI (Herzog
et al., 2014). Also, a soluble form of meprin β is produced and
released into urine after IR injury, and thus meprin β shedding
also marked potential as a urine biomarker for renal injuries.

Klotho
Klotho is known as an anti-aging protein, and its KO mice exhibit
many changes during aging including atherosclerosis and have a
short lifespan (Kuro-o et al., 1997). Membrane-bound klotho is
predominantly expressed in the DCT and CNT (Kuro-o et al.,
1997; Li et al., 2004). The gene for mammalian KL has two
transcripts that encode a long type I transmembrane protein
and a short secreted-protein. The extracellular domain of long-
isoform KL is cleaved and released from the cell membrane
(Matsumura et al., 1998). A key function of membrane-bound
klotho is to act as an obligate cofactor for the fibroblast growth
factor (FGF) receptor, thereby enhancing FGF23 signaling, and
leading to enhanced phosphate excretion (Kurosu et al., 2006;
Urakawa et al., 2006; Gattineni et al., 2009). ADAM10 is one
candidate molecule for cleaving KL from the plasma membrane
(Chen et al., 2007). Therefore, ADAM10 activation leads to the
dysfunction of phosphate excretion (hyperphosphatemia).

ADAM10 AND ADAM17 AS CLINICAL
TARGETS

ADAM10 and 17 are closely correlated with renal injuries
including excess inflammation and tubular cell destruction. In
addition to their substrates, ADAM10 and 17 per se are also
important biomarkers of renal dysfunctions, such as early DN
(Petrica et al., 2017; Gutta et al., 2018). Furthermore, many efforts
have been made to develop strategies to block ADAM10 and 17
activities involving small molecules and monoclonal antibodies
(Figure 2).

Small Molecules (Hydroxamate-Based
Compounds)
Many small-molecule ADAMs inhibitors have been developed
and mainly tested in experimental cancer models. ADAM10
inhibitors could exhibit potency to prevent renal injury.
GI254023X is a hydroxymate-based inhibitor, which has
inhibitory potential by chelating Zn2+ of the active sites
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FIGURE 2 | Inhibitors of ADAM10 and prodomains 17. Small molecule inhibitors and monoclonal antibodies directly prevent the interactions between proteases and
substrates. Recombinant ADAM10 and 17 prodomain (wt and its mutant) close active sites. wt, wild-type.

of protease (Dreymueller et al., 2015). GI254023X prevents
ADAM10 activity more effectively than ADAM17 (Hundhausen
et al., 2003; Ludwig et al., 2005). The advanced molecules
INCB3619, INCB7839, and INCB8765 showed improved
selectivity and bioavailability (Zhou et al., 2006; Fridman et al.,
2007; Duffy et al., 2011; Mathews et al., 2011; Grabowska et al.,
2012). The hydroxamate-based INCB3619 and INCB7839
inhibitors have dual effects on ADAM10 and 17 with high
potency. As an ADAM17-selective inhibitor, KP457 inhibits
ADAM17 with a much higher potency than ADAM10 and
MMPs (Hirata et al., 2017). However, many hydroxamate-based
compounds show hepatotoxicity, and so their clinical application
requires close attention.

Antibodies
Monoclonal antibodies (mAb) can overcome the problems of
hydroxamate-based compounds. The 8C7 mAb masked the
ADAM10 recognition pocket and was more efficient than
GM6001, a broad-spectrum metalloprotease inhibitor (Atapattu
et al., 2012). Because of ADAM10 suppression, the 8C7 antibody
could inhibit tumor growth in mouse models, particularly
regrowth after chemotherapy. Similarly, targeted inhibition of
active ADAM10 might be a potential therapy for some kinds of
renal injuries.

Also, ADAM17 antibodies were developed. D1(A12) antibody
binds to both catalytic and non-catalytic domains of ADAM17
(Tape et al., 2011). However, D1(A12) does not react with murine
ADAM17, because therapeutic strategies could not be developed
in experimental animal models. Thus, the antibody A9(B8)
recognizes both human and murine ADAM17 and is more
efficient than D1(A12) (Kwok et al., 2014). The A9(B8) antibody
was investigated in a mouse model of cardiac hypertrophy by
AngII infusion (Takayanagi et al., 2016). This antibody did not

affect AngII-induced hypertension, but prevented endoplasmic
reticulum stress and cardiovascular remodeling, showing that
ADAM17 inhibitors could be beneficial for the treatment of
certain hypertensive conditions. MEDI3622, another antibody
for ADAM17, was produced to bind to a unique hairpin loop in
the ADAM17 structure, and it was useful in an EGFR-dependent
tumor model (Rios-Doria et al., 2015; Peng et al., 2016; Dosch
et al., 2017).

Prodomain
The recombinant mouse ADAM10 prodomain is a potent
competitive inhibitor of human ADAM10 activity with higher
selectively (Moss et al., 2007).

ADAM17 prodomains could also be valuable inhibitors.
A stable form of the auto-inhibitory TPD (TACE prodomain)
inhibits ADAM17, but does not prevent the related ADAM10
activity (Wong et al., 2016). Furthermore, to create a more
practical protein of TPD, Wong et al. produced a cleavage-
resistant version (R58A) and disulfide-bond lost version (C184A)
of the ADAM17 prodomain, and finally created the double
mutant TPD (R58A and C184A). This mutant prodomain
effectively modulated TNF-α secretion. TPD attenuated TACE-
mediated disease models of sepsis, rheumatoid arthritis (RA), and
inflammatory bowel disease (IBD) (Wong et al., 2016).

Others
Some natural compounds reduce ADAM10 activity. Rapamycin
suppresses ADAM10 activity (Zhang et al., 2010) and prevents
organ rejection following transplantation via suppressive effects
on ADAM10 activity. Fish oil (FO) supplement reduces
the shedding and release of transmembrane proteins from
endothelial cells by ADAM10 and 17, and thus prevents
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atherogenic diseases (Speck et al., 2015). By suppressing ADAM
activity, FO partly contributes to an improved endothelial
barrier function and prevents lipoprotein and macrophage
accumulation, although the detailed mechanisms remain
unknown. Furthermore, the diterpenoid epoxide triptolide
downregulates ADAM10 expression, possibly through its
degradation (Soundararajan et al., 2009). In traditional Chinese
medicine, triptolide has been used for centuries to treat
inflammatory diseases such as RA, systemic lupus erythematosus
(SLE), and ADPKD (Leuenroth et al., 2007; Wetzel et al., 2017).

Because targeted inhibition of active ADAM10 and/or 17 is
expected to become a potential therapy for associated diseases,
these strategies have been advanced. However, ADAM10 and
17 have many substrates with diverse functions; therefore, it is
important for the temporal and spatial regulation of inhibitors to
avoid undesirable side effects.
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