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ABSTRACT
Aims/Introduction: To investigate the clinical and anthropometrical parameters that
are associated with non-exercise activity thermogenesis that is composed of basal energy
expenditure (BEE) and diet-induced thermogenesis (DIT) in patients with diabetes.
Materials and Methods: Body composition was assessed using bioelectrical impe-
dance, and BEE and DIT were measured using indirect calorimetry in 40 Japanese patients
with diabetes.
Results: BEE correlated positively with bodyweight, body mass index, fat mass, and fat-
free mass, and correlated negatively with age in both men and women. In multivariate
logistic regression analysis, BEE correlated positively with both fat mass and fat-free mass
independently of sex and age. In addition, DIT correlated positively with bodyweight, body
mass index, fat mass and fat-free mass, and correlated negatively with age in women, but
not men. Fat-free mass contributed to DIT at least partly, and an aging-related decrease in
DIT was observed. The best anthropometric parameter that reflected fat mass and fat-free
mass was hip circumference (HC) and calf circumference (CC), respectively, in both men
and women. Indeed, both HC (men b = 0.600, P < 0.001; women b = 0.752, P < 0.001)
and CC (men b = 0.810, P = 0.012; women b = 0.821, P = 0.002) were correlated with BEE
independently of age and sex. In addition, CC (b = 0.653, P = 0.009), but not HC was cor-
related with DIT significantly only in females, independently of age.
Conclusions: HC reflects fat mass and was positively associated with BEE, but not with
DIT. In contrast, CC reflects fat-free mass, and was positively associated with BEE in both
men and women, and with DIT in women.

INTRODUCTION
Obesity is caused by perturbations in the balance between
energy intake and expenditure. Daily energy expenditure
consists of three components: basal energy expenditure (BEE),
diet-induced thermogenesis (DIT) and the energy expended
by physical activity, which account for ~60, 15 and 25% of
the total amount of energy ingested over 24 h, respectively1.
Of these, BEE and DIT are responsible for unconscious
non-exercise activity thermogenesis (NEAT), and therefore

could be therapeutic targets for obesity-associated diseases, such
as type 2 diabetes. BEE can be calculated from age, height and
bodyweight using the Harris–Benedict equation2. More specifi-
cally, it was reported that fat-free mass is the main body pre-
dictor of BEE, whereas fat mass is poorly related to BEE in
healthy non-pregnant adults3. Age has an important effect on
body composition, because the decrease in lean body mass with
aging is the most relevant change that leads to a reduction in
BEE. In contrast, DIT is influenced by nutritional compo-
nents4,5, and the DIT values reported for individual nutrients
are 0–3% for fat, 5–10% for carbohydrates, 20–30% for protein6
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and 10–30% for alcohol7. However, whether and how body
composition and insulin resistance status affect DIT remains
unclear, particularly in patients with diabetes.
In the present study, we investigated the clinical and anthro-

pometrical parameters associated with BEE and DIT in patients
with diabetes.

MATERIALS AND METHODS
Participants
A total of 40 inpatients with diabetes (type 2 : type 1 = 37:3)
who were admitted to the Kanazawa University Hospital,
Kanazawa, Japan, between 2011 and 2013 were enrolled in
the study. Of the 40 diabetic participants, 23 (58%) were trea-
ted with antidiabetic agents, and detailed information is shown
in Table S1. Furthermore, all patients received dietary and
exercise therapies. The current study was an integrated sub-
analysis of three separate trials approved by the ethics com-
mittee at Kanazawa University Hospital and registered with
the University Hospital Medical Information Network Clinical
Trials Registry (Nos. 000008369, 000010353 and 000010407).
Informed consent was obtained from all participants. All
patients were diagnosed according to criteria established by an
expert committee on the diagnosis and classification of dia-
betes mellitus8.

Patient eligibility
All eligible participants were inpatients aged 18–80 years with
diabetes. The exclusion criteria were as follows: (i) treatment
with the glucagon-like-peptide-1 (GLP-1) analogs within the
4 weeks before the study; (ii) treatment with glucocorticoids;
(iii) uncontrolled hypertension (systolic blood pressure
>160 mmHg or diastolic blood pressure >100 mmHg); (iv) a
significant medical history and/or malignancy; (v) severe com-
plications and problems not suitable for evaluating NEAT; and
(vi) pregnant or lactating women.

Biochemical parameters
Blood samples were collected from all participants after an 8-h
fast. Samples were centrifuged immediately, and plasma and
serum samples were stored at -20°C until analysis. Glucose
was measured using a standard glucose oxidase method. Total
cholesterol, high-density lipoprotein cholesterol and triglycerides
were measured enzymatically using a chemical analyzer (Hi-
tachi 747, Daiichi, Tokyo, Japan). Fasting serum insulin levels
were determined using chemiluminescence, and glycosylated
hemoglobin was measured using immunoturbidimetry.
The quantitative insulin sensitivity check index (a measure of

insulin sensitivity) was calculated by logarithmic transformation
using the following formula9:

Table 1 | Correlations between basal energy expenditure or diet-induced thermogenesis, and body composition parameters

Basal energy expenditure Diet-induced thermogenesis

All Men Women All Men Women

R P R P R P R P R P R P

Age (years) -0.669 <0.001 -0.643 0.002 -0.698 <0.001 -0.511 <0.001 -0.194 0.400 -0.690 0.001
Bodyweight (kg) 0.897 <0.001 0.822 <0.001 0.937 <0.001 0.421 0.007 -0.007 0.977 0.597 0.007
Body mass index (kg/m2) 0.762 <0.001 0.695 <0.001 0.877 <0.001 0.343 0.030 -0.102 0.660 0.511 0.025
Fat mass (kg) 0.737 <0.001 0.727 <0.001 0.905 <0.001 0.340 0.032 -0.097 0.677 0.521 0.022
Fat-free mass (kg) 0.649 <0.001 0.846 <0.001 0.886 <0.001 0.314 0.049 0.083 0.722 0.726 <0.001
Total protein (g/dL) 0.310 0.051 0.152 0.510 0.472 0.041 0.009 0.956 -0.279 0.221 0.265 0.273
Total cholesterol (mg/dL) 0.004 0.979 0.094 0.686 -0.024 0.924 -0.152 0.350 0.080 0.729 -0.261 0.280
Triglyceride (mg/dL) -0.169 0.296 0.137 0.554 -0.225 0.355 -0.105 0.519 -0.057 0.805 -0.130 0.597
HDL cholesterol (mg/dL) -0.037 0.822 -0.265 0.246 0.067 0.787 -0.247 0.125 -0.024 0.917 -0.364 0.125
Aspartate aminotransferase (U/L) 0.339 0.032 -0.044 0.849 0.472 0.041 0.348 0.028 -0.249 0.277 0.572 0.010
Alanine aminotransferase (U/L) 0.225 0.163 -0.177 0.444 0.360 0.130 0.352 0.026 -0.418 0.060 0.637 0.003
Lactate dehydrogenase (U/L) 0.396 0.012 0.233 0.310 0.516 0.029 0.076 0.647 -0.281 0.216 0.327 0.185
c-Glutamyl transpeptidase (IU/L) -0.153 0.347 -0.262 0.252 -0.095 0.700 0.166 0.307 0.090 0.699 0.219 0.369
Creatinine (mg/dL) 0.146 0.368 0.314 0.165 -0.143 0.560 0.046 0.776 0.123 0.596 -0.149 0.544
Immunoreactive.insulin (mU/mL) 0.172 0.288 0.093 0.689 0.316 0.187 0.057 0.727 -0.222 0.334 0.430 0.066
Fasting plasma glucose (mg/dL) -0.213 0.187 -0.114 0.622 -0.289 0.230 -0.150 0.355 -0.263 0.249 -0.115 0.640
Quantitative insulin sensitivity check index -0.417 0.007 -0.444 0.044 -0.425 0.690 -0.113 0.488 0.071 0.760 -0.202 0.407
HbA1c (%) -0.264 0.110 -0.136 0.567 -0.404 0.096 -0.440 0.006 -0.312 0.180 -0.631 0.005
Thyroid-stimulating hormone (mU/mL) 0.289 0.074 0.063 0.787 0.466 0.051 0.006 0.971 -0.134 0.562 0.118 0.641
Free triiodothyronine (pg/mL) 0.477 0.053 0.723 0.043 0.507 0.163 0.355 0.162 -0.084 0.843 0.785 0.012
Free thyoxine (ng/dL) -0.048 0.773 -0.402 0.071 0.039 0.876 -0.106 0.520 -0.205 0.372 -0.085 0.736

HbA1c, glycated hemoglobin; HDL, high-density lipoprotein.
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1
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Anthropometric data
Body mass index (BMI) was calculated as weight (kg) divided
by height (m) squared. Waist circumference was measured at
the umbilical level. Hip circumference (HC) was measured at
the maximum protruding part of the buttocks at the level of
the greater trochanter with the patient wearing minimal cloth-
ing and standing with feet together. Thigh circumference and
calf circumference (CC) were measured on both sides at the
root of the thigh, and at the maximum levels and at the great-
est dimension of the calf, respectively, and the mean values
were calculated. Measurements of the mid upper arm circum-
ference and the tricep skinfold thickness at the same level were
used to calculate arm muscle area10.
Body composition was assessed by multifrequency bioelectri-

cal impedance analysis using the Multi-Frequency Body Com-
position Analyzer BC-118D (Tanita Corporation, Tokyo,
Japan), which has an eight-point footpad-style electrode
arrangement. Participants stood in bare feet with the heel and
toe of each foot in contact with the metal footpads, and with
their arms hanging to each side holding the analyzer handgrips
lightly. Multifrequency bioelectrical impedance analysis was
reported to be more accurate than single-frequency bioelectrical
impedance analysis using a dual energy X-ray absorptiometry,
which is a gold standard method for assessing body composi-
tion11.

Measurements of BEE and DIT
Energy expenditure was calculated by measuring oxygen con-
sumption (VO2) and carbon dioxide production (VCO2) in
recumbent participants at room temperature over a 10-min
period by indirect calorimetry using a Minato AE-310s AERO-
MONITOR (Minato Medical Science Company Ltd., Osaka,
Japan). Energy expenditure was calculated from VO2 and
VCO2 using the equation reported by de Weir12.
After an overnight fast (12–14 h), the participants rested for

30 min in the supine position on a bed (07.00–07.30 h).
Energy expenditure was measured for 10 min before (07.30–
07.40 h), and 1 h (at 09.00 h) and 3 h (at 11.00 h) after the
consumption of breakfast, and was presented as BEE, EE60
and EE180, respectively. The participants were given a meal
providing 28 kcal/kg (standard bodyweight) derived from pro-
tein (20%), fat (20%) and carbohydrates (60%). Breakfast
accounted for 30% of the energy provided per day. It was
served at 08.00 h, and was consumed within 30 min in a sit-
ting position. The participants refrained from exercise, and
rested as much as possible during the 3-h energy expenditure
measurement period. Generally, DIT peaks 1 h after the inges-
tion of food13. Indeed, EE180 was lower than EE60 in all study
participants. Therefore, DIT was measured as the difference
between EE60 and BEE. Ta
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Statistical analysis
Normally distributed data were presented as means – standard
deviations, and the differences between the two groups were
analyzed using Student’s t-tests. Data that had an irregular dis-
tribution were presented as medians and ranges, and differences
between the two groups were analyzed using Mann–Whitney
U-tests. Relationships were determined using regression analy-
ses, and P-values <0.05 were considered to show significance.
Then, multivariate logistic regression analysis (forced entry
method) was carried out using independent variables that
achieved significance at P < 0.05 in univariate analysis. All sta-
tistical analyses were carried out using SPSS software, version
16.0 (SPSS, Chicago, IL, USA).

RESULTS
Body composition parameters associated with BEE
The clinical anthropometry and biochemical characteristics of
the study participants are shown in Table S1. There were no
significant differences in BEE and DIT between the sexes.
Because significant differences were observed regarding BMI,
fat mass, fat-free mass and some blood parameters (such as
creatinine, fasting plasma glucose, glycated hemoglobin
[HbA1c] and free triiodothyronine), factors associated with
BEE and DIT were analyzed separately in men and women.
Table 1 shows the results of the single correlation analyses

between BEE or DIT and clinical/body composition parameters.
No blood biochemical parameters were associated with BEE
commonly in either men or women. BEE correlated positively
with bodyweight, BMI, fat mass and fat-free mass, and corre-
lated negatively with age in both men and women. As shown
in Table 2, BEE correlated positively with both fat mass and
fat-free mass independently of sex and age.

Body composition parameters associated with DIT
As shown in Table 1, no biochemical or anthropometrical
parameters were associated with DIT in either men or women.
In women, but not men, DIT correlated positively with body-
weight, BMI, fat mass and fat-free mass, and correlated nega-
tively with age. In addition, age was correlated with DIT
independently of fat mass in women: the higher the age the
lower the DIT (Table 2). In contrast, fat-free mass tended to

correlate with DIT (P = 0.072) after adjusting for age in
women, whereas age did not correlate significantly with DIT
after adjusting for fat-free mass in women.

Anthropometric parameters reflecting fat mass or fat-free
mass
Because the body composition parameters, fat mass and fat-
free mass, reflected BEE independently, we next screened for
the anthropometric parameters that best reflected the body
composition parameters in each sex. In single correlation
analyses (Table 3), all the anthropometric parameters evalu-
ated (waist circumference, HC, thigh circumference, CC and
arm muscle area) correlated positively with fat mass and fat-
free mass in both men and women. The anthropometric
parameters that best reflected fat mass and fat-free mass
were HC and CC in men and women, respectively
(Table 3).

Association of HC and CC with BEE and DIT
Next, we investigated the significance of HC and CC for esti-
mating BEE and DIT (Table 4). Similarly to fat mass and fat-
free mass, both HC and CC were correlated with BEE indepen-
dently of age and sex. In men, neither HC nor CC correlated
with DIT. In women CC, but not HC, was correlated signifi-
cantly with DIT independently of age.

Association of HbA1c with DIT
HbA1c was significantly higher in women than in men
(Table S1). Univariate analysis showed that HbA1c negatively
correlated with DIT, especially in women (Table 1). Therefore,
we carried out multiple regression analyses as shown in Table S2.
CC was still positively associated with DIT independently of
HbA1c at least in women (Table S2). In contrast, HbA1c was
negatively associated with DIT independently of sex, age
(model 1–3), fat-free mass (model 2) and CC (model 3).

DISCUSSION
The factors associated with BEE have mainly been investigated
in non-diabetic humans. Age14, fat mass15,16, fat-free mass/
muscle mass17–19, sympathetic nerve activity20 and thyroid
hormone21 are all associated with BEE. However, these

Table 3 | Correlations between anthropometric parameters and fat mass or fat-free mass

Fat mass Fat-free mass

All Men Women All Men Women

R P R P R P R P R P R P

Waist circumference (cm) 0.954 <0.001 0.959 <0.001 0.975 <0.001 0.343 0.030 0.869 <0.001 0.780 <0.001
Hip circumference (cm) 0.966 <0.001 0.961 <0.001 0.983 <0.001 0.364 0.021 0.917 <0.001 0.847 <0.001
Thigh circumference (cm) 0.921 <0.001 0.838 <0.001 0.927 <0.001 0.298 0.062 0.833 <0.001 0.845 <0.001
Calf circumference (cm) 0.908 <0.001 0.917 <0.001 0.982 <0.001 0.600 0.004 0.950 <0.001 0.935 <0.001
Arm muscle area (cm2) 0.797 <0.001 0.759 <0.001 0.897 <0.001 0.465 0.002 0.794 <0.001 0.702 <0.001
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relationships remain unclear in humans with diabetes, who
are associated with an increased risk of sarcopenia22. In the
present study, we observed that BEE was strongly associated
with age, BMI, fat mass and fat-free mass in both men and
women with diabetes. Notably, BEE was associated with both
fat mass and fat-free mass independently of age and sex. Fat-
free mass represents the weights of muscle, bone and internal
organs. In patients with type 2 diabetes, bone mass is either
normal or increased, whereas bone quality is impaired. Thus,
the differences in skeletal muscle mass could be attributed
mainly to variations in fat-free mass among the study partici-
pants. Indeed, BEE results from oxygen consumption largely
in skeletal muscle23. Recently, it was recognized that skeletal
muscle might play a role in preventing obesity-associated
metabolic abnormalities, in part by secreting bioactive peptides
named myokines24. For example, the myokines interleukin-6
and irisin upregulate uncoupling protein-1 in adipose tissue,
and thereby increase heat production24.
Although the exact source of DIT remains unclear, postpran-

dial metabolism mainly involves oxygen consumption in the
gastrointestinal tract and liver23. Studies in non-diabetic
humans suggested that meal size25–27 and nutritional compo-
nents4–7 were associated with DIT. In the present study, DIT
was significantly associated with age, BMI, fat mass and fat-free
mass in women, but not men. In women, DIT was significantly
associated with age independently of fat mass. In addition, DIT
tended to be associated with fat-free mass after adjustment for
age, but was not associated with age after adjustment for fat-
free mass. This suggests that fat-free mass at least partly con-
tributes to DIT and the aging-related decrease in DIT.
Based on these findings, we conclude that fat-free mass, pos-

sibly skeletal muscle mass, is closely associated with BEE and
partly with DIT, and therefore, might protect against obesity.
Unfortunately, estimating fat-free mass requires an electrical
impedance method or dual energy X-ray absorptiometry.
Here, we investigated the relationship between anthropomet-

ric parameters and fat-free mass. The best anthropometric
parameter reflecting fat-free mass was CC in both men and
women. Recently, CC was used as an index of the nutritional
state and weight of bedridden elderly28. Furthermore, an associ-
ation between CC and insulin resistance or carotid atheroscle-
rosis was reported29.
The limitations of the present study were as follows. First,

BEE and DIT were not measured in a respiration chamber,
because one was not available in our hospital, unfortunately.
Second, because there was a significant difference in BMI
between women and men, the present results should be con-
firmed in subjects with various BMI ranges in the future. Third,
HbA1c was significantly higher in women than in men. How-
ever, CC was still positively associated with DIT independently
of HbA1c at least in women. Of note, HbA1c was negatively
correlated with DIT, independently of sex, age, fat-free mass
and CC. It could be possible that poor glycemic control mean-
ingfully impairs DIT, which might lead to further obesity. ATa
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large-scale study including both non-diabetic and diabetic peo-
ple will test this hypothesis.
The present study has shed light on the significance of fat-

free mass as a determinant of NEAT. In future health examina-
tions, in addition to waist circumference and/or HC measure-
ments, CC might be used as an index of skeletal muscle mass
contributing to obesity resistance through increases in NEAT.
A prospective intervention study is required to confirm the
possibility that increased fat-free mass and CC protect against
obesity and related metabolic abnormalities.
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