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Abstract: Anthropogenic ultrafine particulate matter (UFPM) and industrial and natural nanoparticles
(NPs) are ubiquitous. Normal term, preeclamptic, and postconceptional weeks(PCW) 8–15 human
placentas and brains from polluted Mexican cities were analyzed by TEM and energy-dispersive
X-ray spectroscopy. We documented NPs in maternal erythrocytes, early syncytiotrophoblast, Hof-
bauer cells, and fetal endothelium (ECs). Fetal ECs exhibited caveolar NP activity and widespread
erythroblast contact. Brain ECs displayed micropodial extensions reaching luminal NP-loaded ery-
throblasts. Neurons and primitive glia displayed nuclear, organelle, and cytoplasmic NPs in both
singles and conglomerates. Nanoscale Fe, Ti, and Al alloys, Hg, Cu, Ca, Sn, and Si were detected
in placentas and fetal brains. Preeclamptic fetal blood NP vesicles are prospective neonate UFPM
exposure biomarkers. NPs are reaching brain tissues at the early developmental PCW 8–15 stage, and
NPs in maternal and fetal placental tissue compartments strongly suggests the placental barrier is not
limiting the access of environmental NPs. Erythroblasts are the main early NP carriers to fetal tissues.
The passage of UFPM/NPs from mothers to fetuses is documented and fingerprinting placental
single particle composition could be useful for postnatal risk assessments. Fetal brain combustion and
industrial NPs raise medical concerns about prenatal and postnatal health, including neurological
and neurodegenerative lifelong consequences.

Keywords: environmental medicine; placental impairment; neurodevelopmental disorders; fetal
brains; erythroblasts; preeclampsia; nanoparticles; NPs extracellular vesicles; petrochemical pollution;
Villahermosa; Tabasco

1. Introduction

Millions of people are exposed to environments with concentrations of fine particulate
matter (PM2.5) above current USEPA standards, a well-known global risk factor of cardiovas-
cular, respiratory, neurological and psychiatric morbidity and mortality [1–4]. Combustion,
natural (soil, volcanic) ultrafine particulate matter (UFPM), and engineered nanoparticles
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(NPs) are key components of PM2.5 air pollution [5–8]. Their size (≤100 nm) and elemental
composition, i.e., Fe, Hg, Ti, etc., makes UFPM and NPs highly reactive and cytotoxic, with
a high capacity for damaging and crossing biological barriers [3,9–14]. Intrauterine life is
a highly vulnerable developmental period for NP exposures, and maternal-fetal particle
transfer leads to adverse health fetal and postnatal outcomes. Intrauterine toxicity and
risk assessment of UFPM/NPs exposure during pregnancy is a subject of great interest,
given that environmental and engineered NPs can cross the placenta [9]. NP (used here
interchangeably with UFPM) size, shape, charge, surface composition, coating with biocom-
patible molecules, corona formation, and, certainly, stage of embryonic/fetus/placental
maturation are key factors impacting free radical oxidative stress, inflammation, restricted
placental growth, and the activation of placental toll-like receptors (TLRs), to name a
few [9–18]. There is a deep concern regarding uterine environmental exposures, the de-
velopmental origins of disease, and the fetal programming model predicting lifelong
consequences from early intrauterine and/or postnatal exposures to insults significant in
length, cumulative doses, and properties favoring specific cell damage [19–27]. Experimen-
tally, NPs cause fetal developmental toxicity, and the early stages of brain organogenesis
are highly vulnerable to reactive oxygen species (ROS); ultrastructural alterations in mito-
chondria, endoplasmic reticulum (ER), and Golgi complexes; downregulation of neuronal
glutamate transporters; and, ultimately, the impairment of cognition and alterations in
animal behavior [23–30]. The early development of the radial microvasculature in the telen-
cephalon cortical plate (CP) and the correct micro vessel formation are the basis for the later
perivascular glia coverage formation and endothelial barrier maturation critical for setting
up the brain–blood barrier (BBB) [31–34]. Thus, any damage to the primitive brain could
be a crucial factor accounting for neurovascular unit (NVU) malfunction and/or dysfunc-
tional glia and damaged neurons, resulting in perinatal pathologies and neurodegenerative
disorders [35–38]. Metropolitan Mexico City (MMC) residents have been exposed to PM2.5
above the USEPA standards and nanoparticles [39,40], and a progressive development
of Alzheimer’s disease starting in childhood has been described, along with brainstem
hyperphosphorylated tau, α synuclein and TDP-43 pathology in young urbanites [41–43].
Critically, young MMC residents have the exogenous Fe-, Al-, and Ti-rich NPs in their
brains associated with progressive neurovascular damage and quadruple aberrant protein
pathology [41,42].

This pre-COVID study focuses specifically on the light and electron microscopy char-
acterization of preeclamptic and normal-term placentas, and 12–15 week products and their
placentas, from two polluted cities in Mexico: MMC and Villahermosa, Tabasco, whose
populations have been continuously exposed to complex mixtures of air pollutants, includ-
ing fine and ultrafine fractions of PM [41–44]. Given the passage of NPs from placenta to
fetus in experimental animals and human stillbirths [9,45], we are also studying brains
from postconceptional weeks PCW 12–15.

Our working hypothesis posits that in women chronically exposed to PM2.5 above
the annual current US Environmental Protection Agency (USEPA) standard (12 µg/m3)
and high NP concentrations, placental NPs could be taken as evidence for fetal–organ
transfer [39,40,44]. We argue that the early-brain NP identification associated with structural
organelle neural and blood vessel changes will have detrimental effects upon early neural
cells and NVU formation and integrity, ultimately altering immature astroglial cells and
morphogenesis and being a key factor for aberrant protein formation [31–35,46–48]. Highly
neurotoxic combustion and engineered NPs are reaching fetal organs in development and
are setting the bases for neurodevelopmental and neurodegenerative lifelong consequences.

2. Materials and Methods
2.1. Study Cities and Air Quality

Metropolitan Mexico City (MMC) and Villahermosa, Tabasco, were the selected cities
because of high levels of metals in air pollution, with both locations having exposures to
other PM2.5 sources (i.e., subway system and petrochemical activities). The MMC area
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covers ~7585 km2 and is located on an elevated basin 2240 m above sea level surrounded
by mountain ridges. MMC has a population of ~21.8 million people. Emissions from
~6 million vehicles, over 50,000 industries, LP gas, industrial and household solvents, and
vapors of oil-derived liquid fuels combined with high solar radiation and poor ventilation
result in severe air pollution with a strong oxidizing capacity [49]. MMC residents have
been exposed to high levels of primary fine and ultrafine particles, as well as secondary air
pollutants including secondary organic aerosols and ozone concentrations, at levels above
current United States National Air Ambient Quality Standards (NAAQS) all year round
over the last two decades [39,40,50,51]. Commuting in any of the urban transport modes
available in MMC is associated with high NP exposure [52,53]. Traveling in the Mexico City
subway exposes residents to high PM2.5 concentrations between 34 and 93 µg m−3; NPs up
to 50,300 ± 10,600 (# cm−3) at an average size of 38.5 ± 15.9 nm; and elevated concentrations
of Fe, Cu, Ni, Cr, and Mn [52,53]. Villahermosa is the capital city of Tabasco and is located
on an extended swampy plain at 20 m above sea level in southeast Mexico. Together with
two neighboring municipalities, the city makes up the Metropolitan Area of Villahermosa
(MAVH), covering around 2100 km2, with a population of ~860,000 inhabitants. Primary
emissions from gasoline and heavy-duty diesel vehicles from urban and off-road transport
add to the emissions of oil and gas production, compression and processing facilities,
and biomass burning from the agricultural activities that surround the MAVH [54–58].
The MAVH region also receives air masses coming from off-shore oil and gas production
platform flares in the Gulf of Mexico [54,56]. The MAVH’s atmosphere has a weakly
reducing capacity versus the oxidizing nature of MMC’s atmosphere [54,55,57,58].

2.2. Preeclamptic, Normal Term, and Postconceptional Weeks (PCW) 12–15 Placentas
and Products

This study was approved by two institutional review boards: the Committee of
Ethics and Research at the Hospital General de México, Dr. Eduardo Liceaga, IRB:
DI/17/112/03/037, and the Hospital Regional de Alta Especialidad, Dr. Gustavo A.
Rovirosa Perez, Tabasco, IRB HR/073/2017, for the collection of mature and early PCW
12–15 placentas and products. This study included women ≥18 y and written consent was
obtained from all participants with either term and preeclampsia pregnancies (placenta
samples) or early placentas and products. Table 1 shows the demographic data on the
94 women participating in this study.

Table 1. Demographic data on the 94 women participating in this study.

Tissues Residency Women Age Pregnancy Weeks

Term Normal Placentas n = 7 MMC 27.7 ± 7.29 y 39.12 ± 2.44

Preeclampsia placentas n = 7 MMC 25.42 ± 6.5 y 37.02 ± 2.47

Term Normal Placentas n = 12 Villahermosa 26.91 ± 4.1 y 38.25 ± 1.48

Preeclampsia placentas n = 13 Villahermosa 22.07 ± 6.96 y 36.32 ± 3.14

Early placentas n = 19 * Villahermosa 27.21 ± 6.50 y 12–15 weeks

12–15 week products n = 55 Villahermosa 26.01 ± 6.27 y 12–15 weeks
* The 19 cases with early placenta samples belong to the 55 group.

Placenta sections from normal term pregnancies and preeclampsia pregnancies n = 39
and 55 early pregnancy products (including 19 placentas) were examined. Experienced
physicians (YDSCG, JCBG, AAPC) described the gross placental findings from all cases,
rendering diagnoses per the Amsterdam guidelines [59]. Transmission electron microscopy
(TEM) and energy dispersive X-ray spectrometry (EDX) studies were performed using
three mm blocks from fetal organs and placentas. Samples were cut with ceramic knives
and handled with plastic forceps free from metal contamination. High-angle annular dark
field (HAADF) and scanning transmission mode (STEM) were used. A 300 kV FEG FEI
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TECNAI F30 transmission electron microscope (TEM), tuned for a 100 kV acceleration
beam and an 11-spot size, were also utilized for examining the tissues supported on TEM
nickel grids. We analyzed all samples blind to case and grid/tissue sections, and grid areas
were randomly selected and methodically scanned. Electron microscopic analysis was
conducted, as in previous works [42], to identify the NPs’ elemental compositions and the
ultramicroscopic structures of maternal and fetal cells and organelles. The organelle NPs’
locations and their elemental metal and nonmetal contents were the focus of this study.

3. Results
3.1. Air Pollution

MMC and MAVH residents have been chronically exposed to PM2.5 with concentra-
tions above the current USEPA annual standard. Figure 1 shows the time-series for the
maxima PM2.5 24-h average registered by the official monitoring network in MMC and the
daily 24-h averages for the MAVH monitoring stations according to the US EPA AQI-Index
for the period January 2019 to May 2020, which includes the 11-month study period in 2019.

Figure 1. Time-series of maximum PM2.5 24-h averages at MMC and estimated daily 24-h averages
at MAVH January 2019 to May 2020—including the 11 m study period—classified according to the
US EPA AQI index. The blue continuous line depicts the 24-h average WHO guideline. The blue
shade area represents the beginning of the COVID-19 official lockdown in Mexico. Air quality data
were available from the Sistema de Monitoreo Atmosférico del Gobierno de la Ciudad de México
(http://www.aire.cdmx.gob.mx/default.php, accessed on 29 December 2021 and Sistema Nacional
de Información de la Calidad del Aire. Instituto Nacional de Ecología y Cambio Climático (INECC),
México (http://sinaica.inecc.gob.mx/data.php, accessed on 29 December 2021).

http://www.aire.cdmx.gob.mx/default.php
http://sinaica.inecc.gob.mx/data.php
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3.2. Placental Light Microscopy and Transmission Electron Microscopy (TEM)

Term placentas showed villi corresponding to third trimester pregnancies surrounded
by intervillous space (IVS) occupied by maternal red blood cells (RBC) (Figure 2A), as well
as thin syncytiotrophoblast and numerous blood vessels occupied by fetal RBC (Figure 2B).
Electron micrographs show the IVS, syncytiotrophoblast, fetal blood vessels, endothelial
cells (ECs), and Hofbauer cells (Figure 2C,D). Syncytiotrophoblast with numerous free NPs,
as well as clusters of NPs and fetal blood vessels with ECs, can be seen in Figure 2E,F. Fetal
ECs with abnormal tight junctions (TJ) occupied by NPs and fetal luminal RBC in close
contact with the EC can be seen in Figure 2G,H.

Figure 2. Toluidine blue 1 um thick sections and TEM in term placentas. Toluidine blue 1 um thick
sections showing term villi surrounded by intervillous space (IVS) occupied by maternal RBC (A).
Thin syncytiotrophoblast and numerous blood vessels (long arrows) occupied by fetal RBC and Hof-
bauer cells (arrowheads) are seen in (B). Electron micrograph showing the IVS, syncytiotrophoblast,
fetal blood vessels, endothelial cells (EC) with luminal (L) RBC, and a Hofbauer cell (long arrow)
(C,D). A close-up of a villous shows the syncytiotrophoblast layer resting on a basement membrane
(BM upper) with numerous NPs (short arrows). A fetal endothelial cell (EC) contains a fetal RBC, and
an intact EC tight junction is seen (long arrow) (E). Close up of syncytiotrophoblast with numerous
free NPs (short arrows) and clusters of NPs (long arrows). (F). Fetal blood vessel with two ECs and a
tight junction (TJ). Note the prolongation into the lumen (L) of the endothelial cell containing NPs
(long arrow). The EC is resting on a basement membrane (BM upper). A pericyte surrounds the
ECs and contains cytoplasmic free NPs (short arrows) and NPs in mitochondria (arrowhead). The
pericyte basement membrane is visible (BM lower). (G). Fetal ECs with an abnormal TJ (arrowheads),
occupied by NPs and an adjacent EC lysosome, contains numerous NPs (long arrow). The fetal RBC
is seen in vessel lumen. (H). One fetal luminal RBC in close contact with the EC shows an area of
intense caveolar activity (arrowheads) and NPs lining the contact surface. ECs contain numerous
lysosomes with NPs (long arrows).

In contrast, preeclamptic low-weight placentas showed vacuolated SCT, villous cores
with few fetal vessels, and numerous NPs in the SCT and basement membranes
(Figure 3A–H). Maternal RBC in the intervillous space (IVS) contained large numbers
of NPs (Figure 3E), while fetal RBCs in fetal vessels showed numerous NPs and extracellu-
lar vesicles (EVs) decorated with NPs (Figure 3F).
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Figure 3. Preeclamptic placentas TEM. (A). Villous cores with vacuolated syncytiotrophoblast and
few fetal blood vessels lumen (L) containing fetal RBC and white blood cells (WBC). The maternal
IVS can be seen. (B). A close-up of a villous section with numerous NPs (arrow heads) throughout
the layer and also in the prolongations into the IVS (short arrows). The cytotrophoblast basement
membrane is irregularly thick (BM), also contain NPs, and is separated from the EC basement
membrane by abundant collagen tissue (*). (C,D) are examples of severe preeclamptic cases with
thin syncytiotrophoblast and numerous clusters of pyknotic nuclei (white arrows) in the midst of
vacuolated areas (*). Fetal blood vessels are few, ECs are flat and thin, and the lumen (L) is occupied
by RBC. (D) shows a close-up of a syncytiotrophoblast with thin extensions (short arrows) into the
IVS and numerous NPs with elongated shapes (arrow heads). (E). This is a maternal RBC in the
IVS showing abundant NPs lining the surface of the cell. Free NPs are also observed (arrowhead).
(F). Close-up of a fetal blood vessel lumen (L) and EC showing a ~600 nm irregular exosome decorated
with numerous NPs (arrowheads); also notice the free lumen NPs (short arrows). (G). In the same
fetal blood vessel as (A), a monocytic WBC is seen at high power with its branched projections (short
arrows). In the midst of the collagenous fibers, fibroblastic cell processes display numerous NPs
(short arrows) (H).

Placentas at PCW 12–15 can be seen in Figure 4. The toluidine blue sections showed
mesenchymal villi with loose stroma surrounded by cytotrophoblast and syncytiotro-
phoblast (Figure 4A,B). Electron micrographs (Figure 4C–I) showed villi with loose stroma
rich in mesenchymal and Hofbauer cells. Maternal RBC containing NPs were seen in
close contact with early SCT (Figure 4D). Fetal erythroblasts showed close contact with
endothelial fetal blood vessels (Figure 4I).

3.3. Fetal Brains Light Microscopy and TEM

The representative toluidine blue sections in Figure 5 show the early fetal phase post-
conceptional weeks (PCW) 8–12.5 and the early fetal period 13–15 PCW [60]. Numerous
small blood vessels were seen throughout the cortical plate with luminal erythroblasts
(Figure 5A–E). Primitive glial cells were identified along neuronal bodies and capillaries
with luminal erythroblasts (Figure 5B,D,E and insert).
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Figure 4. Placentas postconceptional weeks (PCW) 8–15, toluidine blue sections, and TEM. Tolu-
idine blue sections showed mesenchymal villi with loose stroma surrounded by cytotrophoblast
and syncytiotrophoblast, Hofbauer cells, mesenchymal, and fibroblast like cells (A). A section of
syncytiotrophoblast is shown in (B) ({). Low power TEM (C) shows villi with loose stroma rich in
mesenchymal cells, a fetal blood vessel (short arrows), and a Hofbauer cell (long arrow). Placental villi
float into the maternal blood in the intervillous space (IVS). (D). Close-up of the syncytiotrophoblast
(SCT) in close contact with maternal RBC in the IVS. There is a close contact between the SCT and the
maternal RBC, and a cluster of NPs in the area (long arrow). The SCT prolongations into the IVS are
marked by short arrows. (E). A fetal blood vessel is surrounded by two fibroblastic-like cells with
numerous cytoplasmic prolongations surrounding the vessel (short arrows). (F). One fibroblastic-like
cell around the fetal blood vessel is seen with numerous NPs (short arrows). An endothelial fetal
cell (EC) shows caveolar activity and luminal (L) free NPs are marked with arrowheads. (G). A fetal
EC shows intense filopodia activity—cytoplasmic prolongations reaching towards the lumen (short
arrows). (H). Fetal ECs with intense caveolar and filopodia activity. The caveolar activity is intense
both at the luminal (short arrows) and subluminal surfaces (arrowheads). Free luminal (L) NPs are
also present (long horizontal arrows). (I). Close contact between an erythroblast with fragmented
nuclear remnant (arrowhead) and the fetal EC with filopodia loaded with NPs (short arrows).
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Figure 5. Brain toluidine blue sections, postconceptional weeks (PCW) 12–15. (A). Frontal region
with a dominant radial organization, fibers in horizontal and vertical orientation (long arrows), and
small blood vessels occupied by erythroblasts can be identified (arrowhead). (B). Close-up with
fibers oriented in horizontal and vertical directions along cells with diverse nuclei shapes (short and
open arrows) interspersed by cells with long processes (long arrow) and blood vessels occupied
by erythroblasts (arrowheads). (C). Primitive glial cells can be identified along with small vessels
(arrowhead). (D). Slender cells with long processes and vesicular nuclei streaming (arrowheads)
in the primitive cortex. (E). Neuronal bodies and numerous capillaries with luminal erythroblasts
areidentified. Insert shows three erythroblasts in different stages of development; the orthochromatic
cell is marked with a short black arrow between two basophilic cells marked with white arrows.

Electron microscopy of the cortical structures showed capillaries occupied by ery-
throblasts with large nuclei surrounded by primitive neural cells (Figure 6A–C). Cells with
darker and smaller nuclei (Figure 6D–F) exhibited mitochondria with numerous NPs with
acicular and spherical shapes. NPs were also seen free in the cytoplasm and inside the
nucleus (Figure 6F).

Numerous brain fetal capillaries were occupied by erythroblasts, and the endothelium
displayed free NPs in the cytoplasm and inside lysosomes, along with intense luminal and
subluminal caveolar activity (Figure 7A–F). Membrane-coated caveolae contained isolated
NPs on the abluminal and the luminal EC sides, and slender EC finger-like projections
reached towards the erythroblasts’ surface, studded with NPs. Endothelial tight-junction
(TJ) complexes, localized along the lateral membrane, were decorated with NPs. Pericytes
were identified in small vessels showing lysosomal structures with NPs and abundant
rough endoplasmic reticulum.
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Figure 6. Electron microscopy of brain cortical cells. (A). Electron microscopy of cortical areas showed
capillaries occupied by erythroblastic cells (E) with large nuclei, surrounded by primitive neural cells
and horizontal fibers (arrows). (B). A number of neural primitive cells show large lobulated, medium
size, and small nuclei (small black and white arrows). (C). Bundles of fibers (arrows) can be seen
crossing the primitive neuropil. (D). Two cells with small distinct nuclei- the pyknotic one marked
with a white (n) are conspicuous because of their cytoplasmic features seen in (E). (E). The same cell
as in (D) contains mitochondria with numerous nanoparticles (long arrow) and free cytoplasmic NPs
(short arrows). Insert: the particulate nanomaterial exhibits rod and spindle shapes (arrowhead).
(F). A primitive neuronal nucleus with NPs free (short black arrows) in the nuclear matrix and
associated with heterochromatin (long white arrows).

3.4. Energy Dispersive X-ray Spectrometry

EDX elemental mapping was used to identify the elemental distribution in all analyzed
particles, and Figure 8 shows the representative profiles of metal and nonmetal NPs.
Titanium-containing particles were frequently detected in the placenta (Figure 8A–D) and
brain tissues (Figure 8E,F). Mixtures of Si, Al, and Ti nanorods were common.
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Figure 7. Brain blood vessels postconceptional weeks (PCW) 12–15 (A). Brain fetal vessel is occupied
by one erythroblast with a dark, disintegrating nucleus (n). Close contact between the erythroblast and
the endothelial cell (arrows). A pericyte is identified as P. (B). Endothelial cells (EC) display luminal
(white arrowheads) and subluminal (black arrowheads) intense caveolae activity, with some caveolae
containing NPs. A tight endothelial junction is marked Tj, and the erythroblast is marked E. A pericyte
contains lysosomes (open white arrow) containing NPs. (C). A close-up of the EC tight junction
(arrowhead) decorated with NPs adjacent to finger-like projections, with numerous caveolae attached
to the surface of an erythroblast displaying numerous surface NPs (arrows). (D). Slender EC filopodia
(two long black arrows) reaching towards the erythroblast displaying surface NPs (short arrows).
The EC displays one free cytoplasmic NP (white arrow). (E). An erythroblast with a large surface
studded with NPs (short arrows) in close contact with EC lysosomes (arrowheads). (F). Erythroblast
with numerous surface NPs, with some forming conglomerates (long arrow). Endothelial filipodia
display a single NP in caveola (short arrow). A lysosomal structure with NPs is identified in the EC
cytoplasm (arrowhead).

Mercury (Hg) and Fe containing particles were detected in brain samples (Figure 9).



Biomedicines 2022, 10, 410 11 of 19

Figure 8. Representative nanoparticles with EDX elemental maps from term and early placenta and
brain PCW 12 samples. Panels (A,B): term placenta shows an agglomerate of NPs containing titanium
(ranging from 10 to 100 nm) co-occurring with silicon and aluminum. Panels (C,D): early placenta at
PCW 12 with an agglomerate of titanium, silicon and aluminum. Panels (E,F): brain samples at PCW
12 with titanium, aluminum, and silicon. Ni grids were used.

Figure 9. Composite picture of Hg and Fe nanoparticles in telencephalic PCW 12 brain tissues. In
panel (A), low power view of the sampled brain tissues; in panel (B), the brightest nanoparticles are
composed of Hg (7–12 nm in range) and are marked with green arrows, and all other NPs are Fe.
Panel (C) contains Fe NPs mostly in the 4–6 nm range.
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4. Discussion

Combustion and engineered environmental nanoparticles are reaching brain tissues at
early human developmental PCW 8–15 stage, and documentation of NPs in both the ma-
ternal and fetal placental compartments at early, preeclamptic, and normal term placentas
strongly suggests the placental barrier is not limiting the access of highly toxic NPs.

NPs are reaching the brain at critical stages: PCW 8–12.5, characterized by prolifera-
tion, migration, and molecular specification; followed at PCW 13–15 by cell aggregation,
proliferation, migration, neuronal and dendritic differentiation, and axonal growth, accord-
ing to Kostović et al. [60], a highly recommended and important work. Data of increasing
blood flow to the intervillous space as early as 6 weeks of gestation makes the possibility of
NP erythrocyte maternal transport to early developmental embryonic stages plausible [61].

Erythroblasts are identified in this work as the main early NP carriers to fetal tissues.
Erythroblasts are fundamental in the transition from rapidly growing embryo to the fetus
and colonize the bone marrow at 10.5 weeks [62]. Moreover, since active circulation starts
approximately at day 29, erythroid cells are likely involved in NPs’ transportation from
early stages.

Experimentally, the internalization of nanosized materials is a complex process that
involves direct membrane penetration with NPs free in the cytosol and endocytotic uptake
via biomembrane-coated vesicles, requiring NP sizes in the range of 10–100 nm [63–65].
The presence of highly reactive Fe-rich and Hg NPs ≤ 10 nm inside brain cells brings
up the transportation pathway discussed by Panja and Jana [65]: arginine-terminated
Au ≤10 nm enters via energy-independent direct membrane penetration and, as the size
increases, there is a switch to energy-dependent endocytotic uptake. A critical issue at stake
involves the fetal brain endothelial and pericyte tight junctions (TJs) and lysosomal NPs’
accumulation at PCW 8–15 weeks, potentially impacting the brain–blood barrier (BBB)
formation, its regulation, and permeability [66–68]. The BBB is functional as early as 8 weeks
of gestation [67,69]; thus, the documentation of brain parenchyma and blood vessels’ NPs
at PCW 8–15 is of deep concern regarding the potential damage to the incipient BBB.

A major finding in this work was the early pregnancy NPs’ placental profile character-
ized by multiple nanoscale deposits of environmentally-sourced Fe, Ti, Cu, Ca, Sn, Al, and
Si. Isolated Si NPs were common and seen in combination with Al and Ca. In this work, Fe
and Ti were commonly present in brain NPs, adding to the high production of free radicals
and the documented effective promotion of fibrillation of key neural proteins as alpha
synuclein [70–73], an extra concern for airborne magnetic mixtures of spherical and elon-
gated NPs and their response to magnetic forces, i.e., heat production under high-frequency
alternating magnetic or near-infrared optical fields and increased oxidative stress [74–77].
Vereda et al. [74] discussed the magnetization and friction coefficient anisotropies in elon-
gated Fe NPs versus spherical ones, a major concern in our early placental samples. Ovejero
and colleagues [76] discussed that the mixing of NPs modulates magnetic responses and
their thermal evolution under alternating magnetic fields. Abu-Bakr and Zubarev [75]
commented on heat production by clusters of single-domain ferromagnetic particles and
two scenarios of strong and weak magnetic anisotropy; i.e., in strong anisotropy, the particle
clusterization weakens the thermal effect, whereas weak anisotropy enhances it. Sola-Leyva
and colleagues [77] showed that a low concentration of magnetic NPs under a low intensity
alternating magnetic field (AMF) increased the production of intracellular ROS. Their
results demonstrated that intracellular ROS production increases up to ∼90% following the
exposure of AMF to HepG2 cells containing biomimetic magnetic NPs and result in a 40%
loss of cell viability without a significant rise in temperature.

Key NP researchers’ work [74–79] fills a substantial knowledge gap potentially appli-
cable to fetuses exposed to NPs, pointing to the early and significant involvement of the
nanosized combustion, friction, and electronic waste associated with organelle structural
changes, oxidative stress, and magnetic damage.

Conspicuously, silica was abundant in early placentas, and its association with early
villi is worth discussing. The in vivo work of Li J et al. [80], designed to examine the
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uterine accumulation of SiNP using FITC coupled onto SiNPs in pregnant mice, showed
SiNP penetrating the trophoblast membrane, leading to apoptosis, the suppression of cell
proliferation, tube formation, and invasion in a dose-dependent manner. SiNP also induced
uterine inflammation in vivo [80]. Additionally, genotoxicity both in vivo and in vitro [81]
is described with SiNPs < 21 nm and, thus, seemingly harmless Si nanostructures associated
to Al and Ca in the typical airborne pollution mixtures compound the synergistic genotoxic
and oxidant early placental damage.

The presence of Ti nanorods in all placental samples and in the fetal brain is a strong
warning that nano-engineered NPs (i.e., food, waste electrical and electronic equipment
(WEEE)) are also involved in placental and neural damage [82–85].

The detrimental NP effects upon brain morphogenesis and microvasculature devel-
opment are of deep concern. The in vitro work of Coccini and colleagues [47] is relevant:
NP uptake resulted in a reduction in neuronal differentiation with a downregulation of
β-tubulin III, microtubule-associated protein 2, enolase, and nestin. A dose-related ef-
fect was recorded, and the gene downregulation persisted for up to 8 days without cell
morphology alterations.

Remarkably, the identification in preeclamptic placentas’ fetal vasculature of extracel-
lular vesicles (EV) loaded with NPs could result in a negative impact at the fetal-maternal
interface and act as a bio-signaling paradigm [86–90]. The EV capacity to impact neurode-
velopmental pathologies is an important issue, particularly because we detected them in
preeclamptic placentas from petrochemical pollution-exposed women. This information
is relevant to the strong association between air pollution and preeclampsia, prematu-
rity, fetal growth restriction, uterine inflammation, and abnormal placenta vasculariza-
tion [88,91–94]. Moreover, EVs have been associated with preeclampsia pathophysiology,
CNS developmental disorders, and regarded as potential early biomarkers for adverse NP
exposure [88,89,94].

The placenta is at the core of the interface between mother and fetus [22,27,95].
The placental barrier is not an unfailing barrier, and the issue of neurodevelopmen-

tal and neurodegenerative trajectories with serious short- and long-term impacts ought
to be entertained. The vulnerability issue was reviewed by Back [96] for preterm brain
and its great susceptibility to cerebral white matter injury disrupting the normal progres-
sion of developmental myelination. Tracts form along the path traced by the “pioneer
axons”, which are guided by various molecular cues [97]. This is an example of a highly
precise phenomenon, during which any disturbance can have serious consequences in
postnatal life.

Urcini et al. [27] have detected an interaction between genomic risk scores for
schizophrenia (GRSs) and early-life complications (ELCs), based on placental gene-
expression loci (PlacGRSs). Strikingly, the relationship of PlacGRSs with brain volume
persists in adults—mostly males—with schizophrenia, defining a potentially preventable
neurodevelopmental path of risk applicable to schizophrenia but open to a number of
neurodevelopmental and neurodegenerative diseases.

We are very aware that healthy pregnancies and products depend on proper maternal-
fetal interactions, starting with a healthy mother, residing in a clean environment, proper
fertilization, embryo implantation, unremarkable placental development, normal vascular
function both in the mother and the product, balanced nutrition, and no exposures to
toxicants during the entire pregnancy [13,98,99].

There are limitations and advantages to the study. We only included placental and fetal
tissues from highly exposed mothers, essentially because the highly specialized obstetric
hospitals in Mexico are located in large polluted cities. Unfortunately, we had no support
to purchase Au grids, nor had access to state of the art HAADF and STEM equipment. A
major advantage of our study was the multidisciplinary collaborators and the efforts made
to coordinate and exchange viewpoints regarding the importance of placental changes and
fetal NPs, which are key to understanding the impact of our findings in future studies.
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5. Conclusions

Placental, embryonic, and fetal toxicity are at the core of the adverse outcomes of
nanoparticles. The vulnerability of the brain is key, essentially because there is no question
that a number of chemicals, and certainly NPs, can interfere with the highly precise neu-
rodevelopmental processes taking place in intrauterine life [9–18,24–27,45–48,91,96]. Of
critical importance is the relationship between intrauterine toxic exposures and risk for ma-
jor neurological, psychiatric, and cardiovascular diseases, a subject discussed for a number
of years since the pioneering work of Barker [19] and 21 century researchers discussing
fetal and perinatal programming and neuropsychiatric, metabolic, and cardiovascular
diseases [20–27].

The problem is complex, the questions are countless, and the answers restricted: (1) we
know very little about NPs’ direct and indirect effects on human placentas and fetuses;
(2) the placenta does not provide a significant physical NP barrier for fetal protection
starting in early pregnancy; (3) the detection of Hg NPs in the telencephalic brain is
extraordinarily important and concerning for all researchers. Mercury is ubiquitous in
volcanic active regions, and anthropogenic activities release large amounts of Hg into the
environment [100]. The chemical speciation of Hg determines its mobility and toxicity, and
the fetal brain is particularly vulnerable, with accumulated Hg concentrations 5–7 times
higher than in maternal blood [101–106]; (4) NPs have extraordinary variations in terms
of sources, chemical composition, shape, size, valence, corona formation, etc., which
means that we are in a very difficult position to define and to study their direct effect
upon placentas and fetuses across pregnancies, diverse environments, and NP sources;
(5) genetic, nutritional, and metabolic maternal factors play a role in the fetal response
to neurotoxicants.

Our concern as obstetricians and gynecologists should not end with learning about
preeclampsia, preterm birth, fetal growth restriction, or gestational diabetes mellitus, but
should also include collecting and sharing prenatal information to look for postnatal short
and late events, including the risk of the major neurodegenerative diseases responsible for
significant morbidity and mortality in our populations.

The need for multidisciplinary, noncoercive, cooperative research groups is very
clear. Intrauterine life is a highly vulnerable period for NP exposures. Our findings
can immediately inform preventive measures, clinical care, and deployment strategies to
maximize benefits for pregnant women and their products across the world.
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Exposure to a Low Dose of Nanoparticulate Silver Induces Alterations in Glutamate Transporters in Brain of Immature Rats. Int.
J. Mol. Sci. 2020, 21, 8977. [CrossRef]

30. Medina-Reyes, E.I.; Rodríguez-Ibarra, C.; Déciga-Alcaraz, A.; Díaz-Urbina, D.; Chirino, Y.I.; Pedraza-Chaverri, J. Food additives
containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative
stress. Food Chem. Toxicol. 2020, 146, 111814. [CrossRef]

31. Virgintino, D.; Maiorano, E.; Errede, M.; Vimercati, A.; Greco, P.; Selvaggi, L.; Roncali, L.; Bertossi, M. Astroglia-microvessel
relationship in the developing human telencephalon. Int. J. Dev. Biol. 1998, 42, 1165–1168.

32. Virgintino, D.; Girolamo, F.; Errede, M.; Capobianco, C.; Robertson, D.; Stallcup, W.B.; Perris, R.; Roncali, L. An intimate interplay
between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis 2007, 10,
35–45. [CrossRef]

33. Bertossi, M.; Virgintino, D.; Errede, M.; Roncali, L. Immunohistochemical and Ultrastructural Characterization of Cortical Plate
Microvasculature in the Human Fetus Telencephalon. Microvasc. Res. 1999, 58, 49–61. [CrossRef] [PubMed]

34. Errede, M.; Girolamo, F.; Virgintino, D. High-Resolution Confocal Imaging of Pericytes in Human Fetal Brain Microvessels.
Methods Mol. Biol. 2020, 2206, 143–150. [CrossRef]

35. Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron
2017, 96, 17–42. [CrossRef] [PubMed]

36. Zlokovic, B.V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron 2008, 57, 178–201. [CrossRef]
[PubMed]
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