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Abstract

Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains
unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have
established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to
simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is
required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced
myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role
of Glycogen Synthase in regulating autophagy through its interaction with Atg8.
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Introduction

Autophagy describes the sequestration of a cell’s own cytoplasm

and organelles into a closed double-membrane bound vesicle [1].

The completed vesicle, called the autophagosome, fuses with the

lysosome, where its inner membrane and contents are degraded by

hydrolases. The resulting degradation products are transported

back to the cytoplasm where they can be reused for protein

synthesis and ATP production. A major role of autophagy is

therefore to liberate amino acids, fatty acids, and glucose that can

be used to maintain cellular functions during stress and starvation.

In mice, autophagy increases in most organs under starvation

conditions, with muscles showing a particularly clear response [2].

Interestingly, glycogen-rich fast-twitch fibers induce autophagy

much more robustly than oxidative slow-twitch fibers, suggesting a

link between glucose metabolism and autophagy regulation.

Several myopathies are associated with accumulation of

autophagic and lysosomal vesicles containing glycogen, but for

most of them it remains unclear how glycogen metabolism

connects to the pathology of the diseases [3,4]. Among these are

the hereditary primary lysosomal myopathies Pompe disease and

Danon disease, infantile autophagic vacuolar myopathy, and the

drug-induced vacuolar myopathies caused by treatment with

chloroquine (CQ) or hydroxychloroquine [4]. The best charac-

terized of these is the lysosomal storage disorder, Pompe disease,

also known as glycogen storage disease type II. Pompe disease is

caused by a mutation in the gene encoding acid a-glucosidase

(GAA), an enzyme that localizes to the lysosome, and hydrolyzes

glycogen to glucose [5–7]. Deficiencies of GAA in both humans

and in mouse models lead to accumulation of lysosomes swollen

with undegraded glycogen, as well as a secondary defect in the

fusion between autophagosomes and lysosomes [8–10]. The

resulting accumulation of autophagosomes and functional block

of autophagy damages the muscle tissue and interferes with the

efficacy of enzyme replacement therapy [11,12]. The list of

disorders classified as autophagic vacuolar myopaties (AVMs) is

growing, although none but Danon and Pompe disease have been

mapped to a causative gene [13].

More common than the myopathies described above, drug-

induced myopathy may occur in as many as 12% of patients

receiving antimalarial treatment with CQ [14]. CQ and its closely

related analog hydroxychloroquine are 4-aminoquinoline com-

pounds widely used to treat malaria, rheumatoid arthritis, and

lupus erythematosus [15–17]. The drugs are highly lysosomo-

tropic, causing an increase in lysosomal pH and inhibiting the

fusion between autophagosomes and lysosomes [18,19]. Thus,

much like Pompe and Danon diseases, CQ myopathy may result

from a blockage of autophagic flux indirectly caused by a

lysosomal defect. Glycogen is a major component of the vacuoles

in CQ myopathy patient biopsies, and a massive accumulation of

glycogen filled autophagosomes was reported in denervated

muscles of CQ-treated rats [20–22].
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In addition to the glycogen-filled autophagosomes and lyso-

somes that appear during myopathies, mouse and rat neonates

exhibit a dramatic autophagic sequestration of glycogen granules

in the liver as well as in skeletal and cardiac muscles [23–25].

Lysosomal degradation of the large stores of glycogen in fetal

tissues may be important for the survival of the animal during the

starvation that occurs in the first few hours of life [26]. However, it

remains unclear how the lysosomal degradation of glycogen during

this period is regulated and whether it is substantially different

from the lysosomal degradation of glycogen observed in skeletal

muscle myopathy. Indeed, the mechanism of transport of glycogen

to the lysosome is poorly understood in both cases.

The process of lysosomal glycogen degradation is sometimes

referred to as glycogen autophagy (or glycophagy). Studies in yeast

have identified 35 ATG (autophagy-related) genes, many of which

are conserved in higher organisms [27,28]. In all eukaryotes,

autophagy is induced via the autophagy-related gene 1 (Atg1)

complex. Autophagosomal membrane nucleation involves a

complex containing Vps34 (the class III PI3K). Expansion of the

autophagosome membrane requires two distinct sets of ubiquitin-

like protein conjugation systems, Atg8 and Atg5–Atg12. Fusion

with the lysosome requires the endocytic Rab proteins, HOPS

complex, SNARE machinery, and the LAMP-1/LAMP-2 lyso-

somal membrane proteins [29]. The only in vivo genetic analysis of

the role of these systems during glycogen transport to the lysosome

was performed in the mouse model of Pompe disease, where

glycogen accumulation in the lysosome was diminished in Atg7-

deficient GAA KO muscles [12,30,31]. The consequence of

genetic suppression of autophagy in muscles has not been reported

for the other vacuolar myopathies and CQ myopathy, nor has the

prevalence of glycogen autophagy been examined in neonatal

autophagy gene mutants. Thus, it is not known to what extent the

classic autophagic pathway is involved in glycogen autophagy, nor

what effect autophagy suppression would have on the myopathy

phenotypes.

A high level of conservation with higher organisms makes the D.

melanogaster muscle an attractive system to study cellular processes,

such as autophagy, that are involved in human disease [32,33].

Here, we establish an in vivo model of glycogen autophagy in the D.

melanogaster larval skeletal musculature, using CQ to simulate an

autophagic myopathy that is completely dependent on the core

autophagy genes. In this system, glycogen autophagy is triggered

by nutrient deprivation, and is required for maximum rates of

glycogen degradation in the muscle. Knockdown of D. melanogaster

Glycogen synthase (GlyS), which is highly expressed in muscle,

effectively blocks the formation of enlarged CQ-induced autopha-

gosomes. This may be due to a direct function of GlyS, which

localizes to autophagosomes and is able to form a complex with

Atg8 in response to starvation. Formation of this complex is

inhibited by mutations of either the GlyS putative LC3-interacting

region (LIR) or an arginine predicted to be involved in glucose-6-

phosphate binding.

Results

Effects of Chloroquine in D. melanogaster Larval Muscles
Our first goal was to establish an in vivo system to analyze the

effects of CQ treatment on the larval skeletal musculature. Using a

GFP-tagged version of the conserved lipid-conjugated ubiquitin-

like protein Atg8, which localizes to autophagosomes in yeast, flies,

and mammals [34], we assayed its quality as a marker of

autophagy in dissected larval muscles. GFP–Atg8 expressed with

Dmef2–Gal4 had no effect on animal viability or on gross muscle

morphology (unpublished data), and larvae fed on a standard diet

(see Text S1) showed very few GFP–Atg8-labeled vesicle structures

(Figure 1B). In contrast, in larvae starved on low nutrient food for

6 h, GFP–Atg8 localized to small punctae surrounding the nuclei

and between the myofibrils (Figure 1C), consistent with observa-

tions in mice that autophagy increases in most organs under

starvation conditions, with muscles showing a particularly clear

response [2].

Prolonged treatment with CQ in mammals is associated with

the onset of vacuolar myopathy, likely due to a defective

autophagy–lysosome system. We treated third instar larvae with

the drug to better visualize autophagic flux, and to more closely

model the defects observed in AVMs such as CQ myopathy and

Pompe and Danon diseases. In larvae treated with CQ and starved

on low-nutrient food for 6 h, GFP–Atg8-labeled vesicles were

much larger and more numerous than those in the nontreated

muscle, but were similarly distributed around the nucleus and

between myofibrils (Figure 1D).

One of the effects of CQ treatment in mammalian cells, and

also of Pompe disease, is a defect in the fusion between

autophagosomes and lysosomes. This causes a functional defect

in autophagy and an accumulation of autophagosomes and

lysosomes. To determine whether this was the case in larvae

treated with CQ, we coexpressed GFP–Atg8 and the lysosomal

membrane marker, HRP–Lamp1 (Figure 1E–H). In well-fed

larvae, neither GFP–Atg8 nor HRP–Lamp1 localized to vesicles

(Figure 1E). Starvation on low-nutrient food for 6 h induced the

formation of small vesicles, some of which were labeled with both

GFP–Atg8 and HRP–Lamp1, indicating that these are likely

autolysosomes (Figure 1F,H). However, in larvae treated with CQ

and starved, despite the accumulation of large and numerous

GFP-labeled vesicles, we detected few vesicles that were co-labeled

with HRP–Lamp1, indicating that CQ treatment effectively

blocked fusion of autophagosomes and lysosomes (Figure 1G–H).

Next, we tested whether the formation of the GFP–Atg8

punctae observed in both untreated and CQ-treated larvae were

Author Summary

Lysosomes are organelles that work as a disposal system
for the cell. It is known that lysosomes can degrade
glycogen and that defects in this function trigger the
accumulation of vesicles containing glycogen in animals
that lead to vacuolar myopathies—diseases that result in
muscle weakness. However, it remains unclear how and
why glycogen is degraded through this system, and what
significance it has for the pathology of such diseases. Here,
we addressed these questions by establishing a fruitfly
model system to study glycogen autophagy in skeletal
muscles. By feeding the flies chloroquine (CQ), we induce a
vacuolar myopathy associated with massive accumulation
of glycogen-filled vesicles, and assay the role of autophagy
and glycogen metabolic enzymes in this process. We show
that CQ-induced glycogen autophagy is completely
dependent on the core conserved autophagy genes and
that this autophagy is triggered by nutrient deprivation in
a Tor-dependent manner. Interestingly, while glycogen
autophagy and enzymatic glycogen breakdown can
compensate for each other, concurrent inhibition of both
systems blocks glycogen breakdown. Finally, we show that
CQ-induced myopathy can be improved by reduction of
either autophagy or glycogen synthesis, the latter possibly
due to a direct role of glycogen synthase—the main
enzyme involved in converting glucose to glycogen—in
regulating autophagy through its interaction with the
autophagosome.

Autophagy in Glycogen Breakdown and CQ Myopathy
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dependent on a functional autophagy pathway. This is especially

important given that Atg8 tends to be incorporated into

intracellular protein aggregates, independent of autophagy. The

association with aggregates includes endogenous Atg8 as well as

ectopically expressed Atg8–GFP fusion protein. Thus, an Atg8 or

Atg8–GFP positive punctae can represent either an aggregate or a

bone fide autophagosome. Consistent with the latter interpreta-

tion, knockdown of Atg1 was able to completely suppress the

formation of GFP–Atg8 punctae in the muscles of both untreated

(Figure 1I) and CQ-treated (Figure 1J) larvae starved on low-

Figure 1. Chloroquine (CQ) treatment blocks autophagosome–lysosome fusion and induces myopathy in the larva. (A) Third instar
larval skeletal musculature stained with Phalloidin (F-actin). In this and subsequent figures, we assayed the ventral longitudinal muscles (highlighted
in green). (B–D) GFP–Atg8, overexpressed using the Dmef2–Gal4 driver, labels autophagosomes. Dmef2–Gal4, UAS–GFP–Atg8 animals were fed on
high-nutrient food (B), starved on low-nutrient food for 6 h (C), or starved on low-nutrient food +2.5 mg/ml CQ for 6 h (D). GFP–Atg8-labeled vesicles
appeared only in the starved animals (C–D), localizing around the nucleus and between myofibers. (D) CQ treatment caused accumulation of bloated
GFP–Atg8-labeled vesicles. (E–G) Dmef2–Gal4, UAS–GFP–Atg8/UAS–HRP–Lamp1 animals were assayed for Lamp1 and Atg8 localization (anti-HRP, red;
GFP, green; DAPI, blue). . (E) High-nutrient food suppressed formation of both GFP–Atg8 and HRP–Lamp1-labeled vesicles. (F) Colocalization of GFP–
Atg8 and HRP–Lamp in animals starved on low-nutrient food. The yellow arrowhead points to a vesicle positive for both Atg8 and Lamp. (G) Addition
of CQ to the starvation diet resulted in accumulation of both GFP–Atg8 and HRP–Lamp-labeled vesicles, but they failed to colocalize. (H)
Quantification of the number of GFP–Atg8, HRP–Lamp1, or GFP–Atg8+HRP–Lamp1 vesicles in starved or starved +CQ muscles. (I–M) The core Atg
genes are required for starvation-induced autophagy in both wild-type and CQ-treated skeletal muscles. Dmef2–Gal4, UAS–GFP–Atg8/UAS–Atg1 larvae
were starved on low-nutrient food for 6 h (I) or starved on low-nutrient food +2.5 mg/ml CQ for 6 h (J). Note that Atg1 knockdown completely
abolished the formation of GFP–Atg8-labeled autophagosomes (compare I–J to C–D). (K–L) Dmef2–Gal4, UAS–GFP–Atg8, Atg1D3d larvae failed to form
GFP–Atg8 vesicles when starved or starved and treated with CQ. (M) Quantification of autophagy changes due to Atg gene knockdown in Dmef2–
Gal4, UAS–GFP–Atg8 larvae starved on low-nutrient food +2.5 mg/ml CQ for 6 h. Each of the 10 UAS–Atg RNAi transgenes tested caused a highly
significant decrease (p,.01) in the total area of GFP–Atg8 vesicles. SEM is indicated, with n = 5 ventral longitudinal muscles from individual animals.
(N–O) EM of muscles from Dmef2–Gal4, UAS–whitei larvae. Animals starved on low-nutrient food +2.5 mg/ml CQ (O) accumulated vesicles in the
intermyofibril spaces (red asterisk), disrupting the integrity of the sarcomere compared to non-CQ-treated control muscles (N). (P) CQ treatment
increased the larval crawling time of Dmef2–Gal4, UAS–whitei larvae in starved animals, and weakly in fed animals. (Q) CQ treatment increased the
larval righting time of Dmef2–Gal4, UAS–whitei larvae in starved but not fed animals. For both locomotor assays, SEM is indicated for n = 10 larvae
(*p,.05, **p,.01).
doi:10.1371/journal.pbio.1001708.g001
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nutrient food for 6 h. Knockdown efficiency of the Atg1 RNAi was

confirmed by RT-PCR (Figure S3). Similarly, animals bearing a

null allele of Atg1 were likewise unable to form GFP–Atg8 punctae

(Figure 1K–L). We quantitated the suppression effect in the CQ-

treated animals by measuring the total autophagic area per muscle

cell, and tested 10 of the conserved core autophagy pathway genes,

which all significantly inhibited the formation of GFP–Atg8

punctae (Figure 1M, Figure S1).

The accumulation of vesicles in muscles of CQ-treated larvae

was strikingly similar to the phenotype observed in mammalian

AVMs. We therefore set out to determine whether the larvae

exhibited symptoms of myopathy. Electron microscopy (EM) on

sectioned muscles from third instar starved larvae revealed that

treatment with CQ did indeed cause disruption of the sarcomere

structure compared with an untreated control (Figure 1N–O). This

appears to occur through displacement of the sarcomere by

enlarged vesicles in the intermyofibril spaces, similar to what has

been reported for cases of CQ myopathy and Pompe disease in

humans [35,36]. To determine whether CQ treatment disrupted

muscle function, we performed two tests of larval locomotion, the

larval crawling assay (Figure 1P) and the larval righting assay

(Figure 1Q). In both tests, CQ-treated larvae performed signifi-

cantly worse than wild-type controls, but only in starved animals,

suggesting that the accumulation of vesicles upon starvation may

be responsible for a decline in muscle function.

Autophagic Vesicles in Larval Muscles Are Loaded with
Glycogen

In mammals glycogen is synthesized and stored in the muscle

and liver. We analyzed glycogen storage in larvae using both the

histological periodic acid-Schiff (PAS) stain (Figure 2A) as well as a

monoclonal glycogen antibody (Figure 2B). Consistent with

previous reports, we detected abundant glycogen stores in the

third instar larval muscles, but not in the larval fat body, the tissue

most closely analogous to the vertebrate liver and adipose tissue

[37]. In addition, larvae treated with CQ and starved on low-

nutrient food for 6 h showed a high degree of colocalization

between GFP–Atg8 and glycogen (Figure 2C–E).

To ensure that the observed colocalization was indeed glycogen

autophagy, we performed EM on sectioned muscles. Figure 2F–G

demonstrates the massive build-up of vesicles in the starved and

CQ-treated muscle. Consistent with results obtained by confocal

microscopy, the vesicles accumulated near the nucleus and

between the filaments of the myofibrils. Many of the vesicles were

double-membraned, containing electron-dense glycogen granules.

The same structures were also observed in non-CQ-treated

muscles (Figure 2H), indicating that glycogen autophagy occurs

normally in muscles, but with less frequency. Interestingly,

although the larval skeletal muscle is filled with mitochondria

(Figure 2F), we never observed any vesicles containing these

organelles, nor did we ever observe colocalization between GFP–

Atg8 and mitochondrial markers in the muscle (Figure S2). This is

in contrast with several reports of autophagic vesicles containing

mitochondria in other D. melanogaster tissues [38–40]. Thus, the

larval muscle is the major site of glycogen storage in the larva, and

muscle glycogen is the primary substrate of autophagic degrada-

tion.

Glycogen Autophagy in the Larval Muscle Is Linked to
Nutrient Levels and Is Blocked by CQ Treatment

Although the degradation of glycogen by the lysosome was

discovered in the 1960s, little is known about its regulation [7,24].

In particular, it is not clear whether the induction of autophagy in

the muscle and the localization of glycogen in the autophagosomes

are subject to regulation by nutrient availability and the Tor

pathway. Thus, we performed a time course of glycogen

autophagy at 0–8 h of starvation in CQ-treated larvae

(Figure 3A–D). Animals were first fed for 18 h on high-nutrient

food +CQ, then transferred to low-nutrient starvation food +CQ,

and then dissected and stained following each time point. At 0 h of

starvation, there was abundant glycogen in the muscle but few

GFP–Atg8 punctae, indicating that the rich diet was able to

completely suppress autophagy even in the presence of CQ

(Figure 3A). At 2–3 h of starvation, autophagosomes began to

appear in the muscle, although glycogen remained detectable at a

high level (Figure 3B). By 6–8 h much of the glycogen had been

degraded, and what remained was now mostly localized to the

GFP–Atg8 vesicles (Figure 3C–D). Altogether, these data indicate

that muscle glycogen stores are depleted by starvation and that the

induction of autophagy and the localization of glycogen within the

autophagosomes are regulated by nutrient intake.

To more accurately quantitate these effects, we performed a

starvation time course experiment on larvae with or without CQ

treatment (Figure 3E). Following starvation we collected the

carcasses, and measured the glycogen content by enzymatic assay

(see Materials and Methods). Glycogen levels diminished over time

in both untreated and CQ-treated larvae. However, the latter

group showed a significantly reduced rate of glycogen loss, and

heightened levels of glycogen persisted even after 24 h of

starvation. This may represent glycogen that remains trapped,

undegraded, in the autophagosomes and lysosomes of CQ-treated

larvae.

The Tor kinase pathway links cellular nutritional status to

metabolism, growth, and autophagy [41]. Tor activity is inhibited

by the Tsc1/Tsc2 complex, which in turn inhibits the small G-

protein Rheb, and GTP-bound Rheb binds to and activates Tor

[42]. As TOR signaling represses the formation of autophago-

somes by inhibition of Atg1, a function conserved from yeast to

mammals [43], we tested whether the induction of autophagy in

muscle is subject to TOR regulation by overexpressing Rheb with

the Dmef2–Gal4 driver. Strikingly, the localization of GFP–Atg8 to

autophagosomes in starved/CQ-treated muscles was completely

blocked by Rheb overexpression compared to controls (Figure 3F–

G). Similar to Rheb overexpression, knockdown of Tsc1 and gigas

(Tsc2) dramatically inhibited autophagy (Figure 3H–I). Therefore,

glycogen autophagy in the larval muscle is linked to nutrient levels

via the TOR pathway.

Glycogen Breakdown Requires Either Functioning
Autophagy or Glycogenolysis Systems

One of the critical unanswered questions related to glycogen

and autophagy is how the lysosomal degradation of glycogen

relates to the enzymatic degradation of glycogen via the action of

glycogen phosphorylase. D. melanogaster has a single gene encoding

glycogen phosphorylase, GlyP, which has a high degree of

sequence homology to the mammalian enzymes. To test whether

GlyP is required for glycogen autophagy, RNAi targeting GlyP was

expressed along with GFP–Atg8 using Dmef2–Gal4. This reduced

the GlyP expression level in the muscle by more than 90% (Figure

S3). Third instar larvae starved on low-nutrient food for 6 h and

treated with CQ exhibited the same colocalization of GFP–Atg8

and glycogen (Figure 4A–B) as was observed in control Dmef2–

Gal4, UAS–GFP–Atg8 muscles (Figure 2C–D).

Next, we assayed the ability of muscles deficient in GlyP to break

down glycogen. Prior to dissection, larvae were fed for 24 h on

high-nutrient food. Muscles from GlyP knockdown larvae given

this diet exhibited large deposits of glycogen throughout the

Autophagy in Glycogen Breakdown and CQ Myopathy
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skeletal muscle cells (Figure 4C). Following the rich food diet,

larvae were transferred to low-nutrient starvation food for 24 h

prior to dissection. Surprisingly, after the starvation period,

glycogen was almost completely undetectable in muscles from

the GlyP knockdown larvae (Figure 4D). Likewise, knockdown of

Atg1 had no effect on the ability of muscle cells to break down

glycogen in this context (Figure 4E), suggesting that during

starvation both glycogenolysis and autophagy are sufficient to

break down glycogen such that neither is absolutely required. To

test this hypothesis we knocked down both GlyP and Atg1

simultaneously. Despite 24 hrs of starvation, these larvae main-

tained high levels of glycogen in their muscles, indicating that

glycogen breakdown requires either a functioning autophagy or

glycogenolysis system (Figure 4F).

In order to quantitate these effects, we performed a starvation

time course experiment on larvae expressing RNAs targeting white,

Atg1, GlyP, or Atg1+GlyP (Figure 4G). Consistent with the

immunofluorescence results above, we found that after 24 h

starvation, only Atg1+GlyP RNAi significantly inhibited glycogen

degradation. However, at earlier time points (4–12 h starvation),

individual targeting of Atg1 or GlyP also reduced glycogen

degradation, suggesting that each contributes to the maximal rate

of degradation during this period.

Glycogen Synthase Is Required for CQ-Induced
Autophagosome Enlargement

The polymerization of glucose molecules into a glycogen chain

is catalyzed by glycogen synthase, the rate-limiting enzyme of

glycogenesis. D. melanogaster has a single glycogen synthase ortholog

(CG6904), which we refer to as GlyS. Consistent with its proposed

role in glycogen synthesis, muscles expressing RNAi targeting GlyS

showed a dramatic decrease in PAS staining and antiglycogen

immunostaining compared to controls (Figure 5A–D). We tested

four UAS-GlyS RNAi constructs and each caused over 60% gene

knockdown in the larval muscle when expressed by Dmef2-Gal4

(Figure S3). To determine whether GlyS levels affected autopha-

Figure 2. Autophagosomes in the larval muscle are filled with glycogen. (A) Sectioned third instar OreR larva stained with Periodic acid-
Schiff (PAS). The muscles, but not the fat body, are stained purple, indicating high levels of glycogen (m, muscle; bw, body wall; fb, fat body). (B)
Glycogen was also detected in muscle from Dmef2–Gal4, UAS–GFP–Atg8 larvae, immunostained with an antiglycogen monoclonal antibody. (C) GFP–
Atg8 vesicles colocalized with glycogen in Dmef2–Gal4, UAS–GFP–Atg8 larvae starved on low-nutrient food +2.5 mg/ml CQ for 6 h (GFP, green;
antiglycogen, red). (D) HRP–Lamp1 vesicles show less colocalization with glycogen in UAS–HRP–Lamp1;Dmef2–Gal4 larvae starved and treated with
CQ. (E) Quantification of GFP–Atg8 or HRP–Lamp1 vesicles with glycogen. (F–G) EM from Dmef2–Gal4, UAS–whitei larvae starved on low-nutrient food
+2.5 mg/ml CQ for 6 h. (F) Double- and single-membrane vesicles containing glycogen granules accumulated between myofibers (s, sarcomere; m,
mitochondrion; AVs, autophagic vesicles). (G) Higher magnification view of region outlined in (E). (H) CQ treatment is not required for glycogen
autophagy as seen in an EM from a Dmef2–Gal4, UAS–whitei larva starved on low-nutrient food for 6 h. Arrow points to double membrane.
doi:10.1371/journal.pbio.1001708.g002

Autophagy in Glycogen Breakdown and CQ Myopathy

PLOS Biology | www.plosbiology.org 5 November 2013 | Volume 11 | Issue 11 | e1001708



Figure 3. Degradation of glycogen via the autophagy lysosome system is regulated by nutrients and the Tor pathway. (A–D) Time
course of autophagy induction in Dmef2–Gal4, UAS–GFP–Atg8 muscles, accompanied by quantification of GFP–Atg8 and glycogen colocalization.
Animals were fed for 18 h in high-nutrient food +2.5 mg/ml CQ, then starved on low-nutrient food +2.5 mg/ml CQ for 0–8 h (antiglycogen, red; GFP,
green; DAPI, blue). (A) At time point 0, following 18 h in high-nutrient food +CQ, the muscles contained large amounts of glycogen with no apparent
autophagy. (B) At 3 h of starvation, glycogen stores were still high, and GFP–Atg8-labeled vesicles began to appear. (C–D) At 6 and 8 h of starvation,
the majority of GFP–Atg8-labeled vesicles colocalized with glycogen. (E) Time course of glycogen levels in Dmef2–Gal4 carcasses (muscle+body wall).
Animals were fed for 24 h in high-nutrient food, then starved on low-nutrient food +/2 2.5 mg/ml CQ for 0–24 h. Starvation caused reduction of
glycogen levels in both untreated and CQ-treated larvae over time. However, after 6 h of starvation, CQ treatment significantly increased glycogen
levels compared to controls. SEM is indicated for n = 5–8 samples (*p,.05, **p,.01). (F–G) activation of the Tor pathway blocked autophagy in the
muscles from larvae starved on low-nutrient food +2.5 mg/ml CQ for 6 h. (F) Autophagy levels were high in control Dmef2–Gal4/UAS–whitei larvae.
Muscles from (G) UAS-Rheb/+; Dmef2-Gal4/+, (H) Dmef2–Gal4/UAS–Tsc1i, and (I) Dmef2–Gal4/UAS–gigi all failed to induce autophagy.
doi:10.1371/journal.pbio.1001708.g003

Autophagy in Glycogen Breakdown and CQ Myopathy
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gosome formation in the muscle irrespective of whether the

vesicles contain glycogen or not, we examined GFP–Atg8

localization in starved and CQ-treated control versus GlyS

knockdown muscles. Strikingly, we observed dramatically reduced

GFP–Atg8 vesicle localization in the latter (Figure 5E–H). To

analyze this more closely, we quantitated the autophagic area,

vesicle number, and vesicle size in CQ-treated control versus GlyS

knockdown muscles, and found that almost all of the effects of

GlyS knockdown are due to reduced vesicle size, not number.

Thus GlyS is required for the formation of the bloated autophagic

vesicles formed during CQ treatment.

Next, we tested whether the effect of GlyS on autophagy was

limited to muscle cells or extended to the D. melanogaster liver

analog, the fat body. Using PAS staining, we have shown that the

muscle is the major site of glycogen storage in the larva (Figure 2A–

B), however the fat body does contain some relatively low level of

glycogen (Figure 2A–B, Figure 5A). We examined the expression

of the GlyS gene using a transposon insertion (MI01490) that

directs GFP expression under control of the endogenous GlyS

regulatory elements. MI01490 larvae had strong GFP expression

in the third instar skeletal muscle (Figure 5L), but undetectable

levels in the same stage fat body (Figure 5M), consistent with the

much higher glycogen levels in the muscle. Knockdown of GlyS

using the fat-body–specific Gal4 driver, Cg–Gal4, caused no

appreciable effect on the accumulation of GFP–Atg8-labeled

autophagosomes (Figure 5N–O) of larvae treated with CQ and

starved on low-nutrient food for 6 h. Thus, the effect of GlyS on

autophagy is tissue specific and not a general property of all cells.

Figure 4. Autophagy and glycogenolysis compensate for each other, but both systems are required for maximal glycogen
catabolism. (A–B) Glycogen phosphorylase is not required for glycogen autophagy (antiglycogen, red; GFP, green; DAPI, blue). (A) UAS–GlyPi/+;
Dmef2–Gal4, UAS–GFP–Atg8/+ larvae starved on low-nutrient food +2.5 mg/ml CQ for 6 h exhibited high levels of colocalization between GFP–Atg8
and glycogen. (B) Higher magnification of region outlined in (A). (C–F) Dmef2–Gal4, UAS–GFP–Atg8 larvae with GlyP and/or Atg1 knockdown were fed
on high-nutrient food for 18 h before being starved on low-nutrient food (antiglycogen, red; GFP, green; DAPI, blue). (C) UAS–GlyPi/+; Dmef2–Gal4,
UAS–GFP–Atg8/+ larval muscle contained high levels of glycogen prior to starvation, indicating no defect in glycogen synthesis. (D) Following 24 h
starvation UAS–GlyPi/+; Dmef2–Gal4, UAS–GFP–Atg8/+ muscles contained no glycogen detectable by antibody staining. (E) Following 24 h of
starvation Dmef2–Gal4, UAS–GFP–Atg8/UAS–Atg1i muscles contained no glycogen. (F) Double-mutant larvae UAS–GlyPi/+; Dmef2–Gal4, UAS–GFP–
Atg8/UAS–Atg1i larval muscles contained high levels of glycogen after 24 h of starvation, indicating an inability to break down glycogen. (G) Time
course of glycogen levels in Dmef2–Gal4 carcasses (muscle+body wall) with expression of UAS–RNAi transgenes targeting white, GlyP, Atg1, or
GlyP+Atg1. Simultaneous knockdown of GlyP and Atg1, but not either gene alone, significantly reduced glycogen degradation compared to the white
control after 24 h of starvation, consistent with immunostaining (C–F). Between 6 and 12 h of starvation, individual knockdown of GlyP or Atg1
caused a significant increase in glycogen levels, indicating a reduced rate of glycogen degradation. SEM is indicated for n = 5–8 samples. The p values
were calculated relative to white RNAi control at each time point (*p,.05, **p,.01).
doi:10.1371/journal.pbio.1001708.g004
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Figure 5. Glycogen synthase knockdown inhibits autophagosome growth and improves CQ-induced myopathy phenotype. (A–D)
Glycogen synthase (GlyS) is required for glycogen synthesis in D. melanogaster muscles. PAS staining for glycogen was absent in Dmef2–Gal4/UAS–
GlySi muscles (B) compared to control Dmef2–Gal4/UAS–whitei muscles (A). Antiglycogen immunostaining for glycogen was absent in Dmef2–Gal4/
UAS–GlySi muscles (D) compared to Dmef2–Gal4/UAS–whitei control muscles (C). (E–K) GlyS is required for the formation of large CQ-induced
autophagosomes. Vesicles are much smaller in Dmef2–Gal4, UAS–GFP–Atg8/UAS–GlySi larval muscle starved 6 h in low-nutrient food +2.5 mg/ml CQ
(G) than in control Dmef2–Gal4, UAS–GFP–Atg8/UAS–whitei larval muscle (E). (F, H) The difference in autophagosome size is clearly evident at high
magnification. (I–K) Quantification of autophagy changes due to GlyS gene knockdown in Dmef2–Gal4, UAS–GFP–Atg8 larvae starved on low-nutrient
food +2.5 mg/ml CQ for 6 h. SEM is indicated, with n = 5 (I) or n = 10 (J–K) ventral longitudinal muscles from individual animals (*p,.05, **p,.01). (I)
Each of the four UAS-GlyS RNAi transgenes tested caused a significant decrease in the total area of GFP–Atg8 vesicles in the muscle compared to the
UAS–whitei control. (J) Vesicle number was unchanged by GlyS knockdown. (K) UAS–GlyS RNAi caused a highly significant decrease in the mean
vesicle size (area) compared to the control. (L–M) GlyS gene expression, monitored using a MiMIC transposon insertion (MI01490), showed expression
in the larval muscle (L) but not the fat body (M) (green, GFP; blue, DAPI). (N–O) Larvae were starved on low-nutrient food for 6 h prior to dissection of
the fat bodies. Autophagy in Cg-Gal4/+; UAS–GFP–Atg8/UAS–GlySi (O) was not substantially different from autophagy in Cg-Gal4/+; UAS–GFP–Atg8/
UAS–whitei control fat bodies (GFP, green; DAPI, blue). (P) EM of muscle from Dmef2–Gal4/UAS–GlySi animal starved on low-nutrient food +CQ. Note
that the intermyofibril spaces (red asterisk) and sarcomere structure are not distorted. (Q) GlyS or Atg1 knockdown significantly improved the crawling
time of larvae treated with CQ and starved for 6 h. SEM is indicated for n = 10 larvae. The p values were calculated relative to white RNAi control larvae
(*p,.05, **p,.01).
doi:10.1371/journal.pbio.1001708.g005
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Given the importance of GlyS to autophagosome formation, we

wondered whether GlyS levels might ameliorate the myopathy

observed in larvae treated with CQ (Figure 1N–O). EM of Dmef2–

Gal4/UAS–GlyS RNAi larval skeletal muscle, starved and treated

with CQ (Figure 5P), showed a much improved sarcomere

structure compared to control larvae (Figure 1N), with much less

distortion of the intermyofibrillar spaces. We also examined the

effect of GlyS knockdown and Atg1 knockdown on larval

locomotion in the crawling assay (Figure 5Q). Larvae were fed,

starved 3 h, or starved 6 h, with or without CQ. In fed larvae

there was little difference between the white, GlyS, or Atg1

knockdown, irrespective of CQ treatment. At 3 h starvation, both

GlyS and Atg1 knockdown significantly improved the crawling time

of CQ-treated larvae. This remained true at 6 h of starvation,

however the effect was less pronounced. Indeed, Atg1 knockdown,

and especially GlyS knockdown, began to negatively affect

locomotor function at 6 h starvation even without CQ treatment.

In the case of GlyS, this may be due to its essential function in

making glycogen rather than a direct effect on autophagosome

formation.

Mutations in the LC3-Interacting Region (LIR) or Glucose-
6-Phosphate (G-6-P) Binding Region of GlyS Prevent Its
Interaction with Atg8

Interestingly, the human glycogen synthase muscle isoform was

identified by mass spectroscopy as a potential interactor of

GABARAPL1, one of the human orthologs of Atg8 [44],

suggesting a possible mechanistic link between the autophagy

machinery and glycogen. By binding ATG8 family members,

some proteins can act as receptors that link their cargo to the

nascent autophagosome membrane via an LC3-interacting region

(LIR) with a consensus sequence of W/F-X-X-L/I/V, preceded

by acidic residues. [45]. We identified three putative LIR motifs

conserved between D. melanogaster GlyS and its mammalian

orthologs: VAHFHE (residues 187–192), EFQNL (residues 303–

307), and DWRTL (residues 608–612). We focused on the last of

these as it contains both tryptophan and leucine, the canonical

residues at their respective positions. To determine whether GlyS

and Atg8 can interact in the larval muscle, we therefore generated

a wild-type GlyS overexpression construct as well as overexpres-

sion constructs with a mutation at the critical tryptophan of the

LIR (W609A). Additionally, to analyze whether the activation

state of GlyS might be important for its role in autophagy, we

generated additional constructs with mutations in the G-6-P

binding region (R593A) and at the first GSK3B phosphorylation

site (S651A) (Figure 6A) [46]. These UAS–Venus-tagged forms of

D. melanogaster GlyS and GlyS mutants were expressed specifically in

muscle with Dmef2–Gal4/UAS–Flag–Atg8. UAS–Venus–GlyS (WT or

mutants);Dmef2–Gal4/UAS–Flag–Atg8 larvae were fed on high-

nutrient food or starved on low-nutrient food for 6 h and then

lysed and immunoprecipitated with anti-GFP nanobodies. Flag–

Atg8 did not Co-IP with Venus–GlyS in the fed animals, but

starvation consistently caused the proteins to Co-IP (Figure 6B).

The S651A mutant GlyS, which is predicted to be resistant to

suppression by GSK3B phosphorylation [47,48], was likewise able

to interact with Flag–Atg8 under starvation conditions (Figure 6B).

Neither the W609A mutant nor R593A mutant were able to Co-

IP Flag–Atg8 in either nutritional state (Figure 6B).

We next overexpressed the tagged forms of GlyS in the larval

muscle, and assayed for their localization with respect to Flag–

Atg8 (Figure 6C–F). Consistent with the results of the Co-IP

experiments, we observed colocalization of both Venus–GlyS

(Figure 6C) and Venus–GlyS (S651A) (Figure 6E) with Flag–Atg8

in muscles from animals starved and treated with CQ. In contrast,

Venus–GlyS (R593A) (Figure 6D) and Venus–GlyS (W609A)

(Figure 6F) were found throughout the cytoplasm and did not

colocalize with autophagosomes in muscles from starved and CQ-

treated animals. Taken together these results indicate that GlyS

and Atg8 can interact in D. melanogaster muscles, and that this

interaction is regulated by nutritional status. Furthermore, the

failure of the W609A mutant to interact or colocalize with Atg8

raises the possibility that the GlyS–Atg8 interaction might occur

directly via the GlyS LIR.

Discussion

Since the discovery in 1963 that Pompe disease corresponds to a

deficiency in the lysosomal enzyme acid a-glucosidase, followed by

the identification of several more lysosomal storage disorders and

vacuolar myopathies, defects in glycogen metabolism have been

linked to myopathies [3,4,7]. Strikingly, almost 50 years later, it

remains unclear how glycogen metabolism and the autophagy–

lysosome system interact in muscle cells. Here, we have established

a D. melanogaster model to study glycogen autophagy in skeletal

muscles, using chloroquine (CQ) to simulate an autophagic

myopathy that is completely dependent on the core autophagy

genes. We discovered that glycogen was sequestered into

autophagic vesicles in response to starvation, and that this could

be suppressed via the Tor pathway. We found that glycogen

autophagy was able to compensate for a deficiency of glycogen

phosphorylase over the course of 24 h of starvation, but that both

degradation systems were required for maximum efficiency of

glycogen breakdown during the first 12 h of starvation. Using our

CQ-induced myopathy model system, we showed that reduction

of either autophagy or glycogen synthesis dramatically improved

the locomotor function of the drug-treated animals. Finally, we

examined the relationship between GlyS and Atg8, and discovered

that the two proteins can interact in the muscle cell and that this

interaction depends on conserved arginine and tryptophan

residues in the glucose-6-phosphate binding region and putative

LIR of GlyS.

Chloroquine-Induced Myopathy: A Model to Study
Glycogen Autophagy in Larval Muscles

Using the muscle-specific Dmef2–Gal4 driver and GFP–Atg8 to

label autophagosomes, we found that simply adding CQ to the

food induced a dramatic increase in the size of autophagosomes,

causing a dramatic distortion of the sarcomere as enlarged

autophagosomes filled the intermyofibrillar spaces, causing them

to bulge (Figure 1). This phenotype is strikingly similar to

published reports of CQ-induced myopathy and Pompe disease

in humans [35,36]. Second, we assayed the locomotor function of

treated larvae and found that CQ dramatically reduced the

animals’ crawling ability (Figure 1O–P). We cannot rule out that

the effects of the drug on the nervous system could have played a

role in this phenotype. However, the fact that we were later able to

suppress the locomotor defects through muscle-specific genetic

knockdowns indicates that at least some of this phenotype was due

to the myopathy.

Using our CQ-induced myopathy model we set out to carefully

examine the substrate of the accumulated autophagosomes. We

thus identified glycogen as a major substrate of autophagy in the

larval muscle by immunofluorescence and electron microscopy in

both CQ-treated and untreated larvae (Figure 2). To further

analyze the nature of the cargo during CQ-induced autophagy, we

tested several other potential substrates for their presence in CQ-

induced autophagosomes (Figure S2). We never detected the

presence of mitochondria in the autophagosomes, indicating that
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autophagy was, to some extent, selective, as the cytoplasm of the

larval muscle is rich in mitochondria. Further, we never observed

autophagosomes containing the sarcomeric protein filamin, one of

the previously reported substrates of autophagy in D. melanogaster

adult flight muscle [49]. The flight muscle, a highly oxidative type

of muscle, has also been used to model the function of the

autophagy pathway during aging, where it seems to target

ubiquitylated protein aggregates for degradation [50]. We found

that a small number of autophagosomes stained positive for

polyubiquitin in the larval muscle, but much fewer than those

containing glycogen. Ubiquitin labeling is therefore unlikely to

play a major role in the targeting of glycogen to the autophago-

some. Taken together, these observations highlight the funda-

mental difference between autophagy in the highly glycolytic larval

muscle and the oxidative flight muscle. This phenomenon extends

to mammals, where large accumulations of autophagosomes are

seen in glycolytic type II muscle fibers, but not in oxidative type I

fibers, in the mouse model of Pompe disease [51]. Our data raise

the possibility that differences in the autophagic substrate might

underlie this phenotype.

The only previous analyses of the Atg genes and glycogen

autophagy was in the mouse Pompe disease model, and was

limited to mutations in two genes, Atg7 and Atg5, which

surprisingly had different effects on the amount of lysosmal

glycogen [12,30,31]. Using transgenic RNAi lines, we were

able to target components from each of the major Atg

protein complexes (Figure 1I–K) [27,28,32]. Atg1, the D.

melanogaster ortholog of mammalian Ulk1/2 kinase, and

CG1347/Atg17, the ortholog of the Ulk-interacting protein

RB1CC1/FIP200, function together and form a complex that

is essential for autophagosome formation. The Atg12

complex (Atg5, Atg12, Atg16) localizes to the phagophore

and is important for vesicle elongation. The E2-like enzyme,

Atg3, is required for the conjugation of Atg8 to phosphati-

dylethanolamine (PE). Atg6 is required for the induction of

autophagy as part of the class III phosphatidylinositol 3-

kinase complex. Cycling of Atg9 between the PAS and

peripheral sites is essential for autophagosome formation, and

depends on the Atg9 interacting proteins, Atg2 and Atg18.

Knockdown of any of these genes completely blocked

autophagy in the D. melanogaster muscle, even in larvae

starved and treated with CQ, indicating that the core

conserved autophagy machinery is absolutely required for

glycogen autophagy.

Figure 6. Interaction and colocalization of Glycogen synthase with Atg8 is disrupted in R593A and W609A mutants. (A) Protein
sequence alignment of the C-terminal region of D. melanogaster, human, and yeast Glycogen synthases. Identical residues are blue; all other residues
are red. Conserved in all three species, R593, W609, and S651 are underlined. (B) Western blot/Co-immunoprecipitation (co-IP) showing that Flag–
Atg8 binds to a Venus–GlyS or Venus–GlyS (S651A) protein complex in response to starvation. Flag–Atg8 is unable to co-IP with either Venus–GlyS
(R593A) or Venus–GlyS (W609A). Venus–GlyS and Venus–GlyS mutants were co-IP’d from muscle lysate from Dmef2–Gal4/UAS–Flag–Atg8 or UAS–
Venus–GlyS(WT or mutant)/+;Dmef2–Gal4/UAS–Flag–Atg8 third instar larvae. These were fed on high-nutrient food for 18 h, and then transferred to
fresh high-nutrient food or low-nutrient food for 6 h. (C–F) UAS–Venus–GlyS (WT or mutant)/+;Dmef2–Gal4/UAS–Flag–Atg8 larvae were treated with
starved 6 h in low-nutrient food +2.5 mg/ml CQ (Venus, green; a-Flag, red). Purple arrows mark examples of the presence or absence of
colocalization. (C) Venus–GlyS was localized predominantly to the Flag-labeled autophagosomes, with weak staining in the rest of the cytoplasm. (D)
Venus–GlyS (R593A) was found throughout the cytoplasm and did not colocalize with autophagosomes. (E) Venus–GlyS (S651A) was localized to the
autophagosomes. (F) Venus–GlyS (W609A) did not colocalize with the Flag-labeled autophagosomes.
doi:10.1371/journal.pbio.1001708.g006
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The Function of Autophagic Glycogen Degradation in
Muscles

One of the critical unanswered questions related to glycogen

and autophagy is how the lysosomal degradation of glycogen

relates to the enzymatic degradation of glycogen via glycogenol-

ysis. In the latter, glycogen phosphorylase catalyzes the rate-

limiting cleavage of glucose monomers from the end of a glycogen

branch. Mutations in the muscle isoform of mammalian glycogen

phosphorylase (PYGM) cause glycogen storage disease type V (also

known as McArdle’s Disease), while mutations in the liver isoform

(PYGL) cause glycogen storage disease type VI (also known as

Hers’ disease) [52,53]. By knocking down the D. melanogaster

glycogen phosphorylase gene, GlyP, and Atg1, we showed that

neither glycogenolysis nor autophagy were required for glycogen

breakdown over the course of 24 h of starvation (Figure 4).

Muscles deficient in both systems, however, were unable to

degrade glycogen, indicating that glycogenolysis and autophagy

are the only two routes of glycogen degradation available to the

muscles, and that transport of glycogen to the lysosome for

degradation requires a functioning autophagy system.

When we more closely examined the effects of individually

knocking down Atg1 or GlyP, we found that during the first 12 h of

starvation the mutant muscles maintained higher levels of glycogen

than wild-type controls. A similar effect was also observed in CQ-

treated muscles, which have a functional block in autophagy

(Figure 3). CQ treatment consistently caused an increase in

glycogen levels over controls (Figure 3E). This effect was observed

even after 24 h of starvation, which we suspect is due to the

persistence of large numbers of autophagosomes filled with

glycogen, protected from both glycogenolysis and the lysosome.

We conclude that although autophagy and enzymatic glycogen

breakdown can compensate for each other over the long term, in

the first 12 h after starvation both systems are required for the

maximum efficiency of glycogen breakdown.

Although these results suggest that glycogen autophagy in the D.

melanogaster muscle targets the same stores of glycogen as GlyP in

response to starvation, it is possible that in some cases, autophagy

specifically targets mis-branched glycogen. Lending support to this

idea, it was recently shown in mouse models of Lafora disease

(progressive myoclonus epilepsy) that defective autophagy accom-

panied the formation of Lafora bodies, a poorly branched,

excessively phosphorylated form of insoluble glycogen [54–57].

This finding could have important implications for treatment of

Lafora disease as well as for Andersen disease (glycogen branching

enzyme deficiency or GSD type IV) and Tarui disease (GSD type

VII), which are also associated with the accumulation of

polyglucosan aggregates.

The recent proteomic analysis of the autophagy interaction

network in human cells by Behrends et al. (2010) [44] identified

the muscle form of glycogen synthase as an Atg8-binding protein.

This raises the possibility that GlyS could itself act as an adaptor

between glycogen and the autophagy machinery. Consistent with

this, we found that tagged forms of D. melanogaster GlyS and Atg8

colocalized in vivo in the muscle during starvation and CQ-induced

autophagy (Figure 6). Furthermore, co-immunoprecipitation

experiments indicated that the two proteins only form a complex

in starved muscles (Figure 6B). As the binding of Gys1 to Atg8 is

dependent on the nutritional state of the animal, it is possible that

posttranslational modifications such as the inhibiting phosphory-

lation of GSK3 or the activating binding of Glucose-6-phosphate

might regulate this interaction. Consistent with this view, we found

that mutation of R593A inhibited the interaction with Atg8

(Figure 6B,D). In yeast the analogous mutation (R581A) generates

an enzyme with a lower level of activity than wild type [58,59].

Along with the fact that the S651A mutation failed to disrupt the

GlyS–Atg8 interaction, this suggests that active GlyS is better able

to interact with the autophagosome.

Unfortunately, as GlyS is required for the synthesis of

glycogen, we could not test its function as a cargo receptor by

simple knockdown of the gene. We were, however, able to

analyze the ability of the W609A mutant to interact with and

localize with Atg8. This mutation disrupts one of the putative

LIR motifs conserved between D. melanogaster GlyS and its

mammalian orthologs. We found that unlike WT GlyS, W609A

mutants failed to interact with Atg8 upon starvation, supporting

the notion that the DWRTL sequence is a bone fide LIR motif.

In yeast glycogen synthase, the residue corresponding to W609

lies in a loop region between two alpha helices, facing inward

toward the center of the tetrameric protein [59]. This is a

relatively highly ordered region of the protein, such that

mutation of W609 could disrupt the function of the protein,

inhibiting its activity. We have not ruled out this possibility, but

we note that there were no obvious differences in antiglycogen

immunostains from WT GlyS or W609A muscles (Figure S4),

suggesting that glycogen synthesis was not impaired by

overexpression of the mutant.

Nonetheless, we found that GlyS has a general role in

promoting autophagy in muscles from CQ-treated animals

(Figure 5). The effect of GlyS knockdown on autophagosome size

could simply be due to the absence of glycogen substrate in these

muscles. Alternatively, this finding might indicate that physical

interaction between the autophagic machinery and GlyS/glycogen

is required for the formation of enlarged autophagosomes, or that

the absence of GlyS alters a signaling pathway leading to

suppression of autophagosome growth. Recently, it was reported

that the AMPK complex, which is known to promote autophagy

and phosphorylate GlyS, binds to and is activated by glycogen

[60,61]. A change in AMPK activity and/or localization might

therefore play a role in the decreased autophagosome size

observed in the GlyS knockdown muscle. Interestingly, we

observed that much of the Venus–GlyS protein appears to localize

to the surface of the Atg8 punctae induced by CQ treatment

(Figure 6C,E). It is possible that GlyS residing on the outer surface

of the autolysosome could itself sense glucose released via

lysosomal glycogen degradation. This would provide a means for

feedback from glycogen autophagy to the metabolic and signaling

functions of GlyS.

In conclusion, this study represents an advance in our

understanding of the role of autophagy in glycogen metabolism

in skeletal muscle. The relevance of these processes to animal

health, and our investigation of the interaction between GlyS and

autophagy, suggests that the D. melanogaster model can identify

important participants in glycogen autophagy and related

myopathies.

Materials and Methods

Fly Stocks, Feeding Protocol, and Chloroquine Treatment
Details on fly strains can be found in Text S1. Unless otherwise

noted, fly crosses and larvae were maintained in vials containing

‘‘standard’’ cornmeal/soy flour/yeast fly food (see Text S1 for

further details). For starvation experiments third instar larvae were

individually selected and no more than 20 per experiment were

transferred to ‘‘low-nutrient food’’ composed of 0.36 standard

food. Likewise, for the rich-food diet, no more than 20 larvae were

transferred to ‘‘high-nutrient food’’ composed of standard food

supplemented with 100 g/L sucrose and 50 g/L yeast. For each

genotype, at least four larvae from at least two independent vials
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were analyzed. For drug treatments, chloroquine diphosphate salt

(Sigma) was added to the food at 2.5 mg/ml.

Larval Locomotor Assays
Assays were based on previously published methods [62]. For

the crawling assay, larvae were positioned at one end of a furrow

on the surface of a sylgard plate, with a yeast ball at the far end.

The time to crawl 3 cm was measured three times, with the final

successful trial used as data for analysis. Trials in which the larva

crawled over the edge of the lane were considered unsuccessful,

and the larvae were reset at the starting point. For the righting

assay, a larva was placed on a sylgard plate, allowed to acclimate

for 10 s, then turned upside down. The time it took for the animal

to turn back onto its ventral surface was recorded. For both

locomotor assays, 10 individual larvae were tested, and p values

calculated using Student’s t test.

Immunostaining, Confocal and Electron Microscopy, and
Image Analysis

For whole-mount immunostaining of fly tissues, third instar

larval body wall muscles were dissected according to [63] or third

instar fat body were dissected and fixed for 15 min in PBS with

4% formaldehyde. After washing in PBT, samples were incubated

overnight with appropriate primary and secondary antibodies.

Image analysis was done with ImageJ. Transmission electron

microscopy was performed using a technique similar to [64]. See

Text S1 for further details and list of antibodies used.

Periodic Acid-Schiff (PAS) Stain
Third instar larvae were fed on standard food, then immersed in

4% formaldehyde in PBS for 1 hr at room temperature, pierced

on their posterier end to allow fixative to permeate the tissues, and

transferred to 4uC overnight. The tissue was dehydrated in an

ethanol series followed by xylene, then embedded in paraplast,

and sectioned at 5 mm. Samples were deparrafinized and

rehydrated, then stained with PAS, and counterstained with

Acidified Harris Hematoxylin following the manufacturer’s

protocol (Polysciences). Images were collected with an Axiophot

2 compound microscope.

Glycogen Measurements
Larvae were put on a rich-food diet for 24 h prior to the

experiment, then switched to the starvation diet, with or without

CQ, for the indicated time. We adapted a protocol used previously

for measuring glycogen content in D. melanogaster larvae [65]. For

each measurement 20 larvae were homogenized on ice in 100 ml

PBS, then heat treated at 70uC for 5 min. Homogenate was then

diluted 1:10 in PBS, centrifuged at 12,000 rpm for 3 min, the

supernatant was collected, and the glucose analyzed by absor-

bance at 340 nm using the Glucose (HK) Assay Kit (Sigma). To

calculate glycogen levels, untreated samples were compared to

samples supplemented with 1 m/mL amyloglucosidase (Sigma),

which degrades the glycogen to glucose. Glycogen levels were then

normalized to protein levels in the corresponding homogenate,

calculated by Bradford assay, and the ratios for each genotype or

treatment were compared using Student’s t test.

Generation of UAS-GlyS Transgenes
Glycogen Synthase cDNA LD46952 was cloned into Gateway

entry vectors according to the pENTR Directional TOPO

Cloning system (Invitrogen), then cloned into destination vectors

derived from the Drosophila Gateway Collection, and obtained

from the Drosophila Genomics Resource Center (pTVW = N-

terminal Venus tag under the control of the UASt promoter).

Point mutations were introduced using the QuikChange II site-

directed mutagenesis kit (Stratagene). Atg8a cDNA LD05816 was

cloned into pTFW = N-terminal 3xFlag tag under the control of

the UASt promoter, as above. Integration into the genome was

performed using standard methods. See Text S1 for further details.

Co-Immunoprecipitations and Western Blot
Prior to dissection larvae were fed in standard food, then eight

larvae of each genotype were transferred to new vials containing

either standard food or low-nutrient food. Third instar larvae were

dissected to obtain a clean carcass with only muscles remaining

attached. Dissections were collected in lysis buffer (25 mM Tris–

HCl [pH 7.5], 150 mM NaCl, 5 mM EDTA, 1% [v/v] NP-40,

5% [v/v] glycerol, 16 EDTA-free protease and phosphatase

inhibitor cocktail [Thermo Scientific]). After homogenization,

debris was removed by centrifuging once at 1,2006 g for 5 min

and once at 1,30006 g for 5 min. Extracts were cleared by

incubation with agarose resin (50 ml of packed beads per IP;

Thermo Scientific) for 1 h at 4uC, followed by centrifugation at

13,0006 g for 15 min. Immunocomplexes were formed by

incubation for 2 h at 4uC using anti-GFP nanobodies coupled to

agarose beads (10 ml of packed beads per IP; ChromoTek). All

washes were in lysis buffer. Western blot was performed using

standard protocols. Antibodies used are: mouse anti-GFP (1:1,000

Abcam ab1218), mouse anti-Tubulin (1:5,000 Sigma-Aldrich

T6199), and rabbit anti-Flag (1:2,000 Sigma).

Supporting Information

Figure S1 Autophagy genes are required for the forma-
tion of autophagosomes in CQ-treated larvae. (A–L)

Longitudinal muscles from third instar larvae, expressing GFP–

Atg8 under control of the Dmef2–Gal4 driver. (A) white RNAi control

larvae, starved on low-nutrient food for 6 h+2.5 mg/ml chloro-

quine (CQ), accumulate large GFP-labeled autophagosomes. (B–C)

Atg1 RNAi completely blocks autophagosome formation in starved

(B) and starved +CQ (C) animals. (D) Atg5 RNAi, (E) Atg12 RNAi, (F)

Atg2 RNAi, (G) Atg9 RNAi, (H) Atg16 RNAi, (I) Atg3 RNAi, (J) Atg6

RNAi, (K) Atg18 RNAi, and (L) CG1347 RNAi all block autophago-

some formation due to starvation +CQ treatment.

(TIF)

Figure S2 CQ-induced autophagy does not target mito-
chondria, filamin, or ubiquitin-labeled aggregates. (A–C)

Dmef2–Gal4, UAS–GFP–Atg8 animals were starved on low-nutrient

food for 6 h +2.5 mg/ml CQ, then dissected and assayed for GFP

localization. (A) There was no colocalization between GFP–Atg8-

labeled vesicles (green) and mitochondria detected by antimito-

chondrial membrane ATP synthase (red). (B) There was no

colocalization between GFP–Atg8-labeled vesicles (green) and the

sarcomeric protein filamin (red). (C) The majority of GFP–Atg8-

labeled vesicles (green) did not colocalize with ubiquitin (red),

although we did occasionally observe some overlap (arrows).

(TIF)

Figure S3 Quantification of RNAi knockdown. GlyS, GlyP,

and Atg1 mRNA expression levels in the third instar larval muscle

were analyzed by quantitative RT-PCR (see Text S1). UAS–RNAi

lines were crossed to Dmef2–Gal4. mRNA levels from knock-

downs were normalized to UAS–white RNAi controls. Error bars

indicate the SEM.

(TIF)

Figure S4 Glycogen accumulation in W609A mutant.
UAS–Venus–GlyS(WT or W609A mutant)/+;Dmef2–Gal4/+ larvae
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were fed on high-nutrient food, then immunostained with

antiglycogen antibody (red) and DAPI (blue). Glycogen accumu-

lates in muscles overexpressing WT GlyS (A) and in muscles

overexpressing GlyS (W609A).

(TIF)

Text S1 Supplemental experimental procedures (fly
stocks and feeding protocol, immunostaining and anti-
bodies, image analysis, transmission electron micros-
copy, generation of transgenic flies, qPCR) and refer-
ences for supplemental data and experimental
procedures.
(DOC)
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