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ABSTRACT: With renewed interest in atropisomerism of drug molecules, efficient methods to experimentally determine torsion
rotational energy barriers are needed. Here, we describe use of the chiral phosphoric acid solvating agent (+)-TiPSY to resolve the
signals of atropisomers in 19F NMR and to use the data to study the kinetics of racemization and determine the rotational energy
barrier of clinical compound MRTX1719. This method is complimentary to traditional chiral high-performance liquid
chromatography (HPLC) and enhances the toolkit for chiral analysis techniques.

1. INTRODUCTION
MRTX1719, an inhibitor of the PRMT5-MTA complex, was
recently disclosed1 and is in a phase 1/2 clinical study in solid
tumors with MTAP deletions. One of the distinct structural
characteristics of MRTX1719 is the axis of chirality along the
C−C bond connecting the pentasubstituted phenyl to the
methyl pyrazole group (red arrow, Scheme 1). The calculated
torsion rotational energy barrier (ΔErot) for MRTX1719 was
found2 to be ΔErot = 31.5 kcal/mol. LaPlante et al. disclosed a
classification system for atropisomers using the calculated
ΔErot of rotation, and according to this system, MRTX1719 is
a class 3 atropisomer.3 Class 3 atropisomers are characterized
by slow rotation along the C−C bond with interconversion
half-life measured in years. Here, we disclose a method to
measure the experimental barrier of rotation in solution of the
atropisomeric C−C bond in MRTX1719 using 19F NMR in
the presence of a chiral solvating agent (CSA).
Atropisomerism as a structural feature has attracted

significant attention in the drug discovery community in
recent years.4,5 Currently, only a handful of food and drug
administration (FDA)-approved drugs are atropisomerically
stable compounds. Three were approved as mixtures of
atropisomers, telenzepine,6 colchicine,7 and lesinurad,8 while
sotorasib9 was recently approved as a single atropisomer,
shown in Figure 1a. In addition, multiple single atropisomeric
compounds have been described at various stages of preclinical
and clinical development, see Figure 1b for three exam-
ples.10−12

Developing a drug as a single stable atropisomer as opposed
to a racemic mixture can offer certain advantages such as
enhanced potency and a simplified regulatory path to approval.
Indeed, in a cell proliferation assay (−)-MRTX1719 is almost
300 times more potent than its corresponding distomer
(+)-MRTX1719 (Scheme 1). In addition, there are synthetic
and analytical challenges specific to developing drugs as single
atropisomers, for example, the need for an enantioselective
synthesis or a potentially costly and time-consuming chiral
separation, as well as the need to develop robust analytical
methods to assess enantiopurity and to study racemization
rates and stability.
High-performance liquid chromatography (HPLC) and

supercritical fluid chromatography (SFC) are by far the most
popular analytical methods to determine the enantiopurity of
chiral molecules. While quick and convenient for established
systems, using these methods for novel compounds can involve
extensive condition screening and requires scouting runs across
a number of chiral stationary phases. One disadvantage that we
experienced with HPLC and SFC methods was that for some
analogs, we could not definitively determine the atropisomeric
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properties of the compounds of interest. For example, we could
not ascertain if a lack of separation after screening
approximately 70 HPLC or SFC conditions was due to the
atropisomeric properties of the compound (i.e., fast
interconversion of atropisomers) or due to an inability to
find an appropriate HPLC or SFC method of separation.1

Additionally, an excessive cost is often associated with the
equipment, including chiral columns and the frequent need for
long run times.
Another widely used technique to determine enantiopurity is

NMR. One approach relies on derivatization of a chiral test
article with a chiral derivatizing agent followed by 1H NMR
analysis to determine the enantiomeric excess via the analysis
of the diastereoisomeric mixture. Mosher esters and amides are
important textbook examples illustrating the use of chiral
derivatizing agents.13 Limitations of the derivatization method
include the need for the test compound to contain a functional
group suitable for derivatization and for the stereoisomer to be
inert to racemization under the derivatization conditions. In
this regard, noncovalent approaches to eliminate enantiomer
isochrony by transferring enantiomers into a diastereomeric
environment in the presence of CSAs or chiral lanthanide shift

reagents present a more attractive alternative.14,15 Therefore,
we focused on examining CSAs to develop an NMR-based
analytical technique to characterize the racemization kinetics of
MRTX1719. Recently, Jiang et al.16 described the use of chiral
phosphoric acid CSAs and 1H NMR to determine the
enantiopurity of a set of atropisomeric quinolines. The method
described herein capitalizes on the presence of a fluorine atom
in the studied molecule and can potentially be extended to
study racemization kinetics of other fluorine-containing chiral
molecules. While similar analytical chiral 19F NMR methods
have been described for various classes of compounds,17−20

reported examples using 19F NMR and CSAs to determine the
rate of racemization are limited.21

2. RESULTS AND DISCUSSION
We initially screened the racemate of MRTX1719 with several
CSAs to identify the most suitable system for resolving distinct
resonances in the 1H and/or 19F NMR spectra. Figure 2
depicts the structures and the equivalents of the CSAs used in
screening. A set of mostly acidic CSAs was chosen due to the
basic nature of MRTX1719 (primary benzylamine conjugate
acid pKa = 8). Nonequivalent values of racemic free base

Scheme 1. Structure of MRTX1719 and Its Distomer

Figure 1. (a) FDA-approved atropisomeric compounds; (b) examples of single atropisomers from medicinal chemistry literature.
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MRTX1719 1H and 19F NMR peaks with a range of CSAs in
D2-tetrachloroethane (D2-TCE) solution are summarized in
Figure 3.
In the 1H NMR spectra, there was a noticeable separation of

the 23-CH signal as two overlapping doublets in the presence
of 10 equiv of Δ-TRISPHAT, 5 or 20 equiv of (−)-TBPTA,
and 20 equiv of Reychler’s acid. 20 equiv of (−)-TBPTA also
provided separation of peaks 12-CH2 and 19-CH3. (+)-Pirkle’s
alcohol, (−)-MTPA, and (+)-TiPSY displayed overlapping
aromatic signals with racemic MRTX1719 in the 23-CH
region. However, (+)-Pirkle’s alcohol, (−)-MTPA, and
(+)-TiPSY demonstrated appreciable differences in their effect
on the separation of 12-CH2 or 19-CH3 between 5 and 20
equiv of CSA.
In the 19F NMR spectra, addition of 5 or 20 equiv of

(−)-MTPA or 5 equiv of (+)-Pirkle’s alcohol had no effect on
the fluorine signal. Typically, 10 equiv of Δ-TRISPHAT and

20 equiv of (+)-Pirkle’s alcohol led to slight splitting. In the
case of (−)-TBPTA, the 19F NMR data were ambiguous, for
there was an apparent difference with 5 equiv but no difference
observed with 20 equiv. (+)-TiPSY gave the most encouraging
results with clear, concentration-dependent separation of the
peaks observed (5 equiv ΔΔ δ = 48 Hz and 20 equiv ΔΔ δ =
83 Hz in 19F NMR acquired at 376.6 MHz). Unlike the
overlapping multiplets of aromatic protons observed in the 1H
NMR spectra, the fluorine singlet peak in the 19F NMR spectra
was cleanly split and well resolved at the baseline in the
presence of the CSA. This high resolution facilitated by the
large dynamic range of 19F NMR enabled a more precise
integration of the peaks compared to 1H NMR, thereby
providing a more precise quantification of the species.
Encouraged by the clear separation of signals in the 19F

NMR spectra produced by the (+)-TiPSY CSA, we conducted
further validation studies, including method reproducibility

Figure 2. CSA structures and equivalents relative to MRTX1719.

Figure 3. CSA-induced separation of signals in 1H and 19F NMR spectra. The numbers in the bars represent ΔΔ δ in linear scale in Hz.
*Resonance obscured by CSA or residual water peaks. †Resonance(s) of MRTX1719 broad. #Only de-shielded doublet observed cleanly.
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studies. It was determined that 20 equiv of (+)-TiPSY gave the
best peak separation and reproducibility. The finalized design
of the racemization kinetics study involved heating a solution
of MRTX1719 in an NMR tube; then, at the desired time
point, the sample was cooled to room temperature, 20 equiv of
(+)-TiPSY was added, and the 19F NMR spectra were
collected.
The racemization study was carried out with the recrystal-

lized enantiomer of (−)-MRTX1719 (free base) at three
temperatures and four time points per temperature. After the
defined heating period in D2-TCE, the samples were cooled
and analyzed by 19F NMR with 1H decoupling in the presence
of 20 equiv of (+)-TiPSY. The resulting spectra are illustrated
in Figure 4, and the percentage peak areas are summarized in
Table 1.

Racemization constants were determined for each temper-
ature by tracking percentage enantiomeric excess (%ee) decay
over time (Table 1, also see the Supporting Information). The
solution half-lives were found to be 990 h at 313 K, 56 h at 333
K, and 1 h at 353 K. To our satisfaction, when extrapolated
from the Eyring plot (Figure 5), the half-life of MRTX1719 at
room temperature (298 K) in solution was calculated to be 2.9
years. The Gibbs free energy barrier (ΔG‡ at 25 °C)22 for the
rotation around the axial chirality bearing C−C bond was
found to be 28.93 kcal/mol.
To validate this result, we utilized a traditional chromato-

graphic method to determine the barrier of rotation. Two
alternative salt forms and solvents were utilized to account for
any potential sensitivity to the matrix. The samples were
analyzed by a chiral normal phase (NP) HPLC method. For
the hydrochloride form of MRTX1719, heating of the samples
was carried out in 2 M HCl in methanol to mimic potential
API manufacturing conditions. According to the experimental
design for this study, 5−6 time points were collected at four
equilibration temperatures (30−60 °C in 10 °C increments).
For the free base form of MRTX1719, heating of the samples
was carried out in dimethyl sulfoxide (DMSO), and at the
selected time points, the spectra were collected from the
equilibrated samples at 6 temperatures (50−100 °C in 10 °C
increments) (see the Supporting Information). The Eyring
plot data from the 19F NMR study and two HPLC studies are
summarized in Table 2. To our delight, all three methods gave
remarkably similar ΔG‡ (or ΔErot) values, with a standard
deviation <0.2 kcal/mol. MRTX1719 as a free base in DMSO
measured by chiral NP HPLC and in D2-TCE measured by 19F
NMR were the closest, at 28.90 and 28.93 kcal/mol,
respectively. Kinetic measurements for the hydrochloride in
methanolic HCl solution resulted in the slightly lower barrier

Figure 4. 19F{1H} NMR spectra of (−)-MRTX1719 free base in D2-TCE with 20 equiv of (+)-TiPSY CSA after heating at 313, 333, and 353 K
and collecting the data at the indicated time points.

Table 1. Summary of 19F{1H} NMR Data

temp. (K) time (h) %Aa %Bb %eec krac (h−1)d

313 48 93.80 6.20 87.6 0.0007
96 96.70 3.30 93.4
168 93.10 6.90 86.2
336 86.90 13.10 73.8

333 24 83.30 16.70 66.6 0.0124
48 69.20 30.80 38.4
96 60.80 39.20 21.6
144 57.10 42.90 14.2

353 4e 85.20 14.80 70.4 0.6481
8e 76.20 23.80 52.4
24 57.00 43.00 14.0
48 56.30 43.70 12.6

aA = starting material. bB = enantiomer of A. cEnantiomeric excess.
dRacemization constant. eSpectrum acquired with d1 = 1.

Figure 5. Eyring plot for the 19F NMR study.
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of rotation at 28.57 kcal/mol, still very well aligned with the
other data.
According to LaPlante et al.,3 the rotation barrier of ΔG‡

(25 °C) at 28.93 kcal/mol in solution places MRTX1719 at
the interface between class 2 and class 3 atropisomers.
However, with the racemization half-life determined at 2.9
years (298 K), we concluded MRTX1719 is suitably stable for
pharmaceutical development. In addition, the undesired
atropisomer (+)-MRTX1719 can be racemized by heating in
an alcoholic solution at 70−80 °C for 48−72 h, allowing
recycling of the undesired isomer and consequently improving
the efficiency of the synthesis.

3. CONCLUSIONS
The rotation barrier for MRTX1719 was determined using 19F
NMR in the presence of chiral solvating agent (+)-TiPSY. The
resulting ΔG‡ at 25 °C = 28.93 kcal/mol is in good agreement
with the calculated value (31.5 kcal/mol) and is very well
aligned with data obtained using chromatographic techniques.
The 19F NMR kinetics study described here offers a viable
alternative to conventional methods and can be an attractive
option utilizing readily available analytical equipment. Using
19F NMR to determine enantiopurity or to study racemization
kinetics has the capability to provide improved sensitivity and
resolution for systems that contain other molecular species in
the mixture. For example, this 19F NMR method could be used
to study changes in the racemization rate in the presence of
various impurities or reagents that may interfere with
chromatographic analysis. Additionally, longer elution times
are often required to improve the resolution of chromato-
graphic separations for a mixture of enantiomers, whereas high-
quality data from the NMR sample can be collected in just a
few minutes. The described method provides a valuable
addition to the analytical toolkit for studying fluorine-
containing chiral compounds.
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