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Identification of critical genetic variants associated
with metabolic phenotypes of the Japanese
population
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We performed a metabolome genome-wide association study for the Japanese population in

the prospective cohort study of Tohoku Medical Megabank. By combining whole-genome

sequencing and nontarget metabolome analyses, we identified a large number of novel

associations between genetic variants and plasma metabolites. Of the identified metabolite-

associated genes, approximately half have already been shown to be involved in various

diseases. We identified metabolite-associated genes involved in the metabolism of xeno-

biotics, some of which are from intestinal microorganisms, indicating that the identified

genetic variants also markedly influence the interaction between the host and symbiotic

bacteria. We also identified five associations that appeared to be female-specific. A number

of rare variants that influence metabolite levels were also found, and combinations of

common and rare variants influenced the metabolite levels more profoundly. These results

support our contention that metabolic phenotyping provides important insights into how

genetic and environmental factors provoke human diseases.
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Molecular phenotyping by means of multiomics analyses
is an indispensable approach for modern medical sci-
ences and practices. In the last decade, large-scale

population-based prospective cohort studies have applied mole-
cular phenotyping for participants, and obtained a number of
important insights into the causes of phenotypes1–10. Among
omics analyses, metabolite profiling is one of the most powerful
methods for describing individual phenotypes, as the metabolite
profile is heavily influenced by both genetic and environmental
factors, even if the effect size of each influencing factor is too
small to be detected in apparent phenotypes. In this regard,
metabolome genome-wide association studies (MGWASs)
enabled us to assess the influence of common genetic variants on
phenotypes in an effective and elaborate manner1,2,4,5,9,11–16.

Although previous MGWASs identified certain number of
associations, the magnitude of the analyses was not large enough to
comprehensively elucidate the effects of genetic variants on the
metabolic phenotypes. One major limitation inherent to conven-
tional MGWASs is that these studies mainly use DNA array tech-
nology for genotyping of individuals, resulting in only a limited
number of genetic variants being applied in the MGWAS analyses.
Another limitation is that although the frequency of each genetic
variant differs considerably among ethnic groups, most previous
MGWASs targeted wide-ranging ethnic groups en bloc. Thus, there
remain many unknown genetic variants influencing metabolic
phenotypes, so closer investigations of the metabolite profiles of
individual ethnic groups are very important for comprehensively
elucidating the genetic effects on various metabolic phenotypes.

It has been generally hypothesized that the effects of rare var-
iants on metabolic phenotypes may be stronger than those of
common variants, but most of the association studies to date have
not addressed this point because of the technical limitations of the
DNA microarray-based GWAS system. Therefore, in this study,
we tested an original approach in which we first identified genes
that harbor effective common variants in an MGWAS of 1008
participants using whole-genome sequence datasets, and then
searched for rare variants within the identified genes17. Moreover,
to comprehensively elucidate the relationship between genetic
variants and metabolite profiles in human plasma, we expanded
the number of metabolites used for MGWAS analyses by com-
bining nuclear magnetic resonance (NMR)-based metabolome
analysis with nontarget liquid chromatography-mass spectrometry
(LC-MS)-based metabolome analysis for 1008 participants.

In this study, our MGWAS analysis based on whole-genome
sequencing and nontarget metabolome data revealed many novel
associations between genetic variants and metabolites. We found
that approximately half of the associated genes are involved in
various diseases, indicating that the metabolome provides an
important intermediate phenotype for investigation of disease
causes. In addition, we found that metabolites involved in many
kinds of xenobiotic metabolism were associated with genetic
variants, and some of the xenobiotics were from intestinal bac-
teria, indicating that the cross-talk between host and microbes is
heavily influenced by host gene polymorphisms. On the other
hand, we also showed that many rare variants influenced meta-
bolic levels more strikingly than the common variants in the
corresponding genes. Importantly, various combinations of the
rare and common variants frequently influenced metabolic levels
more profoundly than single variants. Our results thus indicate
that the MGWAS approach significantly enhances not only the
functional annotation of genetic variants, but also the study of the
effects of these variants on diseases.

Results
MGWAS identified many novel genetic loci associated with
plasma metabolite levels. A total of 1008 participants in TMM

Community-Based Cohort Study were selected for the MGWAS
analyses. We conducted nontarget metabolome analyses of
plasma samples from these participants using both NMR spec-
troscopy and LC-MS. After validating the quality of the data, 37
and 270 metabolites obtained by NMR spectroscopy and LC-MS,
respectively, were selected with 255 nonredundant metabolites
excluding overlapping metabolites (Supplementary Data 1) and
used for subsequent association studies. MGWAS analyses were
performed utilizing approximately 10-million variants from the
whole-genome sequence data analyzed in the TMM project17–19.
We identified 42 significant associations of 38 plasma metabolites
with 33 genetic variants (in 26 loci) at a genome-wide significant
P-value threshold (Fig. 1a). Of these 26 associated loci, 11 loci
have not been reported in previous MGWASs (Tables 1, 2 and
Supplementary Data 2). The 38 associated metabolites found in
this study corresponded to amino acids, lipids, fatty acids, car-
bohydrates, nucleic acids, and their derivatives, including those
from the gut microbiota (Tables 1 and 2), indicating that the
genetic variants identified in this study influenced many meta-
bolic pathways. In addition, we also identified five associations
that were significant for only female samples (Table 2). In con-
trast, we could not identify any associations that were significant
for only male samples.

We also conducted a replication analysis based on another set
of participants from the same cohort. We selected an additional
295 participants (130 female) for whom whole-genome sequence
datasets were available and conducted metabolome analyses in a
similar manner to the discovery study. Because the number of
participants for the replication was limited, we could analyze the
significant associations of variants with an allele frequency of
greater than 0.05 (MAF > 0.05). As we could not include enough
number of females for the replication study, associations
significant only for females could not be pursued. Among 24
target associations (16 loci), 13 were replicated (p ≤ 0.05/16=
0.0031), and 7 were nominally replicated (P ≤ 0.05) (Tables 1 and
2). Among the remaining four associations, one (SLC7A5 with L-
kynurenine) was previously reported in other MGWASs, while
two (FADSs with two lipids) were the associations with the FADS
locus, which is well-known to associate with a wide variety of
lipids. These results show that most of the associations found in
the discovery study were replicated and that the remaining ones
would be replicated if the number of samples is increased.

Metabolite associations with nonsynonymous variants. We
identified eight nonsynonymous variants, which consisted of six
missense and two nonsense (i.e., stop-gain) variants (Table 1).
Among these variants, five missense variants associated with five
metabolites (glycine, proline, asparagine, phenylalanine, and
formate) were identified previously through the analyses of
approximately 500 participants14. Thus, doubling of the partici-
pant number and renewing the analytical methods resulted in the
detection of three new loci and five new associations (Table 1).
Besides our current study suitably proved the reproducibility of
the MGWAS analyses14, the increase also resulted in more sig-
nificant P-values for all five known associations compared with
the previous study (Table 1 and Supplementary Fig. 1a–e).

Two newly identified stop-gain variants. We detected newly two
nonsense (stop-gain) variants associated with metabolites. One is
rs121907892, which is in the solute carrier family 22-member-12
(SLC22A12) gene and results in a stop codon at residue 258
(tryptophan) of the gene (Table 1 and Supplementary Fig. 2a).
The minor allele variant of this SNP decreases the plasma levels of
urate (Fig. 1b). The SLC22A12 protein, called URAT1, is a urate
transporter that regulates blood urate levels by reabsorption of
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urate from the tubular lumen to the cytosol at the proximal
tubules in the kidney20. This stop-gain variant causes the pro-
duction of a truncated form of URAT1, resulting in disruption of
SLC22A12 function. This variant is a causative variant for idio-
pathic renal hypouricemia, which causes no symptoms in many
affected individuals but sometimes causes exercise-induced acute
renal failure20. The minor allele frequency of this variant was
0.018 in the population examined in this study; this variant is

found only in East Asian ethnic groups, including Japanese and
Korean populations, but not in European or African populations
(Supplementary Data 3).

Another stop-gain variant is rs59261767, which is in the acyl-
coenzyme A synthetase mitochondrial (ACSM2A) gene and
results in a stop codon at residue 115 (R115ter) of the gene
(Table 1 and Supplementary Fig. 2b). The minor allele variant of
this SNP increases the concentration of indolepropionic acid in
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plasma (Fig. 1c). Indolepropionic acid is a metabolite of
tryptophan and is produced by symbiotic bacteria in the human
gastrointestinal tract. ACSM2A is a mitochondrial enzyme that
catalyzes the ligation of medium-chain fatty acids to coenzyme A,
which is the first step of fatty acid metabolism21. This enzyme
also catalyzes the detoxification of xenobiotics through glycine
conjugation22,23. A truncated form of the ACSM2A protein due
to the stop-gain variant R115ter contains neither a substrate-
binding site nor catalytic residues, indicating that this variant
completely abolishes the catalytic activity of ACSM2A (Fig. 1j)21.

There are six types of acyl-coenzyme A synthetases (ACSMs)
in mitochondria, and the amino acid sequence of ACSM2B is
highly similar (97% identical) to that of ACSM2A, suggesting that
many of the substrates of ACSM2A, especially fatty acids, may
also be catalyzed by ACSM2B. However, the homozygotes of the
variant allele (31 cases) exhibited a dramatic 4.7-fold increase in
median indolepropionic acid concentration compared with the
wild-type homozygotes (672 cases), whereas heterozygotes of the
SNP (305 cases) exhibited only 1.7-fold increase, suggesting that
indolepropionic acid is mainly catalyzed by ACSM2A. Indeed, the
ACSM2A structure shows that residues at the substrate-binding
pocket, such as V337 and S360, are substituted for other amino
acids in ACSM2B (Fig. 1k)21, indicating that there may be
compounds specifically catalyzed by ACSM2A and that loss of
ACSM2A function may increase the plasma concentrations of
those compounds.

Metabolite associations with synonymous variants. We also
identified 37 associations of metabolites with synonymous variants
(Table 2). Of these associations, 24 associations within 16 loci were
newly identified in this study, while some of the 37 associations were
consistent with those reported in other studies. Importantly, four of
these associations were significant only for females (Table 2). The
associated variants were located mainly in or around genes encoding
enzymes and transporters. We also found many variants in or
around genes, which were located either in noncoding sequences or
in sequences encoding proteins; we found that these genes did not
encode enzymes but other type of proteins. Our results showed that
many of these metabolite-change-associated genes are involved in or
reported to be associated with a wide variety of common diseases,
such as cardiovascular diseases, diabetes, neurological diseases, and
psychiatric or cognitive disorders. We classified these associations
based on the types of metabolites and have described them succinctly
in the following sections.

Associations of the synonymous variants with lipids. We
identified many synonymous variants in six novel loci associated
with lipids (Table 2). Among them, genetic variants around the
ADAMTSL1 gene were found to be associated with six lipids
(Table 2, Fig. 1d and Supplementary Fig. 2c). The ADAMTS (a
disintegrin-like and metalloproteinase with thrombospondin

type-1 motifs) superfamily includes 19 secreted metalloprotei-
nases plus 7 ADAMTS-like (ADAMTSL) proteins that contain
ADAMTS ancillary domains but lack catalytic activity24,25. The
ADAMTS superfamily is involved in various biological processes,
including connective tissue structure formation and angiogenesis.
Mutations in these proteins cause human genetic disorders. While
the functions of the ADAMTSL family, including those of
ADAMTSL1, are not well-known, the ADAMTSL family is
involved in the pathogenesis of many diseases, suggesting that
this family may play important physiological roles in
humans24,25.

Of the six associated lipids, five were associated with a single
SNP (rs138884716) located in the intron region of the
ADAMTSL1 splice variant (upstream region of the canonical
ADAMTSL1 sequence; Supplemental Fig. 3). For instance,
rs138884716 was associated with an increase in plasma
phosphatidyl-ethanolamine PE(16:0/0:0) levels (Fig. 1d). A
missense variant in ADAMTSL1 was associated with a complex
phenotype including congenital glaucoma, craniofacial, and other
systemic features26. Because lipid and fatty acid profiles in blood
are associated with glaucoma27,28, these results support the
hypothesis that ADAMTSL1 plays important roles in lipid (fatty
acid) metabolism. In fact, previous GWASs and other studies
reported that the ADAMTSL1 locus is associated with many kinds
of phenotypes, including cholesterol (Supplementary Data 4).

Genetic variants of this gene are also associated with breast
cancer prognosis29. Meta-analysis of stage 1 and 2 patients from
four cohorts revealed that two SNPs in ADAMTSL1 are associated
with early-onset disease-free survival. In addition, several genes
related to ADAMTSL1, such as ADAMTS1 and ADAMTS15, are
involved in initiation and progression of breast cancer25,29. As it
has been shown that extracellular lipids play an important role in
promoting breast cancer growth and progression30, these results
suggest that the changes in metabolic profiles caused by
ADAMTSL1 genetic variants may also influence the prognosis
of breast cancer after treatment.

Previous MGWASs reported that variants in the fatty acid
desaturase (FADS) gene cluster region are associated with the
concentration of many kinds of phospholipids4,5,11. Consistent
with these reports, we confirmed that the plasma concentrations
of several phospholipids were associated with genetic variants
located in the FADS gene cluster region (Table 2, Fig. 1e and
Supplementary Fig. 2d). Two genes in this region, namely, FADS1
and FADS2, encode rate-limiting enzymes in polyunsaturated
fatty acid metabolism and are involved in a wide variety of
physiological processes31. It has been reported that genetic
variations in the FADS gene cluster region are associated with
various diseases, including cardiovascular diseases, diabetes, and
psychiatric diseases.

Associations between metabolites and SNPs observed in only
the female population. In this study, we used a new reference

Fig. 1 Associations of metabolites with loci in the current metabolome genome-wide association study. a Manhattan plots for metabolic traits. The
strength of association with plasma metabolite concentrations for the 26 loci is shown based on the results from the association studies for all
1008 samples. The line indicates a suggestive genome-wide significance level with P-value of 4.598 × 10−9. For gene annotations, novel associations are
depicted in cyan, while novel loci are depicted in red. b–i Distribution of the plasma metabolites. Distributions of the plasma metabolites across the
genotypes are shown using a box plot. Boxes represent the interquartile range (IQR) between the first quartile (Q1) and third quartile (Q3), and the line
inside represents the median. Whiskers denote the lowest and highest values within 1.5× IQR from Q1 and Q3, respectively. Dots represent outliers beyond
the whiskers. These figures were made using the R package. j Ribbon representation of the crystal structure of human ACSM2A (PDB ID: 3EQ6). The
missed (nontranslated) region and the remaining region caused by the stop-gain variant are depicted in gray and green, respectively. k Structure of the
ligand-binding region of human ACSM2A. Two ligands (AMP and butyl-CoA) are represented by a stick model. The residues that differ between human
ACSM2A and ACSM2B are also represented by a stick model, depicted in cyan. The two residues Ser360 and Val337, which are speculated to influence
the ligand specificity of the enzymes, are indicated by blue arrows.
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panel from ToMMo (3.5KJPNv2)17 that covers the X-
chromosome. Therefore, we examined associations of metabo-
lites and SNPs on the X-chromosome, but we could not find
significant associations in the analysis.

We also investigated whether there are any sex-specific
associations between metabolites and SNPs on autosomes. We
examined associations between metabolites and SNPs separately
in females and males and compared the score with that for the
entire (female plus male) population. To our surprise, we
identified five associations between metabolites and genetic
variants that were restricted to only the female population. These
associations include CPS1 vs. homo-L-arginine, PRB2 vs. SM
(d18:1/18:1(9Z)), TXNDC9 vs. 3,4,5-trimethoxycinnamic acid or
trans-2,3,4-trimethoxycinnamic acid, AGBL4 vs. phospholipid PA
(20:3(8Z,11Z,14Z)/0:0), and ZNF385D vs. phosphatidyl inositol
PI(38:4) (Table 2, Fig. 2 and Supplementary Figs. 4, 5, Notes).
One of the salient examples was the association between homo-L-
arginine vs. CPS1, which showed a strong association in females
but an almost null-association in males (Fig. 2a, b). In contrast,
the associations between phenylalanine vs. PAH and PC(42:8) vs.
FADS1,2 showed no such sex-based difference (Fig. 2k–n,
respectively).

While we wished to pursue a replication study for these
associations, we could not include enough number of females into
the present replication study, and a solid validation for the female
specific associations remains to be conducted. Similarly, the
reason or mechanism for the specific accumulation of metabolite-
genetic variant associations in females remains unclear at present.
One plausible explanation for this phenomenon is that there may
be a strong influence of confounding factors for males, leading to
these female-enriched associations. Alternatively, sex hormones
may influence the associations.

Association of SNPs with glycine-related metabolites. We also
identified new loci associated with amino acids and their meta-
bolites (Table 2). Among these compounds, acetylglycine was
found to be associated with a locus containing three types of
glycine N-acyltransferase genes (GLYAT, GLYATL1, and
GLYATL2) (Supplementary Fig. 2e). These enzymes transfer an
acyl group from acyl-CoA to the N-terminus of amino acids,
mainly glycine (a reaction referred to as glycine conjugation)32–34.
This reaction is important for the detoxification of xenobiotics,
such as benzoate, because GLYATs target not only acyl-CoA but
also xenobiotic acyl-CoA, which has the potential to sequester
coenzyme A (CoASH) and inhibit several enzymes34,35. Among
the three GLYATs, GLYAT is active for xenobiotic acyl-CoA and
short/medium-chain acyl-CoAs, GLYATL2 catalyzes medium/
long-chain acyl-CoAs, and GLYATL1 conjugates glutamine
instead of glycine. Therefore, acetylglycine may be catalyzed
mainly by GLYAT.

Our results showed that the identified minor allele variant was
significantly associated with a decrease in the acetylglycine
concentration in plasma, indicating that individuals with this
minor allele have lower glycine conjugation activity than those
with the major allele (Fig. 1f). As described above, we also
identified the missense variant affecting the function of ACSM2A,
another player in this detoxification system (Table 1 and Fig. 1c, j,
k). Xenobiotics and some fatty acids are activated by conversion
to acyl-CoA (xenobiotic-CoA) by ACSM enzymes and are then
conjugated to glycine by GLYATs (Fig. 3), resulting in the
excretion of glycine-conjugated xenobiotics. Importantly, this
metabolic pathway heavily depends on glycine supplementation
because acetylglycine is also associated with the missense variant
of the CPS1 gene, which is associated with plasma glycine levels
with high significant P-value (8.711E–60) (Table 1). These dataT
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Fig. 2 Associations significant only in the female population. Regional association plots and box plots of five associations significant in only the female
population are shown (a–j); a, b CPS1 gene and homo-L-arginine, c, d PRB2 gene and SM(d18:1/18:1(9Z)), e, f TXNDC9 gene and 3,4,5-trimethoxycinnamic
acid or trans-2, 3, 4-trimethoxycinnamic acid, g, h AGBL4 gene and PA(20:3(8Z,11Z,14Z)/0:0), and i, j ZNF385D gene and PI(38:4). The regional plots of
the corresponding loci and the box plots of the corresponding metabolites and SNPs in male population are also shown on the right side of the female plots.
For comparison, the plots and box plots of two representative associations significant for both females and males are also shown (k–n); k, l PAH gene and
phenylalanine, and m, n FADS1,2 genes and PC(42:8).
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indicate that this detoxification mechanism is also affected by
genetic variability in the genes involved in glycine metabolism.
Previous reports shown that GLYAT expression is suppressed in
hepatocellular carcinoma and GLYAT is involved in the
development of musculoskeletal development33,36. These results
support our contention that glycine conjugation plays important
roles in a wide variety of biological systems.

Glycine-serine metabolism influences many kinds of metabolic
pathways (Fig. 3)37–39. This metabolism is coupled to one carbon
metabolism (folate-cycle), which is involved in de novo synthesis
of nucleotides, remethylation of homocysteine (methionine-
cycle), and regeneration of cofactors such as NADPH, NADH,
and ATP. Glycine–serine metabolism is also involved in the
production of glutathione, which regulates cellular redox balance.
In addition, serine is required for the phospholipids production.
On the other hand, serine (glycine) is synthesized by glycolysis
from glucose or gluconeogenesis from pyruvate, and the
deprivation of serine leads to reduction of glucose and glutamine
metabolism (TCA cycle). These data suggest that genetic
variations affecting glycine–serine metabolism also influence
these metabolisms, resulting in a diversity of phenotypes.

Associations between amino acids and SNPs in transporter
genes. We also identified four associations between metabolites,
mainly amino acids and lipids, and genetic variants of transporter
genes (Tables 1 and 2). Of the transporter genes, we identified
that genetic variants of the SLC22A4 gene are associated with
indoleacrylic acid (Table 2, Fig. 1g and Supplementary Fig. 2f).
SLC22A4 encodes a carnitine/organic cation transporter40 that
also transports xenobiotics. Genetic variants of this transporter
gene are associated with human diseases, such as rheumatoid
arthritis and Crohn’s disease (Supplementary Data 4)40. A pre-
vious report showed that indoleacrylic acid, produced from
tryptophan by bacteria, promotes intestinal epithelial barrier
function and mitigates inflammatory responses41. Although

molecular mechanism underlying these effects of indoleacrylic
acid is unclear, it has been reported that treatment of peripheral
blood mononuclear cells with indoleacrylic acid led to an increase
in the expression of target genes in NRF2-mediated antioxidant
pathways, indicating that indoleacrylic acid modifies cysteine
residues of KEAP141.

These data indicate that perturbation of the ability to transport
xenobiotics caused by genetic variations in this transporter gene
may influence the susceptibility to a wide variety of human
diseases. Indeed, the human gut microbiota is important for
human health and that dysbiosis of the gut microbiota is
associated with human diseases42,43.

Associations of nucleic acids and sugars with SNPs. We also
identified many associations of nucleic acids, sugars, and their
metabolites with genetic variants (Tables 1 and 2). Ribonic acid, a
metabolite derived from D-ribose, was associated with genetic
variants of two genes, namely, enolase superfamily member 1
(ENOSF1) and nucleotide binding protein-like (NUBPL) (Fig. 1h,
i and Supplementary Fig. 2g, h). ENOSF1 catalyzes the dehy-
dration of sugars, including ribonic acid44, and has been inves-
tigated in the cancer field because ENOSF1 expression is elevated
in cell lines resistant to thymidylate synthase (TS) inhibitors, such
as 5-fluorouracil (5-FU), a chemotherapeutic drug used for the
treatment of many types of cancers45. Some patients treated with
5-FU and related drugs experienced dose-dependent toxicity, and
several genetic variants of the ENOSF1 gene were associated with
toxicity46. These genetic variants were shown to be associated
with ENOSF1 mRNA expression but not with TS expression.

NUBPL encodes an iron-sulfur protein required for the
assembly of the mitochondrial membrane respiratory chain
NADH dehydrogenase (complex I). Mutations in the NUBPL
gene cause mitochondrial complex I deficiency, a genetic disorder
with a wide variety of symptoms47. While the functional
relationship between NUBPL and ribonic acid is not well known,
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D-ribose is essential for energy production in mitochondria, and
supplementation with D-ribose, a component of the energy-
producing ATP molecule, improves cellular processes under
conditions of mitochondrial dysfunction48. These results thus
indicate that ribonic acid, an oxidized form of D-ribose, may also
be involved in the mitochondrial energy production process.

Consistent with a previous report9, we also identified orotic
acid, a source of uridine monophosphate (UMP), as being
associated with genetic variants of uridine monophosphate
synthetase (UMPS) gene. Mutations in the UMPS influence
pyrimidine metabolism and result in orotic aciduria-149. UMPS is
involved in the conversion of 5-FU to active anticancer
metabolites, and mutations in the gene contribute to 5-FU
resistance in cancers50.

Metabolic diversity caused by combinations of common and
rare variants. While we have identified common variants that
influence metabolite levels in plasma by MGWAS analysis, cer-
tain rare variants, mostly nonsynonymous, may also influence
metabolite levels. To estimate how often rare variants exist and
how critically rare variants influence metabolite levels, we sear-
ched for rare nonsynonymous variants or rare variants at splicing
sites of the genes identified in the present MGWAS. Many of
these identified genes contained certain numbers of nonsynon-
ymous variants, mostly missense variants, while only a small
number of variants were identified at splicing sites (Table 3). We
investigated the effects of these rare variants on the correspond-
ing plasma metabolite levels and found many rare variants that
greatly affected the plasma metabolite levels (Fig. 4). Below, we

focus on two enzymes: phenylalanine hydroxylase (PAH) and
short-chain specific acyl-CoA dehydrogenase (ACADS).

PAH is the causal gene of inborn errors of metabolism, hyper-
phenylalaninemia (HPA) and phenylketonuria (PKU). In our
MGWAS, the common variant rs118092776 (R53H) in the PAH
gene is significantly associated with plasma phenylalanine levels
(Table 1). Plasma phenylalanine levels of individuals with rare
variants, such as rs62507335 (C265Y), were higher than the
average levels of those with the heterozygous allele of the
common variant R53H (Fig. 4a). Moreover, individuals with rare
heterozygous alleles of the V379A, R413P, or A322T variant
exhibited higher plasma phenylalanine levels than those with the
common homozygous R53H alleles (Fig. 4a), indicating that some
rare variants are much more effective than common variants,
even in heterozygous conditions.

We mapped the common and rare variants on the structure of
phenylalanine hydroxylase to elucidate the mechanism under-
lying these effects (Fig. 4b). The common variant R53H is located
on the regulatory domain14, while the highly effective rare
variants are located on the catalytic domain or tetramerization
domain. Structural analyses suggest that the C265Y substitution
greatly perturbs the structure in the center of the catalytic
domain, resulting in destabilization of the enzyme, while the
V379A and A322T substitutions directly perturb the structure of
the catalytic site, indicating considerable influences on the
catalytic reaction (Supplementary Fig. 6a, b). In contrast, the
R413P substitution is suggested to influence the tetramerization
of the enzyme, resulting in a decrease in enzyme activity
(Supplementary Fig. 6c). Thus, these rare variants markedly
influence the catalytic reaction and/or the stability of the enzyme.

Table 3 Summary of nonsynonymous rare variants and rare variants at splice sites in genome-wide significant loci identified in
this study.

Genes Metabolites Number of rare variants (nonsynonymous or
splicing defect)

Number of
combination
types of rare
variants

Number of
combination
types of rare
variants
(over 1 S.D.)

Number of
individuals with
combination types
of rare variants
(over 1 S.D.)

All Nonsynonymous
(missense, nonsense,
and frame-shift)

Splicing defect

CPS1 Glycine 15 14 1 17 1 1
PRODH Proline 24 23 1 34 13 19
ASPG Asparagine 14 14 0 16 6 8
ACADS Ethylmalonic acid 6 6 0 8 5 6
SLC22A12 Uric acid 11 10 1 11 7 19
PAH Phenylalanine 14 14 0 14 4 5
MTHFR Formate 11 11 0 13 2 3
ACSM2A Indolepropionic acid 16 16 0 19 7 7
FADS1 PC(20:4

(5Z,8Z,11Z,14Z)/0:0)
2 2 0 2 0 0

UMPS Orotic acid 10 10 0 12 4 20
SLC22A4 Indoleacrylic acid 4 4 0 5 2 3
ADAMTSL1 PE(16:0/0:0) 40 40 0 43 9 9
SLC6A13 3-dehydroxycarnitine or

2-amino-heptanoic acid
11 11 0 17 3 3

PSPH serine 5 4 1 6 1 6
SEMA6D 8-Hydroxy-5,6-

octadienoic acid or 5-
oxo-7-octenoic acid

14 14 0 15 4 4

SLC7A5 L-kynurenine 5 5 0 6 1 1
TMEM51 Glutaric acid 9 8 1 10 1 1
NUBPL Ribonic acid 5 5 0 4 1 2
MIGA2 L-Octanoylcarnitine 9 9 0 9 2 2
ENOSF1 Ribonic acid 10 10 0 14 3 3
GLYAT Acetylglycine 1 1 0 1 0 0
ZNF516 PC(0:0/20:4

(5Z,8Z,11Z,14Z)
21 21 0 23 6 9
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We also found several rare variants in the ACADS gene that
may affect plasma ethylmalonic acid levels (Fig. 4c). ACADS
catalyzes the dehydrogenation step of the mitochondrial fatty acid
beta-oxidation pathway51, and impairment of ACADS activity
causes short-chain acyl-CoA dehydrogenase (SCAD) deficiency, a
rare autosomal recessive disorder. Consistent with a previous

report9, our MGWAS identified a common missense variant,
rs1799958 (G209S), which is associated with plasma levels of
ethylmalonic acid (Table 1). We identified three rare missense
variants (R325Q, V60L, and E344G) that showed much stronger
effects than the common variants (Fig. 4c). Notably, we found
that an individual with both the heterozygote allele of the
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common variant G209S, and heterozygote allele of the rare
variant E344G in combination exhibited much higher plasma
ethylmalonic acid levels than those with heterozygote or
homozygote alleles of the common variant G209S, indicating
that the combination of the common and rare variants greatly
reduced the enzyme activity (Fig. 4c).

Structural analysis showed that these three rare variants were
located on the central helical region of the catalytic domain and
interacted with many residues, while the common variant G209S
was located at the edge of the protein, far from the catalytic side
or the tetramer interface, and was exposed to the solvent (Fig. 4d).
V60 is located in the core region of the protein, and substitution
to leucine perturbs the local structure, while R325 interacts with
E103, Q284, E322, and W329, and substitution to glutamine
disrupts these interactions (Supplementary Fig. 7a, b). Finally,
E344 stabilizes the N-terminus of the helix by interacting with the
neighboring residues (residues 330, 334, and 340–343), indicating
that substitution with glycine destabilizes the structure (Supple-
mentary Fig. 7c). In addition, we also identified one rare missense
variants (P85R) that showed stronger effect but in the opposite
direction, compared to the effect of the common variant (Fig. 4c).
This substitution seems to stabilize the ACADS enzyme. All these
data indicate that these rare variants also perturb enzyme activity.
These results support our contention that the diversity of
individual metabolic phenotypes is derived from the combination
of common variants with moderate effects and rare variants with
much more deleterious effects.

Discussion
We conducted extended MGWAS analyses and investigated the
associations of plasma metabolites with genetic variants in Japa-
nese populations utilizing data from 1008 participants of the
TMM cohort. In addition to those reported in previous
MGWASs, we have identified many novel important associations,
indicating that there remain unknown associations between
genetic variants and plasma metabolites. In this study, we
exploited whole-genome sequence for the MGWAS, giving rise to
many new associations between plasma metabolites and genetic
variants. Many missense variants are associated with a wide
variety of metabolites, which include substrates of the affected
enzymes as well as metabolites in the pathways of these sub-
strates, indicating that these variants moderately influence a wide
range of corresponding metabolic pathways. We have proposed
that the accumulation of such moderately affecting variants leads
to the generation of various phenotypes in humans, including
metabolic diversities and disease susceptibilities52. Our results
support the notion that these moderately affecting variants pro-
voke nonsynonymous changes that lead to amino acid substitu-
tions in the marginal regions of catalytic domains or in the
regulatory domains of enzymes.

We identified 37 associations between synonymous variants
and metabolites. Many of these genes encode transporters or
enzymes that directly interact with the associated metabolites or
metabolites in related metabolic pathways. Intriguingly, however,
to the best of our knowledge, some associated genes, such as
AGBL4 and ZNF385D, are reported not to be involved directly in
the metabolic pathways of the associated metabolites, namely, PA
(20:3(8Z,11Z,14Z)/0:0) and PI(38:4). In contrast, synonymous
variations of these genes are associated with unrelated plasma
phospholipids and/or lipid-related diseases. In fact, SNPs in
AGBL4 are associated with cardiometabolic risk and
dyslipidemia53,54. A variant near the ZNF385D gene is associated
with an increase in blood levels of Cer(42:1;2) and an increased
risk of arterial and venous thrombosis16. It is interesting to note
that SNPs in ZNF385D are associated even with language-based

learning disabilities, reading disability, and language impair-
ment55. These results imply that ZNF385D may contribute to
lipid metabolism in a currently unknown manner, and the
MGWAS can contribute to the identification of new functions of
the proteins through these findings. These observations also
imply that the metabolites measured in this study are not enough
to cover all associations underlying these phenotypes, and new
associations of this type can be identified by increasing the
number of metabolites examined in future MGWASs.

As summarized in Fig. 5, many of the metabolite-variation-
associated genes identified in this study are involved in diseases,
especially cardiovascular diseases and neuropsychiatric disorders,
as shown in Supplementary Data 4. Indeed, genes found in this
study to bear nonsynonymous variants are involved in such
diseases, showing very good agreement with the findings descri-
bed above and our previous report14. Four genes with non-
synonymous variants (CPS1, MTHFR, PRODH, and PAH) are
involved in inborn errors of metabolism, which lead to either
accumulation or deficiency of metabolites and cause a wide range
of symptoms. We also identified four different genes (NUBPL,
PSPH, ACADS, and UMPS) with synonymous variants associated
with metabolites. We identified 11 metabolites associated with
these eight genes. Four of these metabolites are either direct
substrates or products of the enzymes encoded by associated
genes, but the remaining metabolites are not, indicating that
variants of the genes involved in inborn errors of metabolism
influence a wide range of metabolic pathways.

Many inborn errors of metabolism cause neuropsychiatric
diseases, mainly because the accumulation of substrates causes
toxicity in neural cells. In fact, all eight associated genes identified
in this study cause symptoms of neuropsychiatric diseases. We
also identified three lipid-associated genes (ADAMSTL1, ZF385D,
and FADS1,2) that are involved in neuropsychiatric diseases. As
summarized in Supplementary Data 4, ADAMSTL1 and ZF385D
are associated with many kinds of phenotypes, including neu-
ropsychiatric diseases and the metabolism of lipids, such as
cholesterol16,26,55–57. Similarly, synonymous SNPs in the FADS
gene cluster region are associated with dyslipidemia as well as
bipolar disorder58,59. These results support our contention that
neurological and cognitive disorders are influenced by long-term
perturbations in the concentrations of metabolites.

Moreover, some of the genes (CPS1, MTHFR, and FADS1,2)
that show associations with metabolites and are involved in
neuropsychiatric diseases, and/or inborn errors of metabolism are
also involved in cardiovascular diseases. Of these genes, CPS1 and
MTHFR are involved in one carbon metabolism, while FADS1,2
are involved in lipid metabolism, suggesting that variants in these
genes may influence the onset of cardiovascular diseases. These
genes are also shown to be associated with many kinds of phe-
notypes, suggesting that genetic polymorphisms associated with
cardiovascular diseases and related dyslipidemia also influence
other diseases, such as neuropsychiatric diseases.

Six genes harboring metabolite-associations are involved in
drug/xenobiotic metabolism. In humans, there are several meta-
bolic pathways that eliminate xenobiotics or drugs, and half of the
six genes are involved in these elimination pathways, such as
glucuronidation (UGT1A) or glycine conjugation (GLYATs and
ACSM2A). The other two genes (UMPS and ENOSF1) catalyze
nucleotide metabolites as their native substrates, but are also
involved in the metabolism of nucleotide-related drugs, such as 5-
fluorouracil (Supplementary Data 4), indicating that a wide
variety of metabolic pathways are involved in many kinds of
drug/xenobiotic metabolism.

Our present results support the emerging notion that poly-
morphisms in the human genome influence the relationship
between humans and gut microbes. We identified that blood
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concentrations of two tryptophan metabolites, namely, indole
propionate (IPA) and indoleacrylic acid (IA), both of which are
endogenously produced by intestinal microbes, are associated
with genetic variants of two human genes, namely, ACSM2A and
SLC22A4, respectively. These tryptophan metabolites influence
various host functions, but the directions of their contributions
appear to be pleiotropic. For example, serum IPA is selectively
diminished in active colitis cases compared with healthy indivi-
duals60. IPA and IA regulate intestinal barrier function in
mice41,61, suggesting that these tryptophan metabolites also
influence intestinal barrier functions in humans. IPA also inter-
acts with a xenobiotic sensor molecule, pregnane X receptor61.
Similarly, IA acts as a ligand for aryl hydrocarbon receptor41,61,62,
which is involved in immune responses, indicating that IA is
involved in both the gut immune system and systemic circulation.
In fact, IA has both anti-inflammatory and antioxidative effects in
LPS-mediated human peripheral blood mononuclear cells41.
These diverse studies show that these tryptophan metabolites
from gut microbes are closely involved in human health and
diseases. Our present study indicates that polymorphisms in the
human genome markedly influence the cross-talk between hosts
and microbes. We propose that these genetic polymorphisms
elicit active and significant effects on dietary-induced changes in
human health.

To assess ethnic variations in metabolite-genome associations,
we extensively compared our MGWAS results with those of
previous studies: three from European populations and one from
a Middle Eastern population (Tables 1, 2 and Supplementary
Data 2, 3)5,9,15,16. We identified 30 loci (26 for both male and
female and 4 only for female) in which 5 loci (CPS1, ACADS,
FADSs, SCL22A4, and UGT1A) are observed in all three ethnic
populations (i.e., Japanese, European, and Middle Eastern). By
contrast, associations with nine loci (PRODH, ASPG, PAH,
ACSM2A, UMPS, SLC6A13, PSPH, SLC7A5, and ZNF385D) are
observed in Japanese and European populations, but not in the

Middle Eastern population. Among these nine loci, the P-values
of the associations with four loci (PAH, ACSM2A, PSPH, and
SLC7A5) did not reach significance in the Middle Eastern
population15, suggesting that if the number of samples increased,
these associations might be also significant for the Middle Eastern
population.

Of note, associations with 16 loci are observed only in the
Japanese population. For some of these associations, such as those
with ADAMTSL1 and AGBL4, the corresponding SNPs were not
observed, or their MAF were too low in the other populations
(Supplementary Data 3), indicating that these associations may be
specific for Japanese or East Asian populations. By contrast, 17 of
21 loci reported in the Middle Eastern populations were not
detected in this study, perhaps because the corresponding SNPs
were not observed in Japanese populations or the associated
metabolites (or metabolite ratios) were not included in our
dataset. Detailed comparisons are needed to elucidate the influ-
ence of genetic variations on metabolic phenotypes among dif-
ferent populations.

In conclusion, we identified a number of new associations
between blood metabolites and genetic variants. Intriguingly, our
analyses revealed that some of the nonsynonymous rare variants
influence metabolic phenotypes much more severely than com-
mon variants identified in the corresponding genes. Furthermore,
we found many metabolite-variation-associated genes that are
reported to be involved in various types of human diseases,
suggesting that these associated metabolites, including xenobio-
tics, play important functions in the pathogenesis of these dis-
eases. With the progress of our cohort and multiomics studies, we
expect to obtain more comprehensive findings regarding
genome–metabolome associations.

Methods
Study population. The TMM project conducts population-based prospective
cohort studies with more than 150,000 participants in Japan63,64. The participants
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in this cohort project were not selected based on any outcome or disease. For
metabolome analyses, we selected 1008 adult participants (575 female and 433
male) whose whole-genome sequences had already been obtained (3.5KJPNv2 in
Tohoku Medical Megabank organization: https://jmorp.megabank.tohoku.ac.jp/)
17,65. For selection, ratio of sex and relatedness were considered, while medical
history or other items in the questionnaire of the TMM cohort study were not
considered. The average age of the 1008 participants was 58.9 ± 11.5. We calculated
the relatedness of individuals and found that the pi_hat score was less than 0.125.
Therefore, we concluded that there is no relatedness among the individuals who
participated in this analysis. The score plots of the individuals were obtained by
PCA from variants of whole-genome sequence data (Supplementary Fig. 8). These
data showed that there was no population stratification in the individuals. We
additionally selected 295 participants (130 female) from the same cohort for a
replication study. Both the cohort study of the TMM project and the ToMMo
omics study were approved by the ethics committee of Tohoku University. All
adult participants signed an informed consent form.

Metabolome analyses. Details of sample collection and metabolome analyses are
described elsewhere14,52,66. In brief, blood samples were collected from participants
using vacutainer tubes containing EDTA-2Na67. Plasma samples were prepared in
the ToMMo BioBank laboratory and were stored at –80 °C until metabolome
analyses were performed.

For plasma metabolome analyses, we used two types of analytical methods:
NMR spectroscopy and LC-MS analyses14,66,68. For the NMR analysis, metabolites
were extracted from 200 µL of plasma samples. All NMR experiments were
performed on a Bruker 600MHz spectrometer with a SampleJet changer (Bruker
BioSpin, Germany). Standard 1D NOESY and CPMG spectra were obtained from
each plasma sample. The samples were analyzed using Chenomx NMR Suite 8.0
(Chenomx), and metabolites were manually quantified using the target profiling
approach. Finally, we obtained the concentrations of 37 plasma metabolites from
the NMR data and used these concentrations for the following MGWAS analyses
(Supplementary Data 1).

We also performed a nontarget metabolome analysis with LC-MS66. For sample
preparation, metabolites were extracted from a 50 µL plasma sample. We
performed metabolome analysis using two types of LC-MS systems, depending on
the nature of the metabolites. A UHPLC-QTOF/MS system (Waters) with a C18
column (Waters) was used for positive ion mode electrospray ionization (ESI),
while for negative ion mode ESI, a Q Exactive Orbitrap MS system (Thermo Fisher
Scientific) with a HILIC column (Sequant) was used. All data obtained from the
LC-MS systems were processed by Progenesis QI data analysis software (Nonlinear
Dynamics, Newcastle). We detected more than 1000 total peaks of features and
identified 270 metabolites.

Details of feature selection and data processing were as reported previously66.
First, 3200 and 5635 features were detected at the C18pos and HILICneg modes,
respectively. Second, features with more than 50% missing values in all samples
were removed from the data, resulting in the selection of 1444 and 3408 features.
Third, the features that had both an average intensity greater than 1.0 or a
detection frequency of 100% were selected, leaving 1341 and 3391 features for the
C18pos and HILICneg modes, respectively. Finally, 310 and 238 features remained,
respectively, after filtering on the condition that all global quality controls (gQCs)
at the C18pos and HILICneg modes were detected.

We then evaluated the quality of the data set by checking the results of gQC
analyses, and the batch effect of the median intensities of the gQCs was observed
(Supplementary Fig. 9a). Then, the values of intensity were normalized based on
the gQC values by our original software. These results showed that the any specific
grouping could not be detected on the score plot of PCA after the normalization
(Supplementary Fig. 9b). We finally identified the 117 and 153 features, which were
manually annotated. These 270 metabolites in total were used for the subsequent
MGWAS analysis (Supplementary Data 1).

To reduce the skewness and kurtosis of distribution of each metabolite or
covariate, Box–Cox transformation was applied to the metabolite data and the
covariate data by using the R package (car ver.2.1.5). We also performed
metabolome analysis for a replication set in a similar manner to the
discovery study.

MGWAS analysis with whole-genome sequence data. MGWAS analyses were
performed for a total of 1008 samples based on both metabolome data and whole-
genome sequence data17,19,52. A total of 1008 whole-genome sequence datasets
were extracted from the whole-genome sequence data of 3552 Japanese individuals
(3.5KJPNv2) from the TMM project17. We divided the datasets for the 1008
individuals into male and female datasets with 433 and 575 samples, respectively.
We performed MGWAS for these three datasets after removing single-nucleotide
variations (SNVs) with the following conditions: minor allele frequency <0.01,
P-value of the Hardy–Weinberg equilibrium test <0.0001, and missing genotype
rate >0.1. After filtering, the numbers of variants in the datasets with male samples,
female samples, and both types of samples decreased from 28,945,113 to
11,286,983, from 32,160,803 to 11,124,783, and from 38,938,529 to 10,874,379,
respectively. In the MGWAS, an additive linear regression model adjusted for BMI
and age was considered, and the P-value for each variant was obtained as
asymptotic P-value for t-statistic for its corresponding alleles using PLINK1.9 with

the linear option69. According to the Bonferroni correction, the genome-wide
significance level for each dataset was set to 0.05 divided by the number of variants
in the dataset, i.e., male dataset (4.430 × 10–9), female dataset (4.494 × 10–9), and
the dataset for both males and females (4.598 × 10–9).

For replication analysis, we also performed MGWAS for 295 participants (130
female) in a similar manner to the discovery study. We selected total 24
associations for analysis because we only analyzed the significant associations of
variants with an allele frequency greater than 0.05 (MAF > 0.05) for replication
analysis.

Analysis of the effect of rare variants to metabolome. Based on the whole
genome sequence datasets of a total of 1008 samples, we firstly searched for the rare
variants in the genes identified in the present MGWAS. The definition of the rare
variants is as follows: 1) variants around target loci, with annotation of the target
gene by ANNOVAR (ver. 2017Jul16)70; 2) annotated as “exonic” or “splicing” in
the function factor, excluding “synonymous” annotation in exonic function factor;
and 3) minor allele frequency <0.01. Distributions of the plasma metabolites across
the genotypes were analyzed by using the R and were described using a box plot.
The metabolite level was scaled as the z-score (mean = 0, SD= 1), and we defined
levels more than 1 SD from 0 as significant.

Analysis statistics and reproducibility. For MGWAS analyses, we used a total of
1008 samples based on both metabolome data and whole-genome sequence
data17,19,52. The datasets for the 1008 samples were divided into male and female
datasets with 433 and 575 samples, respectively. In the MGWAS, an additive linear
regression model adjusted for BMI and age was considered, and the P-value for
each variant was obtained as asymptotic P-value for t-statistic for its corresponding
alleles using PLINK1.9 with the linear option69. According to the Bonferroni
correction, the genome-wide significance level for each dataset was set. For repli-
cation analysis, MGWAS was performed for 295 participants (130 female) in a
similar manner to the discovery study. We selected total 24 associations for analysis
because we only analyzed the significant associations of variants with an allele
frequency greater than 0.05 (MAF > 0.05) for replication analysis. Among a total of
24 target associations (16 loci), 13 were replicated (P ≤ 0.05/16= 0.0031), and 7
were nominally replicated (P ≤ 0.05).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary GWAS statistics are publicly available at the Japanese Multi Omics Reference
Panel website (https://jmorp.megabank.tohoku.ac.jp/). Individual genotyping results and
metabolite data used for the association study are available upon request after approval of
the Ethical Committee and the Materials and Information Distribution Review
Committee of Tohoku Medical Megabank Organization. Source data underlying
box plots shown in figures are provided in Supplementary Data 5.
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