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Abstract: Microalgae are complex photosynthetic organisms found in marine and freshwater envi-
ronments that produce valuable metabolites. Microalgae-derived metabolites have gained remark-
able attention in different industrial biotechnological processes and pharmaceutical and cosmetic
industries due to their multiple properties, including antioxidant, anti-aging, anti-cancer, phycoim-
munomodulatory, anti-inflammatory, and antimicrobial activities. These properties are recognized as
promising components for state-of-the-art cosmetics and cosmeceutical formulations. Efforts are be-
ing made to develop natural, non-toxic, and environmentally friendly products that replace synthetic
products. This review summarizes some potential cosmeceutical applications of microalgae-derived
biomolecules, their mechanisms of action, and extraction methods.

Keywords: microalgae; bioactive compounds; photoprotectants; immunomodulator; antioxidants; biomass

1. Introduction

Cosmetics are products designed to improve the appearance of the skin without affect-
ing its function and structure due to the active ingredients contained in the product [1,2].
On the other hand, the cosmetic industry uses the word “cosmeceuticals” to refer to cos-
metic products with ingredients that have medicinal or drug-like benefits [1,3]. The vast
majority of cosmeceutical products are lotions or creams for topical use. Although the
terms may seem confusing, and cosmeceuticals are not formally recognized by the United
States Food and Drug Administration (US-FDA) or the European Union, dermatologists
prescribe 30–40% of these products [4]. Furthermore, the global natural cosmetics market
showed 10–11% annual growth from 2015 to 2019 [5]. While botanical cosmeceuticals are
in demand and display numerous benefits, the potential of microalgae as an alternative
source for cosmeceutical products has been extensively studied [6–8].

Algae are a diverse group of photosynthetic eukaryotic microorganisms that possess
different structures and forms and can be divided into either macro or microalgae based on
their size. Many microalgae species have been identified as having various biochemical
characteristics associated with nutritional benefits and human health.

Microalgae synthesize an extensive diversity of compounds from different metabolic
pathways such as amino acids, fatty acids, lycopene, polysaccharides, steroids, carotenoids,
lectins, polyketides, toxins, etc. Some of these are shown in Figure 1.

Molecules 2022, 27, 3512. https://doi.org/10.3390/molecules27113512 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27113512
https://doi.org/10.3390/molecules27113512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-8200-2362
https://orcid.org/0000-0002-0473-6387
https://orcid.org/0000-0002-4749-885X
https://orcid.org/0000-0001-6643-5355
https://orcid.org/0000-0001-6858-7379
https://orcid.org/0000-0001-5462-2524
https://orcid.org/0000-0003-0638-9988
https://orcid.org/0000-0003-4855-2720
https://orcid.org/0000-0002-4958-5797
https://doi.org/10.3390/molecules27113512
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27113512?type=check_update&version=1


Molecules 2022, 27, 3512 2 of 22
Molecules 2022, 27, x FOR PEER REVIEW 3 of 24 
 

 

 

Figure 1. Molecular structure from microalgae-derived compounds used for multiple biotechnolog-

ical applications. 

2. Immunomodulatory Activity of Compounds from Microalgae 

Microalgae and cyanobacteria serve as a source of bioactive compounds that present 

immunomodulatory activity, such as amino acids [28–30], peptides, pigment-protein com-

plex, and exopolysaccharides, the latter known to possess anti-inflammatory, antimicro-

bial, and antiviral properties [1,31–34]. The major sugars involved in the composition of 

polysaccharides are xylose, glucose, mannose, and galactose [35]. Specifically, sulfated 

polysaccharides have been associated with blood coagulation, antilipidemic activity, and 

mainly immunomodulatory activity [31]. Multiple studies have reported anti-inflamma-

tory properties from Arthrospira/Spirulina, Chlorella vulgaris, Chlorella pyrenoidosa, Isochry-

sis, Pleurochrysis carterae, Dunaliella, Porphyridium purpureum, and Rhodosorus marinus 

[29,35–39].  

Immunomodulatory agents refer to compounds that increase (immunostimulators) 

or decrease (immunosuppressants) the response of the immune system. In cosmetology, 

topical immunomodulators are used to regulate the local immune response of the skin to 

treat a wide range of skin diseases [40,41]. Moreover, topical immunomodulators are eas-

ier to apply and safer for longer periods in comparison with systemic immunomodulators 

[40–42].  

Anti-inflammatory, antitumoral, antimicrobial, and antiviral properties from a wide 

variety of compounds are directly linked to immunomodulator activities as they work 

synergistically with the immune system to elicit an anti-inflammatory response against 

damaged tissue or act against external microorganisms, interfering with their growth and 

activating apoptotic cell death. All of these properties have made microalgae metabolites 

feasible for use as immunotherapy to treat some of these disorders, as mentioned before 

[28–30]. 

The immune system coordinates its response via multiple signaling pathways, and 

these responses when unregulated contribute to the pathogenesis of chronic inflammatory 

Figure 1. Molecular structure from microalgae-derived compounds used for multiple biotechnological
applications.

Microalgae produce and secrete valuable metabolites as a result of being constantly
exposed to several stress conditions, such as high or low temperature, high salinity, osmotic
pressure, photo-oxidation, and ultraviolet radiation [9]. Within the group of organisms
with photosynthetic capacity are microalgae and cyanobacteria, microorganisms classified
as eukaryotes and prokaryotes, respectively [10]. Both present great biodiversity of species,
ranging between 80,000 and 200,000 [11]. Microalgae and cyanobacteria are responsible
for 32% of photosynthetic activity in the world; therefore, they play an important role in
various ecosystems [12]. The biotechnological interest in microalgae and cyanobacteria
has focused on their content of valuable metabolites that can be utilized to develop a wide
range of different applications in fields such as medicine, industry, energy, agriculture,
food, and others. Stress factors increase or decrease the production of different convenient
compounds; for this reason, scientific research focuses on defining the best microalgae
cultivation conditions to obtain the maximum industrial production [13]. Furthermore, it is
widely recognized that microalgae metabolites exhibit a wide range of biological activities
such as ultraviolet (UV) absorbing, antioxidant, anti-aging, anti-blemish, anti-inflammatory,
and antimicrobial properties [1,14]. Additionally, microalgae capture CO2 more efficiently
than trees, reducing the greenhouse effect [15].

Some of the advantages of microalgae include a higher annual photon-to-biomass
conversion efficiency in comparison with plants, as reported in previous studies; microalgae
can growth in wastewater as treatment for water bioremediation [16–21]. Even though it is
possible to use wastewater to produce microalgal biomass and obtain bioactive compounds,
their use for topical applications or human consumption still represents a great challenge
due to the diversity of contaminants present in wastewater, such as pathogens and heavy
metals, despite pre-treatment steps such as sterilization or filtration to remove bacteria
and fungi and recovery of heavy metals using coagulation–flocculation methods [22]. Pre-
treatment also helps to reduce the concentration of nutrients and the turbidity of the water
to allow the penetration of light necessary for microalgal growth [23,24]. Furthermore,
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methods of extraction and purification of compounds of interest are being investigated for
their safe application in cosmetic and nutraceutical products [25,26].

Currently, some microalgae-derived products are available on the market, and the
biotechnology of microalgae is attracting more attention. Labels such as ©DSM use Nan-
nochloropsis oculata and Dunaliella salina extract in some of their products, such as PEPHA®-
TIGHT CB or PEPHA®-CTIVE CB, to provide skin-tightening effects and stimulate cell
proliferation, respectively [27]. However, an ever-increasing effort is being invested in
the search for new environmentally friendly cosmetic products. All of the diverse and
interesting features qualify microalgae metabolites as an alternative feedstock or potential
source of biomolecules of commercial interest.

The present review describes the accumulated knowledge about the foremost groups
of cosmeceutical compounds from microalgae metabolites and putative drug delivery
methods using microalgae-based biotechnology.

2. Immunomodulatory Activity of Compounds from Microalgae

Microalgae and cyanobacteria serve as a source of bioactive compounds that present
immunomodulatory activity, such as amino acids [28–30], peptides, pigment-protein com-
plex, and exopolysaccharides, the latter known to possess anti-inflammatory, antimicro-
bial, and antiviral properties [1,31–34]. The major sugars involved in the composition of
polysaccharides are xylose, glucose, mannose, and galactose [35]. Specifically, sulfated
polysaccharides have been associated with blood coagulation, antilipidemic activity, and
mainly immunomodulatory activity [31]. Multiple studies have reported anti-inflammatory
properties from Arthrospira/Spirulina, Chlorella vulgaris, Chlorella pyrenoidosa, Isochrysis, Pleu-
rochrysis carterae, Dunaliella, Porphyridium purpureum, and Rhodosorus marinus [29,35–39].

Immunomodulatory agents refer to compounds that increase (immunostimulators) or
decrease (immunosuppressants) the response of the immune system. In cosmetology, topi-
cal immunomodulators are used to regulate the local immune response of the skin to treat a
wide range of skin diseases [40,41]. Moreover, topical immunomodulators are easier to ap-
ply and safer for longer periods in comparison with systemic immunomodulators [40–42].

Anti-inflammatory, antitumoral, antimicrobial, and antiviral properties from a wide
variety of compounds are directly linked to immunomodulator activities as they work
synergistically with the immune system to elicit an anti-inflammatory response against
damaged tissue or act against external microorganisms, interfering with their growth and
activating apoptotic cell death. All of these properties have made microalgae metabo-
lites feasible for use as immunotherapy to treat some of these disorders, as mentioned
before [28–30].

The immune system coordinates its response via multiple signaling pathways, and
these responses when unregulated contribute to the pathogenesis of chronic inflammatory
skin diseases [43]. The immunomodulator mechanisms include cytokines, interferons, inter-
leukins, and tumor necrosis factors, secreted primarily by macrophages, lymphocytes, and
keratinocytes in the epidermis [28,44]. Additionally, various factors such as uncontrolled
responses to pathogens, toxic substances and reactive oxygen species (ROS)-mediated
oxidative stress promote the release of pro-inflammatory mediators [28,45]. Accordingly,
immunomodulatory agents are used to inhibit inflammatory responses and fight diseases.

Immunomodulatory compounds such as exopolysaccharides can interact with cell
surface receptors such as the Dectin-1 receptor, Toll-like receptors (TLRs), and scavenger
receptors in immune cells such as macrophages, dendritic cells, neutrophils, and NK
cells [4,46]. Exopolysaccharides and sulfated polysaccharides can bind to these cell sur-
face receptors and induce signaling cascades that activate macrophage, NK cell and T/B
lymphocyte activity, phagocytosis, and cytokine secretion [46–49].

In vitro and in vivo studies have shown the immunomodulatory and anti-inflammatory
potential of microalgae-derived bioactive compounds and extracts [50–52]. In vitro studies
of sulfated polysaccharides from red microalgae Porphyridium showed that the polysac-
charide inhibited the movement of polymorphonuclear leukocytes, producing an anti-
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inflammatory effect, while in vivo studies showed that the topical application of the
polysaccharides in humans inhibited the development of erythema [51]. Furthermore,
immunostimulatory activity has been observed from in vitro assays involving microalgal
material such as Spirulina platensis extracts, revealing an increase in human dermal fibrob-
last cell proliferation and enhanced wound area closure rates [52]. Table 1 lists some of the
immunomodulatory compounds obtained from microalga and their mechanisms of action,
reported extraction methods and culture conditions.

Studies are currently being conducted with the aim of identifying microalgal com-
pounds responsible for immunomodulatory activities, including mainly the antimicrobial,
antidiabetic, anticancer, and anti-inflammatory activities. Some of these studies are de-
scribed briefly below.

The antibacterial activity of microalgae active compounds has been tested largely for
the widespread microbial resistance to antibiotics in a search for new treatments against
pathogens. Guzmán et al. [53] identified compounds produced by Tetraselmis suecica with
antimicrobial properties, finding that an elution of 40% acetonitrile had the highest protein
concentration and antibacterial activity tested against three Gram-negative and four Gram-
positive bacterial strains. Likewise, in 2020 Alsenani et al. [54] screened 14 microalgae
and two cyanobacterial strains to determine their antimicrobial capabilities. The fatty
acid methyl esters (FAME) species found in the extracts of I. galbana, Scenedesmus sp.
NT8c and Chlorella sp. FN1 showed high inhibitory activity against the growth of all
six Gram-positive bacteria tested. Similarly, a study by Mukherjee et al. [55] with the
hexane and chloroform extracts from Scenedesmus obliquus, tested in both Gram-positive
and Gram-negative bacteria, showed the highest antibacterial activity with a minimum
inhibitory concentration (MIC) of 15.6–125 µg·mL−1. In the same line with previous works,
Cepas et al. [56] utilized lipids from over 600 microalgae and cyanobacteria species to
determine their activities as antimicrobials and antibiofilms. The authors found that the
extracts were effective against one of the three bacterial strains tested, whereas the assayed
extracts from the methanol and ethyl acetate fraction reached an 80% biofilm inhibition. In
addition, Potocki et al. [57] analyzed the water and ethanol extracts from Planktochlorella
nurekis against three strains of Gram-positive and two strains of Gram-negative bacteria.
They concluded that lauric acid, myristic acid, and stearic acid from the extracts had a
high impact on the growth of Gram-negative bacteria. In addition, monounsaturated
(MUFA) and polyunsaturated fatty acids (PUFA) are responsible for the modulation of
Gram-positive bacteria.

Another immunomodulatory property of microalgae compounds is their anticancer
activity. For instance, Marrez et al. [58] determined the antimicrobial and cytotoxicity activ-
ities of crude and fractions from the extract of Scenedesmus obliquus. The authors concluded
that the microalgae diethyl ether extract had the major activity against bacteria, fungi, and
three cancer cell lines, conferring to the microalgae with great potential for use in this field.
Correspondingly, Peraman and Nachimuthu [59] evaluated 10 microalgal species for the
production of fucoxanthin, and the extracts were tested to determine their antibacterial,
antifungal, and antioxidant activities. The microalgae Dunaliella salina showed the best
activity against Gram-negative bacteria and fungi, whereas for the antioxidant activity,
eight of the 10 microalgal strains showed more than 50% inhibition by 2,2′-azino-bis (3-
ethylbenzothiazoline-6-sulfonic acid) ABTS scavenging activity. Lastly, Lauritano et al. [60]
screened 32 microalgal strains and analyzed the extracts to determine their antioxidant,
anti-inflammatory, anticancer, anti-diabetes, antibacterial, and anti-biofilm activities. The
authors assessed that from the microalgal species tested, three showed anti-inflammatory
activity, one species had anticancer activity, two presented antibacterial activity, and the
other two hindered the formation of biofilm.
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Table 1. List of compounds with immunomodulatory activity obtained from microalgae.

Type of Compound Mechanism of Action Microalgae Species Culture Conditions Extraction Reference

Peptides
Antimicrobial activity through

interaction with negatively
charged membranes

T. suecica
(Chlorophyta)

F/2 medium, 21 ± 0.5 ◦C and
40 W Light

Acid extraction and reverse
phase column

chromatography separation.
[53]

Fatty acid methyl esters
(FAME), lipids and carotenoids

Interference in biosynthesis of
bacterial fatty acids Various microalgae species

F/2 medium for marine
microalgae and Bold’s

basal medium (BBM) for
freshwater microalgae

Three extraction systems with
different solvents [54]

Fatty acids and pigments Interference in biosynthesis of
bacterial fatty acids S. obliquus - Polarity-wise successive

solvent extractions [55]

Lipids Membrane permeabilization S. brasiliensis, E. acutiformis and
Sphaerospermopsis sp.

M7 medium for microalgae,
Z8 medium for cyanobacteria Extraction with different solvents [56]

Fatty acids Interference in biosynthesis of
bacterial fatty acids P. nurekis

Medium with various macro-
and microelements at pH < 6,

30 ◦C and 16,000 LUX

Extraction with water
and ethanol [57]

Fatty acids and phenolic
compounds

Interference in biosynthesis of
bacterial fatty acids S. obliquus BG-11 medium Extraction with organic solvents

and sonication [58]

Pigments Free radical scavenging Various microalgae species

Guillard’s F/2
medium, 22 ± 2 ◦C, 14:10 D:L

cycle, 60–65 µ·E·m−2·s−1light for
16 days

Ethanol extraction [59]

Microalgae extract Various mechanisms tested 32 microalgae species
Guillard’s F/2

medium, 19 ◦C, 12:12 D:L cycle,
and 100 µmo·m−2·s−1 Light

Sonication and acetone extraction [60]
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3. Antioxidants

Antioxidants can be defined as “natural or synthetic substances that may prevent or
delay oxidative cell damage caused by physiological oxidants having distinctly positive
reduction potentials, covering ROS/reactive nitrogen species (RNS) and free radicals” [61].
This is one of the most common causes of oxidative damage due to UV exposure [62]. Lipids,
nucleic acids, and proteins are ROS, RNS, and reactive sulfur species (RSS) targets [63].
UV-A damages DNA indirectly by generating ROS-like radical singlet oxygen (1O2) and/or
hydrogen peroxide among others, causing DNA mutations during the replication process
such as the guanine–thiamine (G–T) transversion, while UV-B directly damages DNA
strands, generating cyclobutane pyrimidine dimers (CPDs) by covalently bonding two
neighboring pyrimidines; their accumulation over time can produce an interruption of
DNA replication and transcription, disturbing the function of the damaged cell [62,64].
Over the last two decades, studies have been conducted to find and obtain antioxidants
from natural sources in order to replace synthetic sources to treat oxidative damage. Thus,
various studies have focused on the protective effect of enzymatic extracts from microalgae
against DNA damage induced by oxidative stress [65–68].

Antioxidants produced by microalgae are substances with high nutritional value,
considering that these microorganisms have a greater ability to produce them compared to
those obtained from plant-derived sources [69]. They can produce multiple components for
a single species, and even if their production yield is lower than those obtained synthetically,
nowadays, the generation of bioactive molecules from microalgae is expected to surpass
synthetic sources, given that their production is renewable and sustainable [70]. Some of
the antioxidants that can be obtained from microalgae are chlorophyll, vitamins, flavonoids,
polyphenols, sterols, and carotenoids [15,63]. Table 2 lists a variety of microalgae-derived
products with antioxidant properties. Carotenoids, β-carotene, chlorophyll a, chlorophyll
b, and xanthophylls were the main photosynthetic pigments identified in green microalgae
such as Spirogyra neglecta and Microspora indica [71]. Fucoxanthin, a bioactive microalgal
compound, can be found in several species of diatoms (golden-brown microalgae) and
has remarkable antioxidant, anti-obesity, anti-diabetic, anti-cancer, anti-inflammatory, anti-
hypertensive, and anti-osteoporotic properties. Fucoxanthin is an important carotenoid
for human health that is marketed at USD 30,000 per gram and is considered a valued
nutraceutical product or functional food to prevent or help treat different diseases [72–74].
Recent research on the use of diatoms rich in carotenoids has been extended to space
missions where resources are limited and the need to implement CO2 recycling systems
provides an opportunity to produce O2 and food based on microalgal biomass as an alter-
native to health supplementation for humans in these conditions [69,75,76]. Additionally,
in vitro experiments on human fibroblasts have reported that even small doses of infrared
radiation can produce free radicals, affect collagen and elastin expression, and upregulate
metalloproteinases (MMPs), representing an area of opportunity for the development of
alternative supplementation to obtain antioxidants [77].
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Microalgae can produce a large variety of vitamins, including, vitamins A, B1, B2,
B6, B12, C and E. Minerals can also be obtained from microalgae, such as potassium, iron,
magnesium, calcium, and iodine, in addition to the high protein content with complete
essential amino acids [69,78]. Dunaliella tertiolecta synthesizes vitamin B12, B2, E, and
beta carotene [79]. Tetraselmis suecica produces vitamin C, a ROS scavenger, and protects
against lipid peroxidation via lipid hydroperoxyl radical reduction [80]. extract is rich
in carotenoids (xanthophylls, lutein, violaxanthin, neoxanthin, T. suecica antheraxanthin
and loroaxanthin esters), and it has shown excellent antioxidant, antiproliferative, and
repairing activity in human lung cancer cell lines [81]. Pistelli et al. previously reported
that Skeletonema marinoi, Cyclotella cryptica, and Nannochloropsis oceanica coculture improved
bioactive compound richness as vitamins and biomass augmented the antioxidant or
chemoprotective activity [82]. The Skeletonema marinoi strain has also been studied for
ovothiol biosynthesis, an efficient thiohistidine compound in the scavenging of radicals and
peroxides and which has only been identified in clams [83]. Astaxanthin (a red secondary
carotenoid) is denominated as a super antioxidant, and most of its production is carried
out synthetically (95%); while the microalgae Haematococcus pluvialis is the natural source
for this excellent compound. It is present in other organisms such as plants, yeast, bacteria,
seafood and other microalgae, but it is in H. pluvialis that the 3S,3′S stereoisomer is produced,
and it is the most profitable of the three ((3S, 3′S); (3R, 3′S), and (3R, 3′R)) and 65 times
more powerful than vitamin C and 54 times stronger than β-carotene in antioxidant activity,
highlighting that the synthetic form is 20 times less effective in antioxidant quality than
the natural form [84]. Glutathione scavenges electrophilic and oxidant species either in
a direct way or through enzymatic catalysis: (i) by directly quenching reactive hydroxyl
free radicals, other oxygen-centered free radicals, and radical centers on DNA, and (ii) as
the co-substrate of glutathione peroxidase, allowing peroxide reduction [85]. However,
glutathione also plays an oxidant role to a lesser extent, during GSH catabolism [85].
Mycosporine-like amino acids (MAAs) have the ability to scavenge ROS and can be of
significant in the scavenging of free radicals induced by UV radiation [86].

Antioxidants are synthesized by microalgae commonly as a response to environmental
stress, mainly to avoid oxidative stress [63]. The microalgae-derived antioxidants can be
used in cosmeceutical applications such as moisturizers and sunscreens to prevent and
treat multiple skin conditions from photoaging to skin cancer [87–89].
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Table 2. List of compounds with antioxidant activity obtained from microalgae.

Type of Compound Mechanism of Action Microalgae Species Culture Conditions Extraction Reference

Amino acids ROS attenuation Chlamydomonas hedleyi
(Chlorophyta)

F/2 medium, 22 ± 1 ◦C,
80 µmol·m−2·s−1 light,

16:8 D:L cycle
rotary shaker + bubbled

with CO2-enriched (1%) air.

Digestion of dry biomass
with aqueous methanol

(20% v/v) at 45 ◦C.
[90]

Polysaccharides

Attenuation of free radicals,
hydroxyl radicals, and ROS

Arthrospira platensis
(Cyanobacteria)

Zarrouk medium, 32 ± 1 ◦C,
100 µmol·m−2·s−1 light, stirred with

CO2-enriched (1%) air.

Tangential ultrafiltration
cell—30 Kda membrane [91]

Free radical scavenging Odontella aurita
(Bacillariophyta)

Modified L1 medium (6–18 mM), 25 ± 2 ◦C,
100 and 300 µmol·m−2·s−1 light,

sparging with air + 1% CO2.

Digestion of dry biomass at
60 ◦C withsulfuric acid [92]

Sulfated polysaccharides ROS attenuation Porphyridium sp.
(Rhodophyta)

Seawater medium, 24 ± 3 ◦C,
150 µmol·m−2·s−1 light,

bubbled with air + 1–3% CO2.

Culture centrifugation
(17,000× g, 20 min) and

supernatant filtrate in dialysis
tube (� 2.3 cm—MW

cutoff 8000)

[93]

Extracellular polysaccharides Free radical scavenging Rhodella reticulata
(Rhodophyta)

Kock medium, 25 ◦C,
92 µmol·m−2·s−1 light. Ethanol extraction [94]

Pigments, peptides
and vitamins ROS attenuation Skeletonema marinoi

(Ochrophyta)

F/2 enriched medium, 20 ◦C,
150 µmol·m−2·s−1 light,

12:12 D:L cycle.

Mechanical grounding with
absolute methanol [95]

Pigments

Free radical scavenging Dunaliella salina
(Chlorophyta)

Johnson medium with artificial seawater
(35 g L−1), pH 7.5,

100 µmol·m−2·s−1 light,
12:12 D:L cycle, bubbled with air 2 L min−1.

Sonication with methanol
and filtration Fluoropore

PTFE 0.2-µm
[96]

ROS attenuation Chlorella vulgaris
(Chlorophyta)

BG-11 medium (without and with nitrogen
starvation + NaCl addition 30%), 25 ◦C,

150 and 1000 µmol·m−2·s−1 light,
bubbled with air.

Homogenization with
acetone and supernatant
filtration with Na2SO4

[97]

Free radical scavenging Anabaena vaginicola
(Cyanobacteria)

BG-11 medium without nitrates,
400 µmol·m−2·s−1 light, 25 ± 2 ◦C,

12:12 D:L cycle

Freezing of biomass dry at
−20 ◦C with

methanol + ultrasonication
[98]

No extraction methodology reported. D:L (dark:light) cycle.



Molecules 2022, 27, 3512 9 of 22

4. Photoprotectors

As mentioned before, microalgae possess mechanisms against environmental chal-
lenges such as activation of several photo/dark repair mechanisms, antioxidant systems,
UVR avoidance, DNA repair, and cell protection by producing UV photoprotective com-
pounds such as mycosporine-like amino acids (MAAs), carotenoids, polyamines, and
scytonemin [99].

Ectoine is a compatible solute that serves as a protective substance by acting as an
osmolyte and thus helps organisms survive extreme osmotic stress, for example, with high
salt content [100]. Ectoine from Halomonas elongate extracted with low salt concentration
solution is an adsorbent of ultraviolet light [101,102]. Mycosporine-like amino acids that
also absorb ultraviolet light can be extracted from dry biomass employing methanol to
assist the extraction and chloroform to eliminate pigments from Scytonema cf. crispum [103].

The variation in different growth parameters has been associated with MAA composi-
tion in microalgae, due to improved production in direct correlation with sunlight exposure,
or a variation in the MAAs’ accumulation according to the type of light [104]. As there are
diverse molecular configurations and growth conditions of the harvested microorganisms,
the spectrum of light that the photoprotectors can adsorb is also diverse. Photoprotection
is defined as the decrease in UV radiation damage that can cause skin disease and the
risk of skin cancer [105]. UV radiation comprises UVA (320–400 nm), UVB (290–320 nm),
and UVC (200–290 nm). UVA causes indirect DNA damage via ROS production; it is also
related to skin aging and pigmentation. UVB exposure enhances sunburns and DNA strand
breaking; the pyrimidine dimer mutations associated with nonmelanoma skin cancer are
also linked to UVB exposure. UVC, the UV radiation with higher energy, is completely
absorbed by the ozone layer and does not represent a risk from its natural source [106].

Scientific research and new product development efforts in photoprotectors have
been pursued. Some UV-resistant compounds have been investigated for their potential
application in the generation of new products. Lutein, a compound that protects the
skin from damage caused by UV rays, has been found in different microalgae such as C.
protothecoides, Scenedesmus almeriensis, Muriellopsis sp., Neospongiococcus gelatinosum,
Chlorococcum citriforme, C. zofingiensis, D. salina, and Galdieria sulphuraria [27]. The applica-
tion of MAAs in the cosmetic field has also been studied previously since these compounds
can absorb light between 309 and 362 nm and dissipate radiation as heat, protecting cells
from mutation caused by UV-R and free radicals [107]. Some microalgae that have been
reported to contain this compound include Anabaena spp., C. vulgaris, D. salina, Eutreptiella
sp., Scenedesmus sp. and S. platensis. High accumulations of carotenoids in microalgae can
also provide photosynthetic protection features [108]; this effect has been reported in the
microalgae Nostoc sp., Eutreptiella sp., C. protothecoides, P. antarctica and P. glacialis.

There are not many reports on the application of the photoprotective properties of
microalgae in cosmetic products such as sunscreens. Nevertheless, this is a finding that can
generate substantial impact in the cosmetics market for UV skincare products. It has been
reported that for some microalgae, MAAs also play a role as anti-desiccants that help the
cell to overcome nocive effects from UV-B radiation; a study reported this behavior for the
Leptolyngbya sp. cyanobacteria [109].

The study of microalgae and cyanobacteria responses against UV radiation in a com-
bination of other conditions is an approach covered by many authors, some of them are
described as follows. Singh et al. in 2020 evaluated the responses of Anabaena sp. in
comparison to UVB radiation and exogenous ammonium chloride as a form of nitrogen
supplementation. The study probed an interaction between NH4Cl supplementation with a
protective effect, according to the photosynthetic activity, maximum quantum efficiency of
PSII, and maximum electron transport rate. The MAAs also were accumulated in larger
quantities in relation to NH4Cl supplementation [110]. On the other hand, C. vulgaris was
evaluated for the capacity to resist different UV-B radiation intensities and times of expo-
sure, regarding inhibition of growth by 50% at the maximum intensity and time evaluated.
The study showed that the exposure of C. vulgaris to short-time periods or low-intensity
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levels enhanced the production of carotenoids [111]. Additionally, a comparative study
of C. vulgaris, Microcoleus vaginatus, Nostoc and Scytonema javanicum distinguished the
most competent microalgae with regard to UVB radiation due to ROS attenuation and their
capability to repair photosystem II and DNA damages. Among the different species, Nostoc
sp. was the strain capable of surviving the high levels of radiation [112].

Active compounds such as scytonemin along with MAAs are determinants that protect
cyanobacteria from UV damage [113]. The biosynthesis mechanism of scytonemin has
been recently elucidated in a model strain Nostoc punctiforme due to the promising
antioxidant and UV protection properties that represent a potential for cosmetic and
medical applications [114]. In a similar approach to Singh et al. 2020, Bennett and Soule
2022 evaluated osmotic stress and UVA and UVB exposure in the N. punctiforme strain to
evaluate the expression of scytonemin genes. The study reported an increase in scytonemin
gene expression in the presence of UVA, UVB and high light; however, the up-regulation
of the genes did not reflect the scytonemin production [115]. Another study in 2021 was
carried out to evaluate the physiological changes and scytonemin production due to UV
radiation and salinity in cyanobacteria; as ROS increased, the protein and phycobiliprotein
contents were reduced. The exposure to photosynthetically active radiation (UVA and
UVB) and osmotic stress for at least 3 days induced scytonemin production in Scytonema
sp. strain [116]. Orellana et al. in 2020 reported increases in scytonemin production
in the desertic area of Atacama, showing that the indigenous endolithic cyanobacteria
(Halothece) from Salar Grande suffered scytonemin reduction due to UV-A radiation under
the simulated desertic conditions [117]. Table 3 shows a list of microalgae that have shown
UV resistance or have been tested to exhibit UV photoprotective compounds.
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Table 3. List of different microalgae with photoprotection features.

Microalgae Species UV Test Intensity Unit Resistance Factor Type of Study Culture Conditions Reference

Anabaena spp.
(Cyanobacteria) UVB 1 W·m−2 for 4 h/day Scytonemin, MAAs Exposure to UVB-R BG-11 medium, NH4Cl as

N-source, 28 ± 2 ◦C [110]

Characium terrestre
(Chlorophyta) UVB NR Sporopollenin Exposure to extreme

UVB irradiance
Medium reported by

Zachleder et al., 26 ◦C. [118]

C. protothecoides
(Chlorophyta) UVC 0.01 to 0.20 W·m−2 Lutein Exposure to different

UVC irradiances
BG-11 medium,

25 ± 1 ◦C [119]

C. vulgaris
(Chlorophyta) UVB 1 to 5 W·m−2 Sporopollenin, Scytonemin,

MAAs
Exposure to different

UVB irradiances
Bold Basal medium,

25 ± 1 ◦C [111]

D.salina
(Chlorophyta)

UVA
UVB 110 mmol·m−2·s−1 for UVA

Sporopollenin, Scytonemin,
MAAs Exposure to UVA-R and UVB-R Medium with NaCl,

26 ◦C [108]

Eutreptiella sp.
(Euglenozoa) UVB 280 to 320 nm Xanthophylls, MAAs Tested under fixed light F/2 medium, 10 ◦C [120]

Nostoc sp.
(Cyanobacteria) UVB 312 nm Carotenoids, Scytonemin Photosynthetic activity essay BG-11 medium, 25 ◦C [112]

O. aurita
(Bacillariophyta)

UVA
UVB 110 kJ·m−2 D1 protein, activation of

antioxidant enzymes Exposure to UVA-R and UVB-R Artificial seawater reported by
Harrison et al. [121]

N. sphaeroides
(Cyanobacteria) UVA 320 nm Not identified Exposure to UVA irradiance BG-11 medium, 23 ◦C [122]

P. antarctica, P. glacialis
(Rhodophyta) UVB 280 to 400 nm MAAs, Xanthophylls Acclimation to photosynthetically

active radiation
GP5 medium,
1.0 ± 0.5 ◦C [123]

S. platensis
(Cyanobacteria) UVA 320 nm Sporopollenin, Scytonemin,

MAAs Exposure to UVA irradiance BG-11 medium, 23 ◦C [122]

N. punctiforme UVA
UVC 100 µm photon m−2s−1 Scytonemin Exposure to UVA, UVB and

osmotic stress AA/4 medium [115]

Scytonema sp. UVA
UVB

6.5 Wm−2

0.56 Wm−2 MAAs and antioxidant enzymes Photosynthetically active
radiation and salinity BG-11 medium [116]

Halothece UVA 3.6 Wm−2 Scytonemin Exposure to UVA-R Halites [117]
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5. Moisturizers, Regenerative and Other Activities

In the dermis, collagen has a dual-action mechanism providing building blocks for
the formation of collagen and elastin fibers, while also binding to receptors present on
fibroblasts to stimulate the production of collagen, elastin, and hyaluronan, which helps
to maintain good skin appearance and elasticity and enhance its strengthening against
harmful environmental factors [124]. The bioactive compounds obtained from microalgae
sources have proven to possess properties like the ones presented in this paper, providing
a range of applications that vary widely depending on the industrial and commercial
sector of interest [125]. Expressly, bioactive compounds from microalgae are currently
being incorporated into the cosmetic and cosmeceutical industry as they can improve and
maintain the structure and function of the skin [1].

Exopolysaccharides from microalgae can be rheology modifiers, conditioners, moistur-
izing agents, healing agents, emulsifiers, and substitutes for hyaluronic acids. In addition,
they can stimulate collagen synthesis and provide protective activities against enzymatic
proteolysis [31–33,124]. Proteins found in microalgae used as food supplements can stim-
ulate collagen synthesis, leading to a reduction in vascular imperfections and promoting
tissue regeneration [1,33,126–128]. Additionally, some microalgae species are known to
produce compounds that can act as substitutes for hyaluronic acids or protect against enzy-
matic proteolysis [1,31–33,126–129]. Table 4 shows some of the main molecules obtained
from microalgae cultures that could be implemented as moisturizers and promote putative
regenerative activity on the skin.

Furthermore, chlorophyll a and b can be used as dyeing agents and also as additive
agents that can be used to mask odors in formulations [39,130]. β-carotene, phycoerythrin,
phycocyanin, allophycocyanin, phycoerythrocyanin, astaxanthin, lutein, lycopene, and
violaxanthin can be used as dyeing agents in the textile industry and in cosmetics as greener
alternatives [1,130,131].

Maintaining correct skin moisturization is the first step to aiming for a strong defense
mechanism against irritant agents and tensioactive materials. It has been clear that during
the actual COVID-19 pandemic emergency, several alcohol-based products released as
sanitizers also help to reduce the transmission of the virus. Nonetheless, those products
often need to be supplemented with humectants, emollients, or moisturizers to avoid
the effects of alcohol, which principally affect the epidermal layer, causing dehydration.
Although dry skin does not represent a serious problem, it can lead to complications in the
management of dermatological infections [132,133].
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Table 4. List of compounds with moisturizing and regenerative activity obtained from microalgae.

Type of Compound Mechanism of Action Microalgae Species Culture Conditions Extraction Reference

Collagen

Stimulation of collagen synthesis
in the skin C. vulgaris NR Methanol extraction [134]

Regeneration by stimulation of
collagen synthesis in the skin S. platensis Zarrouk’s medium, pH 9.8–10.0, 25 ◦C,

46 µmol m−2·s−1 light Raw biomass [135]

Mycosporine-2-glycine Collagenase inhibition and
glycation products inhibition Aphanothece halophytica BG-11 Methanol extraction and

mechanical disruption [136]

Polysaccharides

Moisturizing agents Pediastrum duplex
MIII medium, pH 7.9 ± 0.1

20 ± 0.5◦C, 80 µmol m−2·s−1 light,
12:12 D:L

Methanol extraction [137]

Regulate water distribution
in the skin Codium tomentosum NR NR [138]

Moisturizing agents Undaria pinnatifa NR NR [138]

Moisturizing agents Durvillea antarctica NR NR [138]

Moisturizing agents Cladosiphon okamuranus NR NR [138]

Fat acids Dermal collagen content rescue S. rubescens NR Hydrophilic hot extrusion [139]

Amino acids Increases expression of
Procollagen C Proteinase C. hedleyi

F/2, pH 8–9, 22 ◦C,
80 µmol m−2·s−1 light, 8:16 D:L cycle,

1% CO2

Raw biomass [91]

TrpA protein Collagen-like protein Trichodesmium erythraeum NR NR [11]

D:L = (dark:light) cycle. NR = Not Reported.
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6. Novel Vehicles or Excipient Compounds

Some microalgae-derived molecules can serve as vehicles or excipients for other
molecules of interest. Proteins from microalgae are molecules of commercial interest; they
can be used in the food industry, pharmaceutical, and cosmetic sectors, or more specifically,
in nutraceuticals and cosmeceuticals. They can be used as emulsifying, foaming, thickening,
and gelling agents [15]; these functions are mainly explored in the food sector but could
potentially be extrapolated to other sectors. C. vulgaris and Tetraselmis sp. have emulsifying
and foaming properties. Thickening or gelling properties have also been reported for
Arthrospira platensis, H. pluvialis and T. suecica proteins [140]. However, this application field
is recent; therefore, not many studies have been conducted in this area.

Extracellular polysaccharides (EPSs) are secreted by various marine organisms, in-
cluding microalgae. They represent a physical barrier protecting cells from harmful agents
and environmental constraints and serve in different physiological processes including cell
adhesion, cell interaction, and biofilm formation. The protective capacity of microalgae
EPSs has been reported also in the environment, where diatoms delay the degradation
of materials through the secretion of EPSs that allows adhesion to the material superfice
and create a barrier between the material and the corrosive environment. This behavior
can be extrapolated to the potential use of these biomolecules in mixtures with topical
bioactive compounds for slow release into the skin or for the improvement of the skin
protection capacity in commercial products. Other areas of interest for the use of EPSs are
the pharmaceutical and medical industries, where properties such as viscosity, porosity, and
absorption capacity of EPSs produced by microalgae and cyanobacteria can be applied for
the development of different products such as drug delivery hydrogels, tissue engineering,
occlusion devices, and bioadhesives for active release, among others [141]. One of the main
strategies to improve EPS applications is the management of EPS rheological properties,
which have been reported to depend on EPS concentration. In this sense, the characteristics
can be controlled in order to allow their use in different applications as active texturizing
agents, carriers, or as active protectors and enhancers [142]. Furthermore, EPSs have been
reported as important emulsion stabilizers, flocculants, foam stabilizers, and hydrating
agents (tested in cosmetics and pharmaceuticals) [143]. According to the literature re-
viewed, the applications of microalgae EPSs as vehicles or excipient compounds showed
interesting characteristics to impact a wide range of options. Table 4 is lists compounds
obtained from microalgae with applications in topical formulations.

Extracellular vesicles (EVs) are membrane-surrounded structures released in the
extracellular milieu by every cell type. EVs contain proteins, lipids, nucleic acids, and
other metabolites [144]. In addition, EVs possess many attributes of a drug delivery
vehicle of interest to the cosmeceutical field. A newly discovered subtype of EVs derived
from microalgae, named nanoalgosomes, are extracellular nano-objects from cultures of
microalgal strains. Nanoalgosomes are novel membranous biogenic nanomaterials refined
for the first time from a sustainable and renewable bioresource (microalgae), which can
be used as a new natural delivery system for high-value microalgal substances (such as
antioxidants, pigments, lipids, and complex carbohydrates), bioactive biological molecules
and/or synthetic drugs. EV-like nanoparticles have been isolated from several microalgae
strains such as T. chuii and D. tertiolecta [145], suggesting that other microalgae may contain
EV-like nanoparticles and have a major impact on drug delivery in the cosmeceutical field.

Research has been conducted regarding the potential of porous silica-based particles
for drug delivery applications due to their extended drug release profiles and high efficacy
in delivering hydrophobic drugs [146]. These silica-based nanoparticles obtained from
diatoms are used as drug delivery carriers due to their biodegradability, easy functionaliza-
tion, low cost to obtain and maintain, and simple features compared to the synthetic ones,
which make these agents proper alternatives to synthetic silica nanoparticles [147].

These findings demonstrate the potential of microalgae as excipients and vehicles for
molecules or drugs, implying great potential for application and a breakthrough in the
search for more natural alternatives in cosmeceuticals.



Molecules 2022, 27, 3512 15 of 22

7. Perspectives

Currently, microalgae cultures as a source of high-value biomolecules have become
more attractive due to their potential application in the development of technologies
to mitigate greenhouse gas emissions, which agrees with the sustainable development
goals of the United Nations. Nevertheless, most of the bibliography consulted microalgae
biomass is cultivated using synthetic and controlled media. In this sense, future research
should be focused on the evaluation and optimization of processes that allow the fixation
of CO2 from different sources at the same time that microalgae produce molecules of
interest. Actually, the obtention of molecules from microalgae biomass have been widely
studied, and reported data showed a dependence of the produced metabolite profiles on
the microalgae strains and different stress conditions (light intensity, temperature, pH,
nutrients concentrations, and others). For future research, the authors identified a clear
procedure for the obtention of biomolecules from microalgae that can be described in
four main steps: (1) microalgae strain selection, (2) standardization of growth conditions,
(3) biomolecule characterization, and (4) extraction and functionalization (Figure 2). The
photobioreactor design, moreover, represents an area of opportunity to improve those
processes, to guarantee the light incidence to the microalgae culture, the retention time
for gasses, and small spaces for technology implementation in established industries.
Finally, the extraction and purification process represents a challenge due to the different
nature of those metabolites of interest and the characteristics of the different microalgae.
Developing simpler extraction protocols is also an area for improvement. However, efforts
should be oriented to the implementation of processes where microalgal compounds are
more accessible and can be used directly from raw biomass or biomass that requires
minimal processing.
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and efficacy. Created with BioRender.com.

Along with microalgae, macroalgae (not explored in this work) also represent an
alternative source of molecules of interest to improve functionality and extend the time of
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action. Furthermore, biocompatibility analysis of those metabolites must be characterized
to ensure their safe use as a cosmeceutical components.

Unfortunately, most of the biotechnology research only focuses on biomolecule ex-
traction with certain putative activity from microalgae cultures, as shown by some of
the data presented in this work. Nevertheless, microalgae can produce a wide variety of
biomolecules that can be approached in different areas, so there is still work to be done to
bring biodegradable microalgae-based products into general use.

The investigation of the presence of cosmeceutical compounds in microalgae has
been widely reported; however, despite the existence of records on the extraction and
evaluation of the potential of these compounds, the information regarding their application
and distribution in the market remains scarce, which could be an indicator of the lack of
scaling of this practice from a laboratory test to its commercial application. It is necessary to
evaluate strategies that allow scaling the use of these biomolecules, and to identify barriers
to this process. Is it the quality of the obtained biomolecules? Is it a scarce market for the
product? Does misinformation about the advantages and disadvantages exist? Or, are there
limitations on access to economic resources? Regardless of the answer, the next steps for
the use of microalgae bioactive compounds should consider a market study that allows the
materialization of these areas of opportunity.

8. Conclusions

The cosmeceutical industry has been expanding over the years and making an effort
to use active ingredients from natural sources. Microalgae are a source of added-value func-
tional compounds that can be ultimately a healthier option. Moreover, microalgae-derived
metabolites can be obtained through low-cost, eco-friendly cultivation processes. The appli-
cation of microalgae as a source of bioactive molecules has been successfully evaluated by
different authors. In the process of taking advantage of the potential of microalgae-derived
compounds to develop and improve a new generation of cosmeceutical products, it is
important to consider the microalgae strain, growth conditions, biomass characterization,
and protocols for extraction and functionalization. Those cosmeceutical products enriched
with photoprotectors, antioxidants, immunomodulators, and moisturizers/regenerative
molecules extracted from different microalgae species suggest an improvement in the
potential of different cosmeceutical product characteristics with novel advantages in terms
of environmental impact.

Most of the actual studies develop microalgae growth under specific stress conditions
to stimulate the production of the metabolites of interest for posterior extraction and use
in the development and enrichment of cosmeceutical products. Nevertheless, the direct
application of raw or dry microalgae in the process of product improvement is still scarce;
hence, the use of microalgae as a source of bioactive molecules still has areas of opportunity
for future research, focused on the method of approach and its application to commercial
cosmeceutical products.
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