
EMB R YON I C S T EM C E L L S /
I N DU C E D P L U R I P O T E N T S T EM C E L L S

Reprogramming progressive cells display low CAG promoter
activity

Xiao Hu1,2 | Qiao Wu1,2 | Jian Zhang1,2 | Jonghun Kim2,3 | Xinyue Chen1,2 |

Amaleah A. Hartman1,2 | Anna E. Eastman1,2 | In-Hyun Park2,3 | Shangqin Guo1,2

1Department of Cell Biology, Yale University,

New Haven, Connecticut

2Yale Stem Cell Center, Yale University, New

Haven, Connecticut

3Department of Genetics, Yale University,

New Haven, Connecticut

Correspondence

Shangqin Guo, PhD, Department of Cell

Biology, Yale Stem Cell Center, Yale

University, 10 Amistad Street, Room 131H,

New Haven, CT 06520.

Email: shangqin.guo@yale.edu

Funding information

Connecticut Innovations, Grant/Award

Number: 15-RMB-YALE-03

Abstract

There is wide variability in the propensity of somatic cells to reprogram into

pluripotency in response to the Yamanaka factors. How to segregate these variabil-

ities to enrich for cells of specific traits that reprogram efficiently remains challenging.

Here we report that the variability in reprogramming propensity is associated with

the activity of the MKL1/SRF transcription factor and concurs with small cell size as

well as rapid cell cycle. Reprogramming progressive cells can be prospectively identi-

fied by their low activity of a widely used synthetic promoter, CAG. CAGlow cells

arise and expand during cell cycle acceleration in the early reprogramming culture of

both mouse and human fibroblasts. Our work illustrates a molecular scenario under-

lying the distinct reprogramming propensities and demonstrates a convenient practi-

cal approach for their enrichment.
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1 | INTRODUCTION

The somatic cells amenable to switching into pluripotency upon

expression of the Yamanaka factors are considered to exist stochasti-

cally.1-3 Within such a model, the rare cells known to have high repro-

gramming potential, such as the privileged cells or the poised/elite/

winner cells,4 could represent extreme cellular states existing by

chance. With the advent of various single cell genomics, it is now pos-

sible to define the expression of large numbers of genes in many indi-

vidual cells,5-9 capturing data sufficient for quantitative assessment of

the stochastic nature in gene expression of single cells. Surprisingly,

such studies revealed that the expression level of most genes is

minimally stochastic, and can in fact be reliably predicted.9 Intrigu-

ingly, the most predictive parameters of gene expression heterogene-

ity are DNA content, indicative of cell cycle status, and cell size/

shape. These findings suggest the possibility that if the rare cells of

certain cell cycle behavior and/or cell size/shape can be prospectively

identified or enriched, the stochasticity of somatic cell progressing

into pluripotency may be minimized.

Cell size and shape is largely and collectively controlled by the

concentration and conformation of cytoskeletal proteins. The expres-

sion of many cytoskeletal genes is under the control of MKL1 (Mega-

karyoblast Leukemia 1)/SRF (serum response factor), via the

consensus CArG motif in their promoters. Important MKL1/SRF tar-

get genes include many members of the actin genes, and SRF itself.10

Besides cytoskeletal genes, another major class of SRF target genes is

the “immediate early genes,” such as the AP1 family of transcription
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factors c-jun, c-fos, and Fra1.11-14 These transcription factors are now

known to antagonize Yamanaka reprogramming, or established

pluripotency by redefining the enhancer-Pol II relationship.15-17 We

have recently reported that MKL1/SRF activity potently prevents the

activation of mature pluripotency by hindering chromatin accessibility

via an actin-LINC-dependent process.18 Taken together, these evi-

dence suggest that the transcriptional activity of the ubiquitously

expressed SRF could potentially serve as an indicator to how likely a

somatic cell could progress into pluripotency.

In this report, we reveal that the fast cycling cells are small in size

and display reduced SRF target gene expression. Low endogenous

SRF activity can be conveniently captured by a synthetic promoter,

the CAG promoter which derives part of its sequence from the

chicken actin promoter/enhancer.19,20 Prospective isolation of

CAGlow cells significantly enriched for reprogramming progressive

cells in both mouse and human fibroblasts. Our work demonstrates

that the inherent difference in reprogramming potential can be puri-

fied, at least partially, by the activity of a ubiquitously expressed tran-

scription factor SRF.

2 | RESULTS

2.1 | Cells expressing low CAG promoter activity
emerge during early reprogramming

Given that SRF target genes, the cytoskeletal genes and immediate

early genes, both antagonize pluripotency, we wondered whether

cells with diminished SRF activity represent the cells of higher repro-

gramming potential. SRF drives expression of target genes by binding

to the consensus CArG sequences in their promoters, thus transgenes

under the control of functional CArG elements might provide a conve-

nient measure of SRF activity. Since the key functional element of the

widely used CAG promoter contains two well-conserved CArG

sites,19,20 we tested the intensity of fluorescent reporters driven by

the CAG promoter during early reprogramming.

We first assessed reprogramming of mouse embryonic fibroblasts

(MEFs) derived from a transgenic mouse line expressing an H2B-GFP

fusion protein driven by the CAG promoter,21 crossed with the

Rosa26:rtTA allele.22 A lentiviral vector directing doxycycline (Dox)

inducible OSKM polycistronic cassette23 that also includes mCherry

was used to drive Yamanaka factor expression (Figure 1A). With this

system, reprogramming cells are contained within the mCherry+ cells

after Dox is added. Cells with lower SRF activity should display lower

CAG:H2B-GFP fluorescence intensity.

We examined whether CAG:H2B-GFP intensity decreases during

early reprogramming to reflect the decreasing MKL1/SRF activity.18

Shortly after Dox addition, there was a marked downregulation of

CAG:H2B-GFP intensity within the mCherry+ population compared

with the mCherry− cells (Figures 1B-D). The decrease in CAG:H2B-

GFP intensity is consistent with reduced activity of MKL1/SRF as rev-

ealed by lower β-actin expression (Figure 1E),18 and cells with distinct

CAG:H2B-GFP intensity can be recovered by FACS sorting (Figure 1F).

Importantly, the decreased H2B-GFP signal was not a result from

downregulation of the H2B moiety, because endogenous H2B pro-

tein did not decrease in the sorted CAG:H2B-GFPlow cells (Figure 1E).

To rule out the possibility that the downregulation of the CAG:H2B-

GFP signal was mediated by the particular transgene integration site,

we reprogrammed MEFs derived from another independent trans-

genic mouse line24 similarly crossed with the Rosa26:rtTA allele.22

These MEFs express GFP without H2B under the same CAG pro-

moter but presumably have a different transgene integration site.

Similar to the observations with CAG:H2B-GFP MEFs, the CAG:GFP

level was significantly reduced only in the mCherry+ cells early in

reprogramming (Figure, 1G,H). Therefore, a small population of cells

expressing low CAG promoter activity emerges during early

reprogramming.

2.2 | CAGlow cells enrich for reprogramming
progressive cells

To test whether the CAGlow cells are enriched for efficient repro-

gramming, we sorted the �15% cells of the highest and lowest CAG:

H2B-GFP intensity among all mCherry+ cells and replated them sepa-

rately to allow further reprogramming (Figure S1A). As shown in Fig-

ure 2A, the CAG:H2B-GFPlow population displayed much higher

(about 20-fold) efficiency compared with the CAG:H2B-GFPhigh cells,

assessed by alkaline phosphatase staining. Reprogramming efficiency

of the bulk mCherry+ cells was in between that of the CAG:H2B-

GFPhigh and CAG:H2B-GFPlow cells, indicating that the former is

depleted of the reprogramming progressive cells while the latter

enriched for it. To confirm the derived colonies are mature iPSCs, we

stained them for Nanog, a more stringent pluripotency marker. As

expected, most colonies arose from CAG:H2B-GFPlow cells were

Nanog-positive (Figure 2B). The expression of additional core

pluripotency genes, Oct4, Nanog, Sox2 and Esrrb, was similar to that in

mESCs (Figure 2C). The iPSCs derived from CAG:H2B-GFPlow cells

readily supported teratoma formation in which differentiation toward

all three germ layers are present (Figure 2D), confirming their pluripo-

tent nature. Importantly, prospective isolation of CAG:GFPlow cells

similarly enriched for high reprogramming activity from the MEFs

expressing a second CAG promoter-driven reporter CAG:GFP (Fig-

ure 2E). Lastly, we assessed when reprogramming progressive CAGlow

cells emerge from the reprogramming culture in reprogrammable

Significance Statement

The authors report a novel and much simpler method to

identify and enrich for reprogramming progressive cells.

They benchmarked the identity of the CAG low cells by

assessing their cell cycle, cell size, and transcriptome. Due to

its simplicity, this method should be widely useful for

enriching reprogramming progressive cells.
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MEFs expressing the transgenic CAG:H2B-GFP, and reprogramma-

ble MEFs transduced with a lentivirally expressed CAG-driven GFP

(Figures 2F,G and S1B,C). Consistently, transgenic CAGlow cells or

virally expressed CAGlow cells enriched for reprogramming activity

(Figure 2F,G). CAGlow-enriched reprogramming became detectible at

day 2 and grew more prominent later, by both the transgenic and
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virally transduced CAG (Figure 2F,G). The consistent enrichment of

reprogramming efficiency among the CAGlow cells, by multiple inde-

pendent transgenic lines (Figure 2A,B,E,F) and by the CAG-driven

viral vector across multiple timepoints (Figure 2G) demonstrate that

low CAG promoter activity could reveal the reprogramming progres-

sive cells.

To test whether low CAG promoter activity identifies repro-

gramming progressive human cells, we used the secondary human

fibroblasts.25,26 These human fibroblasts contain the dox-inducible

transcription factors OCT4, SOX2, KLF4, and C-MYC. We transduced

the cells with the viral CAG:GFP, and added Dox. On day 7, the

brightest and dimmest 10% CAG:GFP+ cells were FACS sorted and

replated for further reprogramming (Figure 2H). Similar to the results

in MEFs, CAG:GFPlow cells gave rise to significantly more AP+ colo-

nies than CAG:GFPhigh cells. Immunostaining for Nanog confirmed

positivity in many of these colonies, indicative of their mature

pluripotency (Figure 2I). Taken together, our data reveal that the

activity of the synthetic CAG promoter, when expressed as a trans-

gene, has a surprising utility in enriching for reprogramming progres-

sive cells in both human and mouse.

2.3 | CAGlow cells largely overlap with the fast
cycling cells

Because we previously identified that a minor population of cells

that have achieved sufficient cell cycle acceleration also reprogram

with much higher efficiency,27 we examined the relationship

between the CAG:H2B-GFPlow cells and the ultrafast cycling cells.

Using a violet cell proliferation indicator dye (inherited by the two

daughter cells of each cell division), we obtained simultaneous mea-

surements of the CAG:H2B-GFP signal and the intensity of the pro-

liferation dye (Figure 3A). Cells with low proliferation dye intensity

indicate fast cycling speed, since the dye is diluted more during the

same chase period.27 We observed a strong correlation between the

dyelow cells and the CAG:H2B-GFPlow cells: dyelow cells are low in

CAG:H2B-GFP and vice versa (Figure 3B). These data confirm that

CAG:H2B-GFPlow cells largely overlap with the fast cycling cells,

accounting for the high reprogramming efficiency observed for both

isolation approaches.27

To examine whether low CAG promoter activity arose when cell

cycle becomes fast, we accelerated the cell cycle of CAG:H2B-GFP

fibroblasts by overexpressing Dox-inducible c-Myc alone, using a vec-

tor that also encodes mCherry (Figure 3C,D). The same tight corre-

spondence between dye retention and CAG activity was similarly

observed, with dyelow cells displaying low CAG:H2B-GFP intensity

(Figure 3E). These data suggest CAGlow cells could arise consequent

to cell cycle acceleration, such as when c-Myc is overexpressed.

To test whether CAGlow cells exist in normal somatic cells of dis-

tinct cycling behavior, we examined the CAG activity in closely related

hematopoietic progenitors. As shown in Figure 3F, the largely quies-

cent hematopoietic stem cells (Lineage− Kit+ Sca+, LKS) display

higher CAG activity than the fast cycling granulocyte macrophage pro-

genitors (GMPs), in both CAG:H2B-GFP and CAG:GFP mice. Consis-

tent with the findings in MEFs, the CAGlow cells also correspond to

those with high reprogramming efficiency, as GMPs reprogram more

efficiently than LKS cells.27,28 Taken together, these data demonstrate

that the CAGlow cells are primarily the same as fast cycling cells, rein-

forcing the notion that low CAG promoter activity enrich for repro-

gramming progressive cells.

2.4 | CAGlow cells are small in size with reduced
SRF target genes

To explore whether low CAG promoter activity is related to the

reduced MKL1/SRF signaling pathway, we examined cell size/mor-

phology changes in live cell imaging and tracking of cells undergoing

reprogramming,27,29 since cell size/morphology is largely determined

by actin cytoskeletal genes, which are MKL1/SRF targets. We found

that the reprogramming mCherry+/CAG:H2B-GFPlow cells formed

clusters shortly after adding Dox (2 days), and these cell clusters con-

tained cells of much smaller size (Figure 1B). Over a longer time in

Dox, the clusters increased in size while individual cells within the

clusters became even smaller (Figure 1B,F). This is consistent with

earlier reports that successful reprogramming originated from cells of

small sizes.30 FACS sorting by either CAG:H2B-GFP or CAG:GFP

recovered cells of distinct sizes, with the CAGlow cells being signifi-

cantly smaller (Figures 4A,B and S2). The difference in cell size can

also be detected by FACS forward scatter, a crude measure of cell size

F IGURE 1 Reprogramming progressive cells show reduced CAG promoter activity. A, Schematic of the experimental design of
reprogramming. B, Downregulation of CAG:H2B-GFP in reprogramming cells as revealed by fluorescence microscopy. mCherry marks OSKM-
expressing cells. Scale bar: 100 μm. C, FACS analysis of the CAG:H2B-GFP MEFs undergoing reprogramming. OSKMmCherry+ cells display
reduced GFP signal. D, Percentage quantification of CAG:H2B-GFPlow and CAG:H2B-GFPhigh cells in mCherry+ and mCherry− population, as
gated in C. CAG:H2B-GFPlow cells are enriched in the mCherry+ cells. n.s., non-significant; **P < .01; ****P < .0001. Statistics were performed by

Student's t test. E, Western blot of whole cell lysates from bulk MEFs or subsets isolated from reprogramming cultures based on H2B-GFP
intensity, with β-tubulin as loading control. The endogenous H2B remains unchanged, as determined by normalized densitometry. Protein level in
bulk MEFs is set to 1. F, Confocal fluorescence microscopy confirming the H2B-GFP intensity after mCherry+ cells were sorted based on GFP
intensity. Scale bar: 50 μm. G, FACS analysis of the CAG:GFP MEF cells undergoing reprogramming. A fraction of OSKMmCherry+ cells
decreased GFP signal as reprogramming continued. H, Percentage quantification of CAG:GFPlow cells in mCherry+ and mCherry− population, as
gated in G. CAG:GFPlow cells are enriched in the mCherry+ population. *P < .05; **P < .01; ***P < .001. Statistics were performed by Student's
t test
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(Figure 4C). Indeed, sorting smaller cells by low forward scatter (Fig-

ure S1D) enriched for reprogramming efficiency starting at day 2 (Fig-

ure 4D), in a manner similar to the enrichment achieved by sorting

CAGlow cells (Figure 2F,G). These data are consistent with our previ-

ous finding that full reprogramming is contingent on low MKL1/SRF

activity.18
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To directly monitor whether MKL1/SRF activity is modulated by

cell size, we plated MEFs on micropatterned surfaces of varying sizes,

and determined endogenous MKL1 subcellular localization by immu-

nostaining, as transcriptionally active MKL1 localizes inside the

nucleus (Figure 4E). Strikingly, larger cells showed higher MKL1

nuclear to cytoplasmic ratio, while smaller cells had significantly

decreased nuclear MKL1 (Figure 4F). Although the degree of enrich-

ment for reprogramming activity was less than that achieved by dye

dilution (more than 1000 fold27) or CAG activity (Figure 2), the fact

that altering just a single parameter, that is, cell size, could change

MKL1 localization strongly supports that mCherry+/CAG:H2B-GFPlow

cell clusters expressed reduced MKL1/SRF activity as they become

smaller. Cell size reduction supports low MKL1/SRF activity, since this

change involves dramatic reduction and rearrangement of the actin

cytoskeleton. The different extent of enrichment for reprogramming

activity suggests that fast cell cycle likely leads to additional molecular

changes besides decreasing cell sizes.

To reveal the molecular differences between the CAGlow and

CAGhigh cells, conserved between mouse and human, we performed

RNA-seq analyses on CAG:H2B-GFP MEFs (Figures 2A and S1A) and

human secondary fibroblasts (Figure 2H) which were FACS sorted

based on CAG activity on reprogramming day 4 and 7, respectively.

Larger transcriptomic changes were detected between the repro-

gramming MEFs compared with the reprogramming human fibroblasts

(Figure S3), likely due to secondary nature of the human fibroblasts.

Strikingly, however, the differentially expressed genes (DEGs) between

the CAGhigh and CAGlow cells of both species revealed significantly

more SRF target genes by gene set enrichment analysis (GSEA) (Fig-

ure 4G). This difference in SRF target gene expression is also

coorborated by lower β-actin protein seen in the CAGlow cells (Fig-

ure 1E). Furthermore, CAGlow cells expressed reduced mesenchymal

transcription factors and elevated epithelial markers (Figure 4H), consis-

tent with the known role of MKL1/SRF in driving many mesenchymal

genes.31,32 In agreement with their reduced mesenchymal features,

CAGlow cells had significantly enriched stem cell signature (Figure 4I).

Taken together, these results confirm that the CAG promoter activity

indeed reports endogenous SRF activity and that cells with low CAG

activity display molecular features of progression toward pluripotency.

Although cells with low MKL1/SRF activity enrich for repro-

gramming progressive cells, we note that complete lack of MKL1

interferes with MEF proliferation, and consequently reprogramming

(Figure S4A,B). This observation is consistent with the fact that SRF

null embryos die at E6.0,33 preceding the time when MEFs are derived

typically on E13.5-E14.5. The difference in the severity between

MKL1-null and SRF-null embryos may be related to the functional

redundancy provided by MKL2,34 as a dual targeting shRNA against

both MKL1 and MKL2 ablated all AP+ colonies accompanied by

reduced cell numbers (Figure S4C). Therefore, CAGlow instead of CAG

negative cells, enrich for reprogramming progressive cells.

3 | DISCUSSION

We describe a convenient approach to isolate and enrich for repro-

gramming progressive cells from multiple somatic cell types, of both

mouse and human origin. Based on the activity of a widely used syn-

thetic promoter, CAG, significant enrichment of reprogramming effi-

ciency can be achieved. Specifically, cells expressing low CAG

promoter activity are small in size and share overlapping identity with

the previously identified fast cycling cells.27 Cells bearing both traits

display high reprogramming efficiency. The mechanisms why CAGlow

cells reprogram more efficiently is related to their reduced MKL1/SRF

activity, as CAGlow cells express many SRF target genes at reduced

levels. This enrichment approach is easy to implement and should help

the further mechanistic studies.

We clarify the relationship between the small cells and fast

cycling cells: they are essentially the same entity. Cells of small size

and rapid cell cycle were reported in separate observations, both of

F IGURE 2 Low CAG promoter activity in reprogramming fibroblasts enriches for reprogramming progressive cells. A, AP staining of iPS
colonies at reprogramming day 12. Total mCherry+ cells, 15% of the highest or lowest CAG:H2B-GFP+ cells were sorted from the mCherry+ cells
on day 4 and replated on feeder cells to allow further reprogramming. Reprogramming efficiency is quantified on the right. **P < .01; ***P < .001.
Statistics were performed by Student's t test. B, Immunostaining of iPS colonies at reprogramming day 12 for Nanog. Total mCherry+ cells, 15%
of the highest or lowest H2B-GFP+ cells were sorted from the mCherry+ cells on day 4 and replated on feeder cells to allow further
reprogramming. Reprogramming efficiency is quantified on the right. **P < .01; ***P < .001. Statistics were performed by Student's t test. C, Real-
time PCR analysis of core pluripotent gene expression in MEFs, control iPSCs, ESCs, and iPS colonies derived from CAG:H2B-GFPlow cells sorted
at reprogramming day 4. Expression in MEFs is set to 1. D, Representative histology of teratomas grown from two CAG:H2B-GFPlow-derived iPS
cell lines, showing tissues of the ectoderm, mesoderm and endoderm. Scale bar for all images: 300 μm. E, AP staining of iPS colonies at
reprogramming day 12. 15% highest or lowest CAG:GFP+ cells were sorted from the OSKMmCherry+ population on day 6 and replated on
feeder cells to allow further reprogramming. Colonies were scored and quantified on the right. ***P < .001. Statistics were performed by
Student's t test. F, Quantification of AP+ colonies derived from MEFs expressing transgenic CAG:H2B-GFP and a heterozygous Col1a:OKSM

allele. The �10% cells with the lowest or highest H2B-GFP intensity were sorted on reprogramming day 0, 2, 4 and 6, respectively, and were
replated to allow for further reprogramming. *P < .05; ***P < .001. Statistics were performed by Student's t test. G, Quantification of AP+
colonies derived from reprogrammable MEFs transduced with CAG:GFP virus. The �10% cells with the lowest or highest GFP intensity were
sorted on reprogramming day 0, 2, 4 and 6, respectively, and were replated to allow for further reprogramming. n.s. nonsignificant, **P < .01;
***P < .001. Statistics were performed by Student's t test. H, Schematics of reprogramming timeline using the secondary human fibroblast. I, AP
staining and Nanog immunostaining of colonies at reprogramming day 32. The numbers of AP+ or Nanog+ colonies arising from CAG:GFPlow and
CAG:GFPhigh cells are shown on the right. Scale bars: 200 μm. ***P < .001. Statistics were performed by Student's t test
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which enrich for reprogramming cells. Specifically, early repro-

gramming is accompanied by dramatic cell cycle acceleration,27 and

tracking pluripotency induction from somatic cells by live cell imaging

have revealed that the privileged cells undergo ultrafast cell cycle of

8 hours/cycle. Independent imaging studies also revealed that suc-

cessful reprogramming from fibroblasts invariably originate from cells

of small sizes,30 an observation confirmed by other approaches.35 As

c-Myc alone was sufficient to induce the distinct appearance of

CAGlow cells, and c-Myc is a potent cell cycle driver, we suggest that

the CAGlow cells with higher reprogramming potential arise

consequent to cell cycle acceleration during early reprogramming. The

CAGlow cells in many aspects resemble the dome-like cells reported

by Liu et al,36 which have higher proliferative capacity and increased

pluripotent gene expression than the flat monolayer cells coexisting in

the human pluripotent stem cell culture. Therefore, the heterogeneity

and/or stochasticity reflected by cell cycle and size/shape9 may be

fundamentally connected to the regulation of pluripotency.

The contribution of gene expression heterogeneity in the initiat-

ing somatic cells to reprogramming efficiency could have many under-

lying reasons, including complex crosstalks among heterologous cells.
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For example, reprogramming could be influenced by non-cell autono-

mous signals, such as IL-6 secreted by adjacent senescent cells.37,38

Variability in inflammatory cytokine production39 and cellular compe-

tition40 have been recently reported to mediate different repro-

gramming behaviors. Furthermore, we recently described a noncell-

autonomous mode of regulation of reprogramming by the transcrip-

tion coactivator YAP via one of the secreted matricellular protein

CYR61.41 Therefore, it could be difficult to reach absolute purification

for reprogramming progressive cells. The extend of enrichment

achievable by selecting for CAGlow cells is superior or comparable to

many previously reported approaches.42-44

4 | MATERIALS AND METHODS

4.1 | Mice and cells

All mouse work was approved by the Institutional Animal Care and Use

Committee of Yale University. The reprogrammable mouse (R26rtTA;

Col1a14F2A)45 (stock# 011004), CAG:H2B-GFP transgenic line (stock#

006069) and CAG:EGFP line (stock# 003291) were purchased from the

Jackson Laboratory. The reprogrammable mice with reporter (R26rtTA;

Col1a14F2A;Oct4GFP) were derived by crossing reprogrammable mice

with Oct4:GFP mice. MKL1 knockout mouse line has been described

before.34 MEFs with different genetic backgrounds were all derived

from E13.5 embryos. Unless otherwise indicated, all reprogrammable

MEFs were homozygous for the Col1a:OKSM allele. Human secondary

fibroblasts were generated as previously described.25,26

4.2 | Teratoma formation assay

1 × 106 cells were dissociated into single cells, harvested, suspended

in 50 μL of PBS, and injected subcutaneously into the hind legs of the

mice. Teratoma formation assay was performed on Rag2−/-Il2rg−/−

mice. They were maintained under nonspecific pathogen-free (SPF)

conditions, at the Yale Animal Resources Center (YARC) Facility. Tera-

tomas were excised at 4 weeks postinjection, fixed in 4% PFA, and

embedded in paraffin. Sectioned samples were stained with hematox-

ylin and eosin for histological analysis.

4.3 | Cell culture

MEFs, 293 T and human secondary fibroblasts cells were cultured in

DMEM (Gibco, 11 995) supplemented with 10% heat-inactivated FBS

(Gibco) and 1× Penicillin-Streptomycin-Glutamine (PSG, Gibco).

Mouse iPS cells and ES cells were cultured in mESC medium defined

as DMEM supplemented with 15% FBS (Hyclone), 0.1 mM nonessen-

tial amino acid (NEAA, Gibco), 1 × PSG, 0.1 mM β-mercaptoethanol,

and 1000 U/mL murine leukemia inhibitory factor (LIF, Millipore).

Human iPS cells were cultured in mTeSR1 complete kit (STEMCELL

Technologies, 85850). Feeder cells were obtained by irradiating P5-P6

MEFs. Mature iPS cells and ES cells were maintained on feeder layers.

4.4 | iPSC induction

For reprogramming involving Dox inducible OSKM-cassette or repro-

grammable MEFs, reprogramming was induced by adding Doxycycline

(Dox) to the ESC culture medium with a final concentration of 2 μg/

mL. Viruses were generally transduced or cotransduced 1 day before

initiation of reprogramming. Cells were sorted by FACS Aria, and rep-

lated onto feeder layer with specified number of cells on indicated

reprogramming days. Medium was changed every other day for repro-

gramming experiments. Reprogramming was evaluated by performing

AP staining, Nanog immunostaining, and quantification of AP-positive,

Nanog-positive or Oct4:GFP-positive colonies. For mouse reprogramming

with reprogrammable MEFs, vitamin C was added to the reprogramming

culture after replating.

F IGURE 4 Reprogramming cells with low CAG promoter activity show reduced cell size and low MKL1/SRF activity. A, Confocal microscopy
images of H2B-GFP intensity (top) after day 4 reprogramming cells were sorted for the �10% of cells with the lowest or highest GFP intensity.
2D cell size were quantified by β-actin+ area (middle). Representative 3D reconstructed images shown on the bottom. Scale bars: 20 μm.
****P < .0001. Statistics were performed by Student's t test. B, Confocal microscopy images of GFP intensity (top) after day 4 reprogramming
cells were sorted for the �10% of cells with the lowest or highest GFP intensity. 2D cell size were quantified by GFP+ area (middle).
Representative 3D reconstructed images shown on the bottom. Scale bars: 20 μm. ****P < .0001. Statistics were performed by Student's t test. C,
FACS Forward Scatter (FCS) of CAG:H2B-GFPlow and CAG:H2B-GFPhigh cells at reprogramming day 0, 2, 4, and 6. CAG:H2B-GFPlow cells are
smaller, as indicated by low FSC. D, Quantification of AP+ and Oct4:GFP+ colonies derived from reprogrammable MEFs sorted on indicated days
based on cell size. Reprogramming cells with smaller size enrich for reprogramming progressive cells. n.s., nonsignificant; *P < .05; ***P < .001.
Statistics were performed by Student's t test. E, Confocal images of fibroblasts grown on micropatterned surface, immunostained with MKL1
antibody, or stained with DAPI to reveal the nuclei. Micropatterned surfaces include unpatterned surface, square, disk, and dot shape. Scale bar:
20 μm. F, Quantification of MKL1 intensity in micropatterned fibroblasts. Small indicates cells grown on the dot pattern; big indicates cells grown

on unpatterned, square or disk patterned surfaces. ****P < .0001. Statistics were performed by Student's t test. G, Gene set enrichment analysis
(GSEA) of differentially expressed genes between CAGhigh and CAGlow cells at reprogramming day 4 (mouse) and day 7 (human). SRF target genes
are enriched in the upregulated DEGs between CAGhigh and CAGlow cells of the same species. H, Representative MET gene expression as
determined by mRNA-seq. CAGlow cells display higher expression of epithelial genes (Cdh1, EpCam), while CAGhigh cells display higher expression
of mesenchymal genes (Snai1, Snai2, Zeb2). FPKM: fragments per kilobase of transcript per million mapped reads. *P < .05; **P < .01; ***P < .001;
****P < .0001. Statistics were performed by Student's t test. I, The differentially expressed genes between CAGhigh and CAGlow cells at
reprogramming day 4 (mouse) were analyzed by GSEA, revealing significantly enriched stem cell genes in the upregulated DEGs in CAGlow cells
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4.5 | Constructs

The reprogramming factors Oct4, Sox2, Klf4 and c-Myc, and the

reporter mCherry are fused with 2A, and cloned into the pFUW

lentiviral backbone with an inducible promoter TetO. MKL1/2 shRNA

construct was obtained from Addgene.11 CAG:GFP construct was

obtained from Cellomics Technology (PLV10057). Inducible c-Myc-

mCherry construct was generated by cloning the c-Myc coding

sequence into pFUW lentiviral backbone with an inducible promoter

TetO, and c-Myc is fused with a 2A-mCherry reporter.

4.6 | RNA extraction, reverse transcription,
and qPCR

Total RNA was extracted with Trizol reagent (Invitrogen) and reverse

transcribed with the SuperScript III First-Strand Synthesis System

according to manufacturer's instructions (Invitrogen). Quantitative

real-time PCR was performed using the iQ SYBR Green Supermix

(Bio-Rad) on a Bio-Rad CFX96. Primer sequences: Endo-Oct4_F,

TCTTTCCACCAGGCCCCCGGCTC, Endo-Oct4_R, TGCGGGCGGAC

ATGGGGAGATCC; Endo-Sox2_F, TAGAGCTAGACTCCGGGCGATGA,

Endo-Sox2_R, TTGCCTTAAACAAGACCACGAAA; Nanog_F, AAATCC

CTTCCCTCGCCATC, Nanog_R, TTTGGGACTGGTAGAAGAATCAGG;

Sall4_F, GTGTCTCAGCAAGTGTCCGTGT, Sall4_R, GCATGAGGTAGC

TTGGCTTGTT; Esrrb_F, GATCGGGAGCTTGTGTTCC-TC, Esrrb_R,

AGGCGAGAGTGTTCCTCATCC.

4.7 | RNA-Seq and data analysis

RNA-seq libraries were prepared with TruSeq Stranded mRNA Library

Prep Kit (Illumina, RS-122-2101) following the manufacturer's instruc-

tions. High-throughput sequencing was performed with the Illumina

HiSeq 4000 Sequencing System. For data analysis, the RNA-seq reads

were mapped to mouse genome (mm10) or human genome (hg38)

with TopHat2. Gene abundance was calculated using cuffnorm, which

outputs read counts and the number of mapped fragments per kilo-

base of exon per million fragments (RPKM). Genes with RPKM ≥1 in

two or more samples were selected for further analysis. Differentially

expressed genes were identified by Cuffdiff followed by cutting off

with FDR-adjusted P value <.05 and fold change >2. GSEA was per-

formed using GSEA software (http://software.broadinstitute.org/

gsea/)46 with default parameters. SRF directed targets were extracted

from Esnault et al.47 Stem cell gene set was obtained from Polo

et al.42 RNA-seq raw data and processed data can be obtained from

GEO (GSE157672).

4.8 | FACS analysis and sorting

Cells were analyzed on BD LSRII, or sorted on BD Aria. For FACS ana-

lyzing or sorting of cultured cells, cells were dissociated with 0.25%

Trypsin-EDTA (Gibco/Thermo Fisher Scientific, 25200056), washed

and resuspended with DPBS before analyzing or sorting. For analysis

of GMP and LKS cells, cells were harvested from mouse bone marrow,

and subject to lineage depletion using a mixture of biotinylated anti-

mouse antibodies to Mac-1α (CD11b), Gr-1(Ly-6G/C), Ter119 (Ly-76),

CD3ε, CD4, CD8a (Ly-2), and B220 (CD45R). Cells were subsequently

stained with fluophore-conjugated antibodies against Kit, Sca, CD34,

and CD16/32. LKS: Lin−Kit+Sca+; GMP: Lin−Kit+Sca−CD34+CD16/

32+.48 Antibodies were purchased from BD Biosciences. FACS sorting

strategies were provided in the supporting information figures. For

CAG:GFP transgenic MEFs, sorting strategy is similar to that shown in

Figure S1A. For human secondary fibroblasts, sorting strategy is simi-

lar to that shown in Figure S1C.

4.9 | AP staining

AP staining was performed using the AP staining kit from StemGent

(00-0055).

4.10 | Western blot analysis

Cell lysates were harvested by directly lysing the cells with

2 × sampling buffer (Bio-Rad). Proteins were separated by SDS-PAGE,

transferred onto nitrocellulose membranes (Bio-Rad). The membranes

were blocked with 5% nonfat dry milk in TBS-Tween (TBST) for

1 hour, incubated with primary antibodies overnight at 4�C, followed

by incubation with horseradish-peroxidase-conjugated secondary

antibodies for 1 hour, and illuminated by enhanced chemilumines-

cence (ECL). Quantification of band intensity was done in Image J.

β-actin antibody: Abcam, Ab20272 (1:10 000); β-tubulin antibody:

Abcam, Ab6046 (1:5000); H2B antibody: Cell Signaling, 8135

(1:2000).

4.11 | Growing cells on micropatterned surface

Micropatterned culture dishes are purchased from 4Dcell. Cells were

seeded and cultured for 48 hours, followed by immunostaining

analysis.

4.12 | Immunostaining, image acquisition, and
analysis

Cells or reprogramming colonies were fixed with 4% paraformalde-

hyde (PFA) at room temperature (RT) for 20 minutes, and then perme-

abilized with 0.5% Triton X-100 in DPBS at RT for 30 minutes.

Samples were blocked with blocking buffer (5% normal goat serum

[NGS], 0.3% Triton X-100 in DPBS) at RT for 1 hour. Primary antibody

incubation was performed at 4�C overnight. Antibody was diluted

with antibody buffer (1% BSA, 0.3% Triton X-100 in DPBS). After
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washing, samples were then incubated with secondary antibody pre-

pared with antibody buffer at RT for 1 hour. Signal intensity was mea-

sured by Image J. For capturing fluorescent images of Nanog-positive

reprogramming colonies, images were taken with the live cell imaging

system (Molecular Devices) to obtain the image of the entire well. 3D

image reconstruction was performed by acquiring z-stack images

with Leica SP5, followed by reconstruction using Leica LAS X

software. Nanog antibody: Cell Signaling, 4903 (1:200); MKL1 anti-

body: a gift from Topher Carroll (1:500); β-actin antibody: Abcam,

Ab20272 (1:500).

4.13 | CFSE/cell trace violet dye staining

CFSE/Cell Trace Violet dye staining was performed according to the

manufacturer's instructions. Briefly, cells were trypsinized, washed,

and resuspended with DPBS in 1 million cells/mL concentration. Cells

were then incubated with CFSE/Cell Trace Violet dye at 37�C for

20 minutes, and supplied with 5 times the volume of complete culture

medium, followed by incubation at 37�C for 5 minutes. Cells were

centrifuged and resuspended in prewarmed culture medium with

incubation for more than 10 minutes. And then, they were subject for

either flow analysis or replating for further growth.
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