
RESEARCH ARTICLE Open Access

Genome wide transcriptome profiling of a murine
acute melioidosis model reveals new insights into
how Burkholderia pseudomallei overcomes host
innate immunity
Chui-Yoke Chin1, Denise M Monack2, Sheila Nathan1,3*

Abstract

Background: At present, very little is known about how Burkholderia pseudomallei (B. pseudomallei) interacts with
its host to elicit melioidosis symptoms. We established a murine acute-phase melioidosis model and used DNA
microarray technology to investigate the global host/pathogen interaction. We compared the transcriptome of
infected liver and spleen with uninfected tissues over an infection period of 42 hr to identify genes whose
expression is altered in response to an acute infection.

Results: Viable B. pseudomallei cells were consistently detected in the blood, liver and spleen during the 42 hr
course of infection. Microarray analysis of the liver and spleen over this time course demonstrated that genes
involved in immune response, stress response, cell cycle regulation, proteasomal degradation, cellular metabolism
and signal transduction pathways were differentially regulated. Up regulation of toll-like receptor 2 (TLR2) gene
expression suggested that a TLR2-mediated signalling pathway is responsible for recognition and initiation of an
inflammatory response to the acute B. pseudomallei infection. Most of the highly elevated inflammatory genes are
a cohort of “core host immune response” genes commonly seen in general inflammation infections. Concomitant
to this initial inflammatory response, we observed an increase in transcripts associated with cell-death, caspase
activation and peptidoglysis that ultimately promote tissue injury in the host. The complement system responsible
for restoring host cellular homeostasis and eliminating intracellular bacteria was activated only after 24 hr post-
infection. However, at this time point, diverse host nutrient metabolic and cellular pathways including glycolysis,
fatty acid metabolism and tricarboxylic acid (TCA) cycle were repressed.

Conclusions: This detailed picture of the host transcriptional response during acute melioidosis highlights a broad
range of innate immune mechanisms that are activated in the host within 24 hrs, including the core immune
response commonly seen in general inflammatory infections. Nevertheless, this activation is suppressed at 42 hr
post-infection and in addition, suboptimal activation and function of the downstream complement system
promotes uncontrolled spread of the bacteria.

Background
How organisms respond appropriately to B. pseudomal-
lei, the causative agent of melioidosis, remains a central
question within the Burkholderia community. Over
the past decade, knowledge on the pathogenesis of

B. pseudomallei has increased considerably. However,
very little is known about the molecular mechanisms
that underlie B. pseudomallei virulence and how this
organism is able to interact with its host to elicit melioi-
dosis symptoms. Melioidosis can present with an array
of clinical symptoms. Clinically apparent infections
range from acute or chronic localized infection involving
a single organ, to fulminant septicaemia in multiple
organs (liver, spleen, lung and prostate) and septic
shock [1]. The disease may become dormant and the
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infected person may relapse after months, years or dec-
ades (the longest recorded incubation period documen-
ted is 62 years) [2]. The factors influencing disease
outcome are not known, although it has been suggested
that differences in the virulence of different infecting
strains, the route of inoculation and inoculum size
might contribute to the clinical outcome of disease [3].
Underlying diabetes mellitus and chronic renal failure
are major predisposing factors of melioidosis [2-5].
Recently, the risk factor was extended to individuals
who were uninjured bystanders during the tsunami of
December 2004 [6].
BALB/c mice infected with B. pseudomallei die of

septicemic disease with overwhelming bacterial loads
in organs and blood, accompanied by organ inflamma-
tion and necrosis a few days after infection, reflecting
a failure of the host innate immune response [7].
mRNA for proinflammatory cytokines such as tumor
necrosis factor (TNF) -a, interferon (IFN) -g and inter-
leukin (IL) -6 (IL6) were detected earlier and in more
abundance in the organs of intravenously infected
BALB/c mice with acute disease compared to the more
resistant C57BL/6 mice [8]. Additionally, Santanirand
et al. [9] reported that an early control mechanism is
dependent upon the rapid production of IFN- g,
because IFN- g primes macrophages to increase their
bactericidal activity towards B. pseudomallei. Gan
(2005) reported that the development of acute disease
is not due to a lack of but rather an excess of inflam-
mation, reflecting a failure of regulatory mechanisms.
Melioidosis patients also exhibit elevated serum levels
of pro-inflammatory cytokines such as IFN-g, TNF-a,
chemokine (C-X-C motif) ligand 9 (MIG) and chemo-
kine (C-X-C motif) ligand 10 (IP10) [10].
In recent years, many studies have focused on the

general immune response to shed light on the B. pseu-
domallei-host interaction. However, to date, a full and
complete picture of host responses to this pathogen is
still not available. The purpose of this study was to
develop a comprehensive picture of the host transcrip-
tional response during the acute stage of melioidosis.
Insight into the events at the early infection stage will
improve our understanding of the immediate host
responses to counteract this pathogen. To address this,
we developed systemic acute melioidosis infection of
mice and performed transcriptional analysis of the liver
and spleen isolated from mice infected over a 42 hr
time period. Our analysis identified several thousand
genes whose expression was altered in B. pseudomallei-
infected mice. Most notably, the majority of the identi-
fied genes were involved in immune response, stress
response, cell cycle regulation, proteasomal degradation,
cellular metabolism and signal transduction pathways.
At the early phase of infection, most of the differentially

expressed genes are those involved in the immediate
immune responses. However, at 24 hr post-infection
(hpi), the majority of the genes were involved in host
cellular metabolism and signal transduction pathways
and found to be down-regulated. These results suggest
that numerous cellular processes were transcriptionally
altered throughout the course of the host response to
B. pseudomallei.

Results
Development and characterization of acute melioidosis in
a mouse model
BALB/c mice were challenged with three B. pseudomal-
lei local clinical isolates (referred to herein as D286,
H10 and R15) via the intravenous (i.v.) route. The ten-
day LD50 was determined for each isolate as shown in
Additional file 1, Figure S1. The 10-day LD50 for
B. pseudomallei D286, H10 and R15 are 5.55 × 102

CFU, 5.63 × 103 CFU and 2.2 × 105 CFU, respectively.
The mice infected with a dosage of >104 CFU B. pseudo-
mallei D286 were lethargic, had ruffled fur and devel-
oped paresis of both hind legs at the late stage of the
course of infection ultimately leading to paralysis before
succumbing to infection, similar to a previous report
[11]. Based on the lower LD50 value, the D286 isolate
was chosen for the following experiments.
To characterize the acute melioidosis model, we moni-

tored the kinetics of the bacterial loads in various
organs and leukocyte differential counts during the
course of infection in BALB/c mice infected with 1.1 ×
103 CFU of B. pseudomallei D286. At 16 hpi, the bacter-
ial load in the spleen (104 CFU/organ) was significantly
higher than the liver (103 CFU/organ) (p-value =
0.0009) while the bacterial load in both organs were
similar at 24 hpi and 42 hpi, with an average of 104 to
105 CFU/organ (Figure 1). The data demonstrates that
no significant differences exist in bacterial replication
and dissemination within these two organs during the
first 42 hr of infection. During the course of infection,
viable B. pseudomallei were also detected in the blood,
although at lower numbers (~102 CFU/ml). High num-
bers of B. pseudomallei in various organs, as well as pre-
sence in the blood confirms that systemic acute
septicemic melioidosis was successfully developed in
BALB/c mice. No significant differences were observed
in liver and spleen weights at all infection time points
(data not shown) and no clinical signs of illness were
observed when compared to the naïve mice.
To determine changes in leukocyte counts and com-

position during infection of BALB/c mice, blood samples
from 16, 24 and 42 hr time points were analyzed. The
results of the differential blood film after infection with
1.1 × 103 CFU B. pseudomallei D286 revealed a rise in
the number of neutrophils over the course of infection
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(Figure 2). In addition, a decline in lymphocyte counts
and finally development of lymphopenia was observed
in these B. pseudomallei infected mice as reported pre-
viously [5]. The neutrophil counts increased about 4-
fold as compared to the naïve mice and the size and

shape of erythrocytes and leukocytes were normal (data
not shown), demonstrating that haematopoiesis of the
host was not affected by the bacteria during the course
of infection. The rise in number of granulocytes indi-
cates the innate immune mechanism was triggered in
response to B. pseudomallei infection.

Global transcriptional responses to acute stage
melioidosis
To gain deeper insight into the host response to
B. pseudomallei infection, we used the mouse whole-
genome microarray from Illumina to elucidate the global
changes of host gene expression in both infected liver
and spleen. We noted that B. pseudomallei infection in
BALB/c mice at the acute phase results in more differ-
entially expressed genes in the liver compared to the
spleen. Notably, most of the differentially expressed
genes in liver at 24 hpi were down-regulated (Figure 3).
In order to gain insight from the large amount of

microarray data, gene expression results were analyzed
in the context of biological processes utilizing Gene-
Spring GX7.3.1 Expression Analysis (Agilent Technolo-
gies, USA), Pathway Studio 6 (Adriane Inc.) and the
web-based software GOTerm Finder and GeneTrail soft-
ware. The analysis outputs consistently demonstrated
that the majority of these differentially expressed genes
were clustered as host immune response, defence
response, cell cycle regulation, proteasomal degradation,
signal transduction, and nutrient metabolism related
genes (Figure 4). As expected, the early host response is
enriched for immediate immune responses, including
the inflammatory response, acute-phase proteins
response, apoptosis and cell death programs. At 24 hpi,
a majority of the genes are involved in host cellular

Figure 1 Bacterial loads in BALB/c mice. The bacterial loads in
the (A) liver, (B) spleen and (C) blood of BALB/c mice at 16 hr, 24
hr and 42 hr time points after intravenous infection with 1.1 × 103

CFU of B. pseudomallei D286 are shown. Each symbol represents
one mouse. Horizontal line indicates the geometric mean for each
group. The control mice are not represented as no colonies grew
from their organ homogenates or blood samples.

Figure 2 Leukocyte differential counts during acute
B. pseudomallei infection. Changes in differential leukocyte counts
after intravenous infection with 1.1 × 103 CFU B. pseudomallei D286.
Values are given as that of pooled-blood from infected mice for
each group at the particular time point.
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Figure 3 Differential gene expression in acute B. pseudomallei infection over 42 hrs. Hierarchical clustering of the expression profile of (A)
liver (L) and (D) spleen (S) infected with B. pseudomallei for 16, 24 and 42 hpi; Number of genes modulated during acute B. pseudomallei D286
infection in BALB/c mice at 16 hpi, 24 hpi and 42 hpi in both (B) liver and (E) spleen; Major biological processes consistently modulated
throughout the acute phase of infection in (C) liver and (F) spleen as determined by GOTerm Finder analysis.
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Figure 4 Transcriptional responses to acute B. pseudomallei infection. Hierarchical clustering of the expression profile of liver and spleen
infected with B. pseudomallei at 16, 24 and 42 hpi according to functional categories. The heat maps indicate the fold change in liver or spleen
gene expression greater than (red) or less than (green) 2-fold at least once during the time course. Genes whose expression did not change are
coloured in black. *, immune-related genes known to be associated with the general bacterial infection.

Chin et al. BMC Genomics 2010, 11:672
http://www.biomedcentral.com/1471-2164/11/672

Page 5 of 14



metabolism and signal transduction pathways and found
to be down-regulated. Due to the large number of sig-
nificantly differentiated genes modulated during the
infection, only data related to genes that have some
functional information are shown and discussed below.
The identified genes were categorized according to func-
tional categories and fold change relative to naïve con-
trol mice are presented as a heatmap (Figure 4 and
Additional file 2, Table S1).

The TLR2 pathway is responsible for initiation of host
defence responses to B. pseudomallei infection
Upon contact with the host cell, B. pseudomallei is
known to elicit Toll-like receptor (TLR) signalling
through transmembrane pattern recognition receptors
(PRR) [12-14]. In this study, the expression levels of sev-
eral TLRs (TLR2, 3, 4, 5, 6 and 7) were modulated;
TLR2 was highly induced throughout the 42 hr time point
in the liver. In contrast, TLR4, which detects lipopolysac-
charides (LPS), was induced weakly at 42 hpi (Figure 4
and Additional file 2, Table S1). This expression profile is
similar to that reported by Feterl et al. [12] in B. pseudo-
mallei-infected RAW264.7 macrophages.
Engagement of TLRs upon B. pseudomallei infection

subsequently altered various immune responses particu-
larly the inflammation related genes. These include the
pro-inflammatory mediators (TNF, IL1b, IL6, colony sti-
mulating factor 3 (GCSF), colony stimulating factor 1
(MCSF)), the chemokines (CCL3, CCL4, CXCL1,
CXCL2, CXCL3), and the IFN-stimulated genes (ISGs)
(2’-5’ oligoadenylate synthetase (OAS), the IFN-inducible
chemokine genes (CCL9, CXCL10, CXCL11)). Genes
that activated the immune response included the NF�B
family members and their co-activator B-cell leukemia
(BCL3), and the activator protein-1 components (JUNB
and fos-like antigen 2 (FOSL2)), while factors that med-
iate the effects of IFN (interferon regulatory factor (IRF)
1, IRF4, IRF7, signal transducer and activator of tran-
scription (STAT) 1, STAT2, STAT3) were also up-
regulated in response to infection. Of note, in the
spleen, many of these inflammatory genes were highly
elevated at 16 hpi, peaked at 24 hpi, followed by a dras-
tic decline at 42 hpi (Figure 5a). These include the IFNg,
the chemokines CXCL1 and CXCL2 which are impor-
tant for neutrophil migration and mobilization; as well
as GCSF, CXCL2, CXCL10 and IL6 (Figure 4 and Addi-
tional file 2, Table S1). The relative expression of
selected differentially regulated host-cell genes was ana-
lysed by quantitative Real Time Polymerase Chain Reac-
tion (qRT-PCR) on the same samples as those analysed
by microarray analysis (Figure 5b). The samples were
verified by the qRT-PCR as up- or down-regulated,
albeit with magnitudes different from those recorded by
the microarray analysis.

Genes that contribute to negative feedback loops that
allow the cell to return to its inactivated state were also
up-regulated. These include NF�BIA and NF�BIe which
sequester NF�B proteins in the cytoplasm, suppressors
of NF�B (TNFAIP3), TLR signalling negative regulators
(suppressor of cytokine signalling (SOCS), interleukin-1
receptor-associated kinase 3 (IRAK-M)), dual specificity
phosphatase (DUSP) family members (DUSP8, DUSP16)
and the anti-inflammatory cytokine IL10 (Figure 4 and
Additional file 2, Table S1).

Suboptimal activation of complement cascade
Activation of the complement system is important in
defending against pyrogenic bacterial infection, bridging
innate and adaptive immunity, and disposing of immune
complexes and the products of inflammatory injury
[15,16]. In this study, the genes involved in the comple-
ment system were mildly up-regulated in both organs
although dominant in the spleen after 24 hpi. These
include the complement component 1 (C1r and C1q),
C2, C3, C4, CFB, properdin, CD55, CD93, surfactant
associated protein D (SFTPD) and formyl peptide recep-
tor involved in C3a anaphylatoxin receptor activation
(FPR) (Figure 4 and Additional file 2, Table S1). How-
ever, some key genes in the mannose-binding lectin
pathway (LMAN2, mannan-binding lectin serine pepti-
dase (MASP) 1, MASP2) and membrane-attack complex
(MAC) (C6, C6a, C8b, C8g, C9, CFHR1) formation were
down-regulated. A summary of the modulated genes
within the complement system is shown in Additional
file 3, Figure S2. Activation of complement can also be
enhanced in a pathogen-independent manner by acute-
phase proteins and triggered by the proteins within the
coagulation or fibrinolysis pathways. The fibrinolysis
related genes (plasminogen activator, urokinase, (PLAU),
plasminogen activator, urokinase receptor (PLAUR),
PLAT, kallikrein (KLK) 1, KLK4) were also elevated
after 24 hpi in the liver. However, genes involved in the
coagulation pathway (F3, F5, F7, F8, F10, F11, F13) were
down-regulated at 24 hr in the liver (Figure 4 and Addi-
tional file 2, Table S1).

Activation of caspases and cell death programs
Several Nod-like receptor (NLR) family genes (nucleo-
tide-binding oligomerization domain (NOD) 1, NOD2,
NLRP2, NLRP3 and class II trans-activator (CIITA))
which act as intracellular sensors to detect cytosolic
microbial components and “danger” signals were ele-
vated upon infection (Figure 4 and Additional file 2,
Table S1). This subsequently triggered the activation of
caspase (CASP) cascades to execute apoptosis and
amplify the inflammatory responses essential in control-
ling intracellular pathogens. Various caspases, including
the subfamily of inflammatory mediator (CASP1,
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CASP4), the apoptotic activator (CASP2, CASP8) and
the apoptotic executioner (CASP7) [17-19] were up-
regulated in response to infection. Furthermore, the cell
death associated genes (BCL2 family members, BH3
interacting domain death agonist (BID), CD28, cyclin-
dependent kinase inhibitor 1A (CDKN1A), SCOTIN,
serine peptidase inhibitor, clade A (SERPINA), and anti-
apoptotic factors baculoviral IAP repeat-containing
(BIRC) 2 and BIRC3) were also elevated in the B. pseu-
domallei-infected host over the 42 hr time period.
Many Gram-negative bacteria, such as Salmonella

typhimurium (S. typhimurium), Pseudomonas aeruginosa
(P. aeruginosa), Legionella pneumophila (L. pneumo-
phila) and Francisella tularensis (F. tularensis) can
induce caspase 1 activation and rapid macrophage cell
death by inflammasome activation [20-22]. The caspase
1 dependent macrophage death induced by B. pseudo-
mallei reported recently by Sun et al. [23] and the
induction of IL1b and IL33 were also observed in this
study. Our expression profiles indicated that additional

inflammasome-related genes were up regulated at 24
hpi. For example, genes encoding proteins involved in
the NLRP3 inflammasome were up regulated: members
of the cathepsin family (capthepsin C, D, F, S and Z),
purinergic receptor family members (P2RX4, P2RY2,
P2RY13, P2RY14), pannexin-1 (PANX1) and autophagy
related gene (ATG16l2) (Figure 4 and Additional file 2,
Table S1) [19,24]. In addition, the type 1 IFN related
genes (OAS1G, OAS2, OASL1, OASL2, S100A6,
S100A8, S100A9, S100A11) that are necessary for acti-
vation of the inflammasome in Francisella novida-
infected macrophages [22], were highly induced over the
course of infection and peaked at 24 hpi.

Prolonged expression of acute phase responses may lead
to tissue injury
Acute phase proteins (APP) are important in providing
protective functions at sites of tissue injury [25], how-
ever their maintenance over long periods may have
negative clinical consequences [26]. The APP isolate and

Figure 5 Expression profiling of some immune-related genes over 42 hrs. (A) Decrease in transcriptional expression of potent cytokines
and chemokines in the spleen at 42 hpi, (B) qPCR analysis of host-cell genes found to be differentially expressed by microarray.
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neutralize the pathogen and prevent further pathogen
entry while minimizing tissue damage and promoting
repair processes, thereby permitting host homeostatic
mechanisms to rapidly restore normal physiological
functions [26]. Numerous APP (ceruloplasmin (CP),
haptoglobin (HP), phospholipase A2 (PLA2G), serum
amyloid A (SAA)) were up-regulated during the B. pseu-
domallei acute infection. Among these, family of SAA
(particularly the SAA2 and SAA3) was highly induced
throughout the infection period. SAA mRNA and pro-
tein synthesis are induced in vivo during the inflamma-
tory response towards various challenges such as tissue
damage, infection and trauma in all vertebrate species.
However, prolonged expression of SAA, and the conse-
quent long-term production of the extracellular matrix-
degrading enzymes, may play a role in degenerative
diseases [26]. This expression profile indicates tissue
damage has occurred in the host, which can lead to
induction of the ubiquitin system, peptidoglysis and pro-
teasomal degradation. Indeed, the ubiquitin D (UBD)
gene required to label proteins for proteasomal degrada-
tion, peptidoglysis associated genes (elastases, matrix
metalloproteinease) as well as genes encoding the pro-
teasome, a multi-subunit complex that degrades proteins
targeted for destruction by the ubiquitin pathway, were
significantly induced beginning at 16 hpi (Figure 4 and
Additional file 2, Table S1).

Suppression of various metabolic pathways alters liver
cellular homeostasis
Gene expression profiles revealed a number of genes cod-
ing for various metabolic enzymes were down-regulated in
the liver after 24 hpi. Gene ontology identified that most
of the suppressed genes were involved in oxidation reduc-
tion, organic and carboxylic acid metabolic processes, elec-
tron carrier activity, lipid metabolic processes etc.
GeneTrail analysis revealed most of these genes including
acetyl-coenzyme A acyltransferase 1B (ACAA1B), acyl-
coenzyme A dehydrogenase, medium chain (ACADM),
acetyl-coenzyme A acetyltransferase (ACAT), aconitase 1

(ACO1), aldehyde dehydrogenase (ALDH), enolase 1
(ENO1), enoyl-coenzyme A (EHHADH), 3-hydroxy-3-
methylglutaryl-coenzyme A synthase 2 (HMGCS2), code
for proteins involved in the amino acid metabolism path-
ways. The top ten pathways suppressed following B. pseu-
domallei infection are shown in Table 1.
Cytochrome B has a crucial role in the activity of the

bc1 complex, one of several complexes that contribute
to energy transduction in the mitochondria [27]. Sur-
prisingly, a number of cytochrome B genes associated
with phosphorylation-dependent pathways (electron
transport chain) and cytochrome P450 metabolism of
xenobiotics were significantly down-regulated after 24
hpi (Figure 4 and Additional file 2, Table S1).
Many enzymes associated with essential pathways are

modulated during B. pseudomallei acute infection. Gly-
colysis is a central pathway that produces important
precursor metabolites including glucose-6-phosphate
and pyruvate. Many of the glycolytic enzymes were sig-
nificantly down-regulated, including phosphofructoki-
nase (PFK1), PFKP, aldolase 1, A isoform (ALDOA),
ALDOC, phosphoglycerate mutase 1 (PGAM1), ENO1,
ENO2, as well as pyruvate dehydrogenase beta (PDHB),
the key enzyme that converts pyruvate to acetyl-CoA for
energy production via the TCA (tricarboxylic acid) cycle
(Figure 4 and Additional file 2, Table S1). A number of
genes encoding enzymes involved in the TCA cycle
were also down-regulated. In addition, the alternative
pathways involved in producing acetyl-CoA or TCA
cycle components such as the fatty acid metabolism, tyr-
osine metabolism as well as valine, leucine and isoleu-
cine degradation pathways, were also down-regulated.
The modulation profile of glycolysis and TCA cycle in
response to B. pseudomallei acute infection is summar-
ized in Additional file 4, Figure S3.

Discussion
Individuals with acute melioidosis present symptoms
rapidly and succumb to disease (<24 hpi) before antibio-
tic treatment can be administrated [1]. Previous studies

Table 1 List of major biological processes down-regulated at 24 hpi in the liver identified by GOTerm Finder

KEGG Pathways p-value

Biosynthesis of unsaturated fatty acids 9.98E-05

Fatty acid metabolism 9.98E-05

Valine, leucine and isoleucine degradation 9.98E-05

Tryptophan metabolism 0.000141038

Butanoate metabolism 0.00571029

Drug metabolism - cytochrome P450 0.00571029

Biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid 0.0112801

Propanoate metabolism 0.0112801

Arginine and proline metabolism 0.0198866

Biosynthesis of phenylpropanoids 0.0198866
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on elucidating the pathogen-host response of melioido-
sis had focused primarily on a subset of immune
response genes [8,9,28-30], however, analyses of single
gene or limited gene expression patterns is insufficient
to dissect the host response to infection globally. We
developed an acute melioidosis model in BALB/c mice
to get a comprehensive genome wide view of the host
transcriptional response during the acute stage of
melioidosis. Our analyses clearly demonstrated that the
pathogen had intimately engaged the innate immune
system at the early onset of infection by rapid induction
of numerous inflammatory responses.
The primary response observed was the overwhelming

induction of TLR2 to counteract B. pseudomallei, which
we propose, subsequently triggered the activation of
many inflammation-biased genes important in attracting
neutrophils and monocytes to the site of acute inflam-
mation. These cytokines and chemokines also function
as central mediators in activating various host defence
systems such as apoptosis, JAK/STAT signalling path-
way, mitogen activated protein kinase (MAPK) signalling
pathway and ultimately trigger the appropriate adaptive
immune system. Induction of these genes was previously
reported in numerous in-vivo, in-vitro or melioidosis
patient studies [2,13,28,30-32]. Hence our study rein-
forces the consistency of the inflammatory genes expres-
sion in response to acute melioidosis. Concomitantly,
the host frontline defence system is boosted by increas-
ing the production of granulocytes (Figure 2). Neverthe-
less, the bacteria are capable of propagating in a tissue
environment that is evidently overloaded with high
levels of inflammatory-associated proteins (Figure 1).
This genome-wide expression study confirms that the
production of signals responsible for the activation of
pro-inflammatory genes in response to B. pseudomallei
infection, are mainly TLR2 dependent. This observation
supports a previous finding of improved survival in
respiratory infection in TLR2 KO mice with reduced
bacterial burden and lung inflammation, as well as less
distant organ injury [13].
The cluster of inflammatory-associated genes consis-

tently highly induced in response to B. pseudomallei
acute infection is part of the group designated as “com-
mon host immune response”. Most of these genes are
induced in many different cell types in response to
exposure to several different pathogen species such as
Escherichia coli, Salmonella typhi, Staphylococcus aur-
eus, Listeria monocytogenes, Mycobacterium tuberculosis,
Candida albicans, Bordetella pertussis, Mycobacterium
bovis, P. aeruginosa and S. typhimurium [33-39]. Up-
regulation of this core set of genes by pathogens might
represent a general “alarm signal” for inflammatory
infections [39]. Common host genes (such as CCL2,
CCL7, IP30 and genes encoding MHC class II related

molecules) known to be repressed by pathogens have
been identified in PBMCs infected with B. pertussis, E.
coli and S. aureus [36]. Surprisingly in our study, these
genes were highly induced in response to B. pseudomal-
lei infection and could be a Burkholderia specific
response.
The reaction to a given pathogen must be sufficient for

bacterial elimination but not so strong as to be harmful to
the host [40]. This is particularly true for innate immunity
in cases including acute melioidosis where excessive acti-
vation of inflammatory genes is commonly associated with
septic shock. We did not see up-regulation in the levels of
anti-inflammatory signals and TLR negative regulators at
24 hpi, suggesting that the failure to suppress inflamma-
tion at this early time point contributes to the excessive
inflammation and acute nature of this infection. Neverthe-
less, at 42 hpi, a significant decrease in expression of these
potent inflammatory genes (Figure 5a) was observed and
may actually benefit the intracellular pathogen. However,
the underlying factors that contribute to the decrease in
expression of these inflammatory genes remain unclear as
the production of anti-inflammatory cytokines (IL4, IL6
and IL10) was relatively insufficient to counter the high
pro-inflammatory responses at 24 hpi.
Acute forms of melioidosis that lead to sepsis, multi-

ple organ failure and death are thought to result from
an uncontrolled inflammatory reaction that ultimately
leads to excessive inflammation [7] and eventually tissue
injury in the B. pseudomallei-infected host. Activation of
proteasomal degradation following tissue injury suggests
the production of immunological waste products such
as apoptotic cells and immune complexes in the B. pseu-
domallei-infected host. This could be attributed to a
failure in activating the complement system in time,
leading to the accumulation of waste and uncontrolled
spread of the pathogen (Figure 1). The low levels of the
potent anaphyatoxin C5a observed in our study most
likely inhibit the downstream terminal complement
pathway. As a result, deficient rapid clearance of apop-
totic cells resulting in extracellular disintegration of the
cell and release of intracellular components triggers
inflammatory cytokine production and contributes to
“breaking tolerance” by facilitating an immune response
to intracellular constituents [41]. This is the first evi-
dence of failure of the downstream complement path-
way in acute melioidosis.
The B. pseudomallei-infected host also over express

many cell death related genes which suggests that the
host initiates various cell death defence responses and
disrupts cell regulation to limit a favourable intracellular
niche for the pathogens. Elevation of caspase 2, 3, 7 and
8, as well as the BCL-2 family protein BID and TNF-
receptor superfamily suggests that the host triggers
apoptosis signalling via the death receptor mediated
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(extrinsic) pathway. In addition, we saw an up regulation
of inflammasome related genes (NAIP2, NLRP3, CIITA,
NLRP6, interferon activated gene 205 (IFI205)) not pre-
viously reported in the B. pseudomallei-infected host. B.
pseudomallei virulence factors such as type-three secre-
tion factors (TTSS), flagellin and channel forming toxins
like hemolysin could trigger inflammasome-dependent
caspase 1 activation [6,42].
B. pseudomallei is known to interfere with iNOS

expression in RAW264.7 macrophages and abrogate
nitric oxide (NO) production during the early stages of
infection [12,43]. Arginase 1 and arginase 2 have been
reported to compete with NO syntheses for their com-
mon substrate, arginine, and prevent NO production in
the M. tuberculosis infected bone-marrow derived
macrophages as well as Salmonella infected RAW264.7
macrophages [44-46]. Here we report for the first time
that B. pseudomallei up-regulates both arginase 1 and
arginase 2 isoforms in the host with arginase 2 being
more dominant. The expression profiles demonstrate
both host nitric oxide synthase 2 (NOS2) and arginase 2
were elevated at a similar magnitude at 24 hpi. This
suggests that arginase competes with NOS2 to produce
NO from arginine during the infection, leading to the
suboptimal antibacterial effect of NOS2 in the B. pseu-
domallei-infected host.
Certain pathogens evade the host defence by trigger-

ing the TLR2-mediated biased anti-inflammatory effects
or prevent recognition by TLRs [47]. For example, Yer-
sinia- and Candida-induced TLR2 signalling leads to the
release of IL-10, which can lead to immunosuppression.
However, the response following recognition of B. pseu-
domallei via the TLR2 signalling pathway is contrary to
the evasion mechanism exploited by Yersina spp. and
Candida spp. In addition, some pathogens have devel-
oped strategies to either block or avoid their recognition
by TLRs and subsequent activation of the innate
defence. This study suggests that B. pseudomallei may
use specific TLR-mediated signals to escape from the
host defence. Future studies will be aimed at determin-
ing whether B. pseudomallei utilizes these signals to
evade TLR clearance mechanisms.
Tissue injury leads to extracellular matrix breakdown,

including the degradation of hyaluronic acid (HA) and
resulting oligosaccharides. In this study, the gene encod-
ing hyaluronan synthase 2 (HAS2), the enzyme that pro-
duces HA, was induced. In contrast, the genes encoding
hyaluronoglucosaminidases (HYAL1, HYAL2), the
enzymes that degrade HA, were repressed, indicating
that perhaps HA is not degraded during a B. pseudomal-
lei infection. These endogenous signals can also trigger
TLR2 and/or TLR4 activation and signals distinct from
microbial stimulators, for instance HA but not LPS, sig-
nal through TLR4, MD2, and CD44 [48]. Up regulation

of TLR2, TLR4 and TLR7 as well as MD2 could indicate
B. pseudomallei-infected host responses to endogenous
signals released during tissue damage [48]. However, the
ability of the engaged TLRs to distinguish between
microbial and endogenous signals and subsequently trig-
ger appropriate responses, remains unclear [40,48,49].
These observations reflect that the inflammatory
response may cause more damage to the host than the
microbe. In summary, our work has provided an exten-
sive description of host defence responses to B. pseudo-
mallei during an acute infection.
Changes in host cell metabolism as a consequence of

nutrient scavenging by intracellular B. pseudomallei have
never been studied. The microarray data presented here
provides the first description of changes in the B. pseudo-
mallei-infected host cell metabolism particularly the gly-
colytic and TCA pathways. The glycolysis pathway and
the TCA cycle were both transcriptionally repressed. It
remains to be determined if shutting down both these
pathways is part of the host response to control the repli-
cation of intracellular bacteria or a strategy adopted by
the pathogen to survive intracellularly. In addition, we
found that expression of 37 cytochrome P450-related
genes was suppressed in the liver over the course of
infection, most notably at 24 hpi. The expression of the
detoxification enzymes amine UDP-glucuronosyltrans-
ferases (UGT2B1, UGT2B34) and N-sulfotransferase
(NDST1) was also down-regulated. Our data suggests
that B. pseudomallei-induced impaired liver detoxifying
activity might be a causative factor in liver sepsis. Collec-
tively, the data presented here suggests that hepatocytes,
via receptors for many pro-inflammatory cytokines, mod-
ify their metabolic pathways (glycolysis, TCA, fatty acid
metabolism and various amino acid biosynthesis) in
response to B. pseudomallei acute infection.

Conclusion
This genome wide expression profile demonstrates that
a general “alarm signal” of infection is triggered by the
host upon infection with B. pseudomallei and subse-
quently various defence programs are activated to con-
trol the replication of the intracellular pathogen.
Nevertheless, the overwhelmed inflammatory response
to infection as well as tissue injury leads to metabolic
disturbances and homeostatic imbalance which is detri-
mental to the host. The suboptimal complement func-
tion correlates with uncontrolled spread of the bacteria,
a hallmark of the acute nature of this infection. In addi-
tion, we postulate tissue damage following B. pseudo-
mallei acute infection is contributing to dysregulation of
the innate immune response via TLR2, the surveillance
receptor that recognizes both endogenous and exogen-
ous molecules.

Chin et al. BMC Genomics 2010, 11:672
http://www.biomedcentral.com/1471-2164/11/672

Page 10 of 14



Methods
Animals
7- to 9-week-old BALB/c mice were purchased from the
Institute for Medical Research, Malaysia. They were
housed in High Temperature Polysufone (Techniplast,
Italy) cages with a bedding of wood shavings, subjected
to a 12 hr light/dark cycle and fed on a diet of commer-
cial pellets and distilled water ad libitum. All animal
experiments were performed in accordance with the
Universiti Kebangsaan Malaysia animal ethics guidelines
and approved by the Universiti Kebangsaan Malaysia
Animal Ethics Committee (UKMAEC).

Bacteria
The three clinical B. pseudomallei isolates (referred to
herein as D286, R15 and H10) used in this study are
listed in Table 2. All B. pseudomallei isolates were pre-
viously characterized based on biochemical tests as well
as by 16 S rRNA sequencing [50]. Genome comparison
with B. pseudomallei strain K96243 and B. thailandensis
strain E264 identified B. pseudomallei D286, R15 and
H10 as members of the YLF genomic group (Lye et al.,
unpublished data). Bacteria were grown in Brain Heart
Infusion (BHI) broth overnight at 37°C. The cells were
centrifuged at 10,000 × g, suspended in BHI broth con-
taining 20% glycerol, frozen immediately in aliquots of
109 CFU per ml and stored at -80°C [5].

Determination of 50% lethal dose (LD50)
Mice were divided into four groups of five BALB/c mice
and each group was inoculated with a bacterial isolate at
different doses via the lateral tail vein. The doses reported
reflect the actual dose of the inoculums as determined by
colony counts on Ashdown agar. Five control mice
received 200 μl of sterile phosphate-buffered saline (PBS).
Following inoculation, mice were monitored daily over 10
days for signs of morbidity and mortality [11,51,52].

Enumeration of viable B. pseudomallei in the blood
Mice were tail-bled on days 2, 4, 6, and 8 post-infection.
Blood was pooled for each group of mice and collected in
EDTA-tubes. The blood was then plated on Ashdown agar
and colonies were counted after 2 days incubation at 37°C.

Infection of mice and preparation of organs
Infection experiments were performed as described pre-
viously with minor modification [5,11]. In brief, for each

infection, an aliquot of the freshly thawed B. pseudomal-
lei D286 suspension was adjusted to a density equivalent
to that of a no. 0.5 McFarland nephelometer standard
(approximately 1.5 × 108 CFU/ml). The suspension was
then diluted to the appropriate concentration (10 ×
LD50) in sterile PBS for inoculation into mice as
described previously [5]. A bacterial suspension of 0.2
ml was injected into the lateral tail vein. The actual
number of administered bacteria was determined for
each experiment by plating on Ashdown agar and
counting CFU after 48 hr. At 16, 24, and 42 hpi, three
infected mice were euthanized by ether inhalation to
determine the number of CFU present in blood, liver
and spleen. Liver and spleen were aseptically removed
and homogenized in 2 ml of sterile PBS using a hand-
held motorized homogeniser (IKA® T10 Basic Ultra-Tur-
rax®, Germany). Organ homogenates were serially
diluted ten-fold with PBS and 100 μl of each dilution
was plated on Ashdown agar. The number of bacteria
was counted as CFU per organ. For the determination
of blood CFU, an undiluted 0.1 ml sample collected in
EDTA-tubes was plated out and the number of CFU/ml
was determined. At each time point, a further 3 infected
mice were euthanized for immediate RNA isolation.

Leukocyte differential counts
To determine the leukocyte differential counts, blood
from infected mice were used to make a smear. The
slides were fixed in 100% methanol and stained with
Wright’s and Giemsa stains (Sigma, USA) according to
the manufacturer’s instructions.

Gene expression analyses
Microarray experiments were performed using the Sen-
trixMouseRef-8 Expression BeadChips (Illumina, USA),
containing over 24000 probes according to the instruc-
tions provided. Three biological replicates were performed
for each sample from each time point. The organ samples
were homogenized using a handheld motorized homoge-
niser (IKA® T10 Basic Ultra-Turrax®, Germany). Total
RNA was extracted using TRIzol (Invitrogen, USA),
DNase treated and RNA purified by Qiagen kits (Qiagen,
Germany) according to the manufacturers’ instructions.
The RNA integrity and concentration was assessed on the
Agilent 2100 Bioanalyzer (Agilent Technologies) and RNA
6000 LabChip® kit as well as the Nanodrop ND-1000 spec-
trophotometer (Agilent Technologies).

Table 2 Description of B. pseudomallei isolates utilized in this study

Isolate Source Year Reference

Human D286 Kuala Lumpur Hospital, Malaysia 1986 [50]

Human R15 Institute for Medical Research, Kuala Lumpur, Malaysia 2005 [50]

Human H10 Raub General Hospital, Pahang, Malaysia 1995 [50]

Chin et al. BMC Genomics 2010, 11:672
http://www.biomedcentral.com/1471-2164/11/672

Page 11 of 14



Total RNA (350 ng) from each sample was reverse
transcribed to cDNA and in vitro transcription of cDNA
to cRNA was performed overnight (14 hr) using
Ambion’s Illumina RNA Amplification kit according to
the manufacturer’s instructions (Ambion, USA). The
cRNA concentrations and integrity were assessed as
above. Labelled cRNA (750 ng) was hybridized overnight
(17 hr) to the Illumina Sentrix MouseRef-8 expression
BeadChip array V1.1 (Illumina, USA), and arrays were
washed, blocked, stained and scanned on an Illumina
BeadArray Reader following the manufacturer’s proto-
cols as previously described [53,54] with some
modifications.

Microarray data analysis
The BeadStudio version 1.0 (Illumina, USA) software
was used to generate signal intensity values from the
scans. After that, the standard normalization procedure
for one-colour array data in GeneSpring GX7.3.1
Expression Analysis (Agilent Technologies, USA) was
used. In brief, data transformation was corrected for low
signal, with intensity values <10 set to 10. In addition,
per-gene normalization was applied by dividing each
probe intensity by the median intensity value for all
samples. The normalized data were grouped on the
basis of the experimental conditions (organs and infec-
tion time points) and filtered using the Volcano Plot.
Differentially expressed genes were defined as those hav-
ing a p value of ≤ 0.05 and an absolute change greater
than 2-fold for B. pseudomallei infected tissue at 16 hr,
24 hr or 42 hr relative to the uninfected control tissue.
The data discussed in this publication have been depos-
ited in the NCBI Gene Expression Omnibus and are
accessible through the GEO Series accession number
GSE25074 http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE25074.
The identified differentially expressed gene lists from

each experimental condition were compared in a Venn
diagram using the web-based software VENNY http://
bioinfogp.cnb.csic.es/tools/venny/index.html. The
web-based software GOTerm Finder http://go.princeton.
edu/cgi-bin/GOTermFinder and GeneTrail http://gene-
trail.bioinf.uni-sb.de/ were used to identify Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) categories found in specified subsets
of the data. The analyses were performed by using the
default setting in both software with a significance
threshold p-value < 0.05.
Selected data were organized by a hierarchical cluster-

ing with the web-based software Cluster 3.0. The clus-
tering algorithm is based on an uncentered correlation
metric, with average linkage clustering and visualized
using Java Treeview V1.1.3.

Quantitative Real Time PCR
qRT-PCR was performed in the Mastercycler® ep real-
plex (Eppendorf, Germany) to quantify the expression of
TLR2, TLR4, TLR5, IFNg and CCL7 genes. Briefly, 25 μl
reactions were performed using the iScript™One-Step
RT-PCR kit with SYBR green according to the manufac-
turer’s instruction (BioRad Laboratories, USA), primers
at a final concentration of 1 μM and a data acquisition
temperature of 76°C. In order to control for variation in
RNA concentration, cycle threshold (Ct) values were
normalized to b-actin that does not change with infec-
tion [12]. Primer sets used in this study are shown in
Additional file 5, Table S2.

Additional material

Additional file 1: Figure S1 - Mortality of mice (n = 3-5 mice/group)
infected intravenously with B. pseudomallei strain (A) D286, (B) H10
and (C) R15. Mice were infected intravenously with doses from 102 to
106 CFU. Animals were observed daily up to ten-days, and the
percentage survival plotted against time.

Additional file 2: Table S1 - Kinetic profiles of host gene expression
modulated by B. pseudomallei infection in both liver and spleen.

Additional file 3: Figure S2 - Transcriptional changes of genes
involved in the complement system. Shown is the expression profile
for genes modulated at 42 hpi in liver and spleen. Induced genes are
highlighted in red while the repressed genes are highlighted in green.

Additional file 4: Figure S3 - Transcriptional changes of genes
involved in the glycolysis and TCA pathways. Shown are the
expression profiles for liver genes (24 hpi) encoding enzymes involved in
glycolysis (left) and TCA cycle (right). Induced genes are highlighted in
red while the repressed genes are highlighted in green.

Additional file 5: Table S2 - Primers used in qRT-PCR.
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