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Key Points 

Question Can interoperable models for predicting neurological deterioration in critically ill 
children be developed, correlated with serum-based brain-derived biomarkers, and validated at 
an external site? 

Findings A development site model demonstrated an area under the receiver operating 
characteristics curve (AUROC) of 0.82 and a number needed to alert (NNA) of 2.  Predictions 
correlated with levels of glial fibrillary acidic protein in a subset of children. A generalizable 
model demonstrated an AUROC of 0.81 and NNA of 4 at the validation site.  

Meaning Well performing prediction models coupled with brain biomarkers may help to identify 
critically ill children at risk for acquired neurological morbidity.  
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Abstract 

Importance Declining mortality in the field of pediatric critical care medicine has shifted 
practicing clinicians’ attention to preserving patients’ neurodevelopmental potential as a main 
objective. Earlier identification of critically ill children at risk for incurring neurologic morbidity 
would facilitate heightened surveillance that could lead to timelier clinical detection, earlier 
interventions, and preserved neurodevelopmental trajectory. 

Objective Develop machine-learning models for identifying acquired neurologic morbidity 
while hospitalized with critical illness and assess correlation with contemporary serum-based, 
brain injury-derived biomarkers. 

Design Retrospective cohort study. 

Setting Two large, quaternary children’s hospitals. 

Exposures Critical illness. 

Main Outcomes and Measures The outcome was neurologic morbidity, defined according to a 
computable, composite definition at the development site or an order for neurocritical care 
consultation at the validation site. Models were developed using varying time windows for 
temporal feature engineering and varying censored time horizons prior to identified neurologic 
morbidity. Optimal models were selected based on F1 scores, cohort sizes, calibration, and data 
availability for eventual deployment. A generalizable created at the development site was 
assessed at an external validation site and optimized with spline recalibration. Correlation was 
assessed between development site model predictions and measurements of brain biomarkers 
from a convenience cohort. 

Results After exclusions there were 14,222-25,171 encounters from 2010-2022 in the 
development site cohorts and 6,280-6,373 from 2018-2021 in the validation site cohort. At the 
development site, an extreme gradient boosted model (XGBoost) with a 12-hour time horizon 
and 48-hour feature engineering window had an F1-score of 0.54, area under the receiver 
operating characteristics curve (AUROC) of 0.82, and a number needed to alert (NNA) of 2. A 
generalizable XGBoost model with a 24-hour time horizon and 48-hour feature engineering 
window demonstrated an F1-score of 0.37, AUROC of 0.81, AUPRC of 0.51, and NNA of 4 at 
the validation site. After recalibration at the validation site, the Brier score was 0.04. Serum 
levels of the brain injury biomarker glial fibrillary acidic protein measurements significantly 
correlated with model output (rs=0.34; P=0.007). 

Conclusions and Relevance We demonstrate a well-performing ensemble of models for 
predicting neurologic morbidity in children with biomolecular corroboration. Prospective 
assessment and refinement of biomarker-coupled risk models in pediatric critical illness is 
warranted. 
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Introduction 

 An estimated 340,000 children are hospitalized with critical illness every year in the 

United States and brain injury has been cited as the proximate cause of death in approximately 

90% of previously healthy children who do not survive their intensive care admission.1,2 Of 

children who survive critical illness, acquired neurologic morbidity can have long-lasting 

implications which range from mild impairments in cognition to profound debilitation. Declining 

mortality in the field of pediatric critical care has led to increased attention to the longer-term 

functional outcomes of children who survive an intensive care admission.3  

 Granular, time-series data harbored by the electronic health record (EHR) offer a rich 

training ground for probabilistic models of important patient outcomes. Implementing well-

performing models as clinical decision support (CDS) systems is a promising approach for 

improving outcomes related to many different conditions and situations, though there are 

currently no established tools for identifying children at risk for new brain injury.4–7 Recently 

enacted federal mandates in the United States of America (USA) are promoting the development 

of EHRs that facilitate the deployment of interoperable decision support tools built to leverage a 

core dataset.8  

 The main objective of the present work was to construct and externally validate 

predictive models to support the identification of critically ill children at high risk for acquired 

neurologic morbidity, as a first step towards the development of a decision support tool that 

might be used to forewarn of neurologic morbidity amongst critically ill children, as well as to 

aid in the enrichment of prospective trials examining strategies to mitigate the risk of brain injury 

during pediatric critical illness. A second objective was to corroborate the biological 

underpinnings of the developed prediction models by assessing correlation with novel, brain-
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derived, serum-based biomarkers of brain injury obtained from a diagnostically diverse cohort of 

critically ill children. 

 Methods 

Study Sites 

Model development used data from all encounters to a quaternary pediatric intensive care unit 

(PICU) in a large, freestanding children’s hospital between January 1, 2010 and December 31, 

2022. The development site PICU serves a region of approximately 5 million people, 

encompassing Western Pennsylvania and bordering states, and is a level 1 pediatric trauma 

center. External model validation occurred using data from encounters admitted between January 

1, 2018 and December 31, 2023 to a quaternary PICU in a large, freestanding children’s hospital 

that serves as a referral center for the 5-state region of Washington, Wyoming, Alaska, Montana, 

and Idaho. Approval was granted by the institutional review boards of the University of 

Pittsburgh (Institutional Review Board [IRB] #17030743) and Seattle Children’s Hospital (IRB 

#STUDY00001374). Findings are reported according to the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement 

(Supplemental Table 1). 

Model Development Frameworks 

Conceptualization of the model adhered to the Littenberg framework for the development of 

clinical decision support tools, which considers the clinical and technical plausibility of the tool, 

as well as the process outcomes, patient outcomes, and eventual societal outcomes addressed by 

the tool (Supplemental Table 2).9 The first 5 steps of the cross-industry standard process for 

data modeling (CRISP-DM) framework were followed for model design. CRISP-DM outlines 
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six steps for data science projects that include 1) understanding the use case; 2) understanding 

the data; 3) data curation; 4) model development; 5) model evaluation; and 6) model 

deployment.10  

Model Development Approach 

Model development proceeded in 2 phases: 1) Development of models for use locally at the 

development site; 2) Development of generalizable models with external validation. The 

outcome of neurologic morbidity was defined using structured EHR data surrogates based on 

each study site’s clinical and electronic workflows. At the development site, the outcome was a 

previously validated, computable, composite definition of neurologic morbidity that incorporated 

orders for electroencephalography (EEG), brain computed tomography (CT), brain magnetic 

resonance imaging (MRI), or indicators of treated delirium within 72-hours of one another 

(Supplemental Table 3).11 This outcome has also been validated in a separate cohort of children 

with sepsis.12 At the validation site, orders for a neurocritical care service consultation were 

deemed to be the most reliable surrogate for neurologic morbidity during an episode of critical 

illness. Data for control cases (hospitalized children who did not meet the definition of a 

neurologic morbidity) were collected from a random period during the encounter with preference 

to a window following the first PICU admission.  

Candidate data elements for model construction were selected based on clinical expertise 

and with attention to the United States Core Data for Interoperability (USCDI) requirements to 

facilitate eventual, interoperable deployment (Supplemental Tables 4 and 5).13 A ‘Biodigital 

Rapid Alert to Identify Neurologic morbidity, A-I bundle (BRAIN A-I)’ standard clinical 

vocabulary value set was filed with the National Library of Medicine’s Value Set Authority 

Center.14 Features were engineered with the dual aims of representing the temporality of the data 
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while also preserving clinical interpretability of the features, using methods previously 

reported.15 Features were then discretized, or categorized into information bins, with missingness 

encoded as a feature. In addition to preserving possible information associated with missingness, 

discretization was performed to reduce the influence of outlier data, represent data nonlinearity 

in linear modeling processes such as logistic regression, further mitigate overfitting, and preserve 

clinical interpretability of the features. Additional details of data curation and model 

development are in the Supplemental Model Methods. Supplemental Figure 4 summarizes 

model construction at the development site and evaluation at the external validation site. At the 

development site, data were queried from an Oracle (Oracle Corp, Austin, TX) data warehouse 

containing a subset of transformed tables from the Cerner Millennium database (Oracle Cerner, 

Kansas City, MO). The model was developed and assessed using Python (version [v]3.10.11), 

Jupyter (v1.0.0), and the packages Pandas (v1.5.3), Numpy (v1.25.0), Matplotlib (v3.71.1), 

Sklearn (v1.1.1), XGBoost (v1.7.3), Seaborn (v0.11.2), SHAP (v0.41.0), and tqdm (v4.65.0).  

Biomolecular Corroboration of the Model at the Development Site 

Model predictions were compared to measured levels of 6 serum-based, brain-derived 

biomarkers of brain injury obtained from a previously assembled convenience cohort of 101 

children hospitalized between 2012-2014 (IRB #19040172).  The biomarkers were ubiquitin C-

terminal hydrolase-L1 (UCH-L1), glial fibrillary acidic protein (GFAP), myelin basic protein 

(MBP), neuron-specific enolase (NSE), S100 calcium binding protein B (S100B), and spectrin 

breakdown product 150 (SBDP150). After prospective consent from a legal guardian, biomarker 

levels were collected for up to 7 consecutive days from critically ill children with preexisting 

central venous catheters or arterial catheters. Details of the assays are provided in the 

Supplemental Biomarker Methods. Maximum values of each biomarker for each encounter 
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were assessed for correlation with the predicted probability of neurologic deterioration for that 

encounter. Patients were determined to have a neurologic complication by chart review if it 

occurred no more than 7 days after the last date a biomarker was collected.  

Model Selection and Statistical Analysis 

The top-performing model was selected based on F1 score, considering a clinically actionable 

time horizon, as well as the volume of available training data for feature engineering. Models 

with <0.15 difference in F1 scores were then compared both by visual inspection of calibration 

plots and Brier scores. Additional Fβ thresholds of 0.5, 2, and 3 were secondarily evaluated to 

identify whether there were any substantial differences in the optimal classifier based on the 

relative weight of recall compared to precision. Statistical performances of the top-performing 

models were evaluated at varied model outputs ranging from 0.025 to 0.9.  Spline regression was 

performed on top-performing models to improve calibration. Normally distributed continuous 

data are presented as means and 95% confidence intervals, nonparametric continuous data are 

presented as medians with interquartile ranges (IQRs), and categorical data are presented as 

counts with corresponding proportions. Model discrimination was compared to the 

discrimination of the last Glasgow coma scale (GCS) score prior to the censored time horizon 

using DeLong’s method. For the biomolecular corroboration analysis, Spearman’s rank-order 

correlation was assessed between a chart-adjudicated neurologic morbidity outcome and the 

composite neurologic morbidity outcome, as well as between the probability output of top-

performing models and the composite neurologic morbidity outcome. Correlation was then 

assessed between biomarker levels and the probability output of the top-performing models. 

Notched boxplots with overlying violin plots were constructed for significantly correlated 

biomarkers by dichotomizing predicted neurologic morbidity according to whether the 
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probability was <0.5 or ≥0.5. The distributions of biomarker measurements were normalized for 

plotting using log transformation and significance testing was assessed using an independent t 

test. An α < 0.05 is considered significant. Statistical analyses not performed in Python were 

performed in R version 4.3.1 (R Foundation, Vienna, Austria). 

Results 

Development Site Models Performance 

There were 32,702 encounters with a PICU stay. After exclusions, cohort sizes ranged from 

14,222-25,171 encounters, with 18,568 encounters in the final model cohort (Supplemental 

Table 8; Figure 1A). Patients were slightly older, received less mechanical ventilation, and less 

sedative-analgesic medications in the final test dataset compared to the training and validation 

datasets (Table 1). The final models evaluated in the test dataset was the extreme gradient 

boosting (XGBoost) model with a 12-hour time horizon and 48-hour feature window. This model 

was determined by investigator agreement to be a reasonable balance of favorable F1 scores, 

calibration as assessed by a Brier score, visual inspection of the calibration plot, clinically 

actionable time horizon, and sufficient cohort size for the training, validation, and test datasets. 

Complete development site model performance characteristics, 1 for each of the combinations of 

a 6, 12, and 24-hour censored time horizons and 24, 48, and 72-hour feature windows selected 

based on F1 score, are detailed in Supplemental Table 9. Each approach generated 605 features 

prior to information gain feature selection. The F1 scores are reported in Supplemental Tables 

10A and 10B. Additional Fβ scores largely agreed with the model assessments provided by F1 

scores and are presented in Supplemental Table 11A-C.   
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The final model contained 352 features and had a number needed to alert (NNA) of 2 

when considering a model prediction of greater than or equal to 0.5 as positive. At a model 

prediction threshold of 0.025 in the test dataset, sensitivity increased to 0.86 and NAA was 4. 

Statistical performance of the top-performing validation models and final test model at a range of 

output thresholds are in Supplemental Table 12A and 12B and Supplemental Figure 5. All 

development site models had a NNA of 2-3 at this prediction threshold. In the test dataset the 

final model had a sensitivity of 0.47 (range for all models in the validation dataset [range] 0.24-

0.63), specificity of 0.98 (range 0.96-0.99), AUPRC 0.68 (range 0.39-0.78), and AUROC of 0.89 

(range 0.80-0.87).  The final model had significantly greater discrimination compared to the last 

GCS AUROC of 0.72 obtained prior to the censored time horizon, P<0.001. Calibration plots of 

models with comparable performance based on F1-scores are displayed in Supplemental Figure 

6. The top 10 features of the final model are displayed in Supplemental Figure 7.  Average 

hourly scores for cases and controls for the 12 hours preceding and 4 hours following an 

outcome event are displayed in Figure 2. 

Biomolecular Corroboration at the Development Site 

Of the 101 patients with available brain-derived biomarkers measured, 64 also had model 

predictions for the 12-hour time horizon and 48-hour feature window models. Chart-adjudicated 

neuromorbidity within 7 days of last biomarker collection was significantly correlated with the 

composite neurologic morbidity outcome, rs=0.38 (P=0.002). The extreme gradient boosting 

model was significantly correlated with the composite neurologic morbidity outcome, rs=0.80 

(P<0.001). The logistic regression model had an F1 score that was nearly identical to the extreme 

gradient boosting model and was also significantly correlated with the composite neurologic 
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morbidity outcome, rs=0.55 (P<0.001). Extreme gradient boosting predictions were significantly 

correlated with maximum GFAP measurements, rs=0.34 (P=0.007) (Figure 3). 

Generalizable Model Performance 

Cohort ascertainment for the generalizable model is reported for the 24-hour time horizon and 

48-hour feature window model at the development site in Supplemental Table 8 and for the 

validation site in Supplemental Table 13. The generalizable model performance at the 

development and validation sites is reported in Table 2.  Performance was comparable to earlier 

24-hour time horizon 48-hour feature window models at the development. As the XGBoost and 

logistic regression models performed comparably, both were assessed at the validation site. 

There were 6,825 encounters in the external validation site final cohort (387 cases and 6,438 

controls).  As assessed by an F1 score of 0.37 at a threshold of 0.5, the top performing model was 

the XGBoost model, with an external validation AUROC of 0.81, AUPRC of 0.51, and an NNA 

of 4. Model performance characteristics across varied thresholds are displayed in Supplemental 

Table 14 and Supplemental Figure 8. Calibration was again excellent at the development site, 

initially poor at the external validation site, then substantially improved after spline recalibration 

at the validation site (Supplemental Figure 9). Feature importance analysis for the generalizable 

model was similar between the development and validation sites (Supplemental Figure 10). All 

models outperformed the GCS, P<0.001. 

Discussion 

In this study, we constructed well-performing models for predicting neurologic morbidity among 

critically ill children using EHR data from 2 large children’s hospitals.  These models were 

trained using more than 600 features engineered to capture nonlinear relationships between 
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predictors and the outcome.  The top performing model at the development site had 352 features 

and a NNA of 2, suggesting the utility of incorporating more features than can be accommodated 

by traditional, manually-tabulated clinical decision rules. A generalizable model demonstrated 

robust performance at both the development site and the external validation site. All models 

outperformed the GCS, supporting machine-learning-based methods to facilitate clinical 

activities including identification of high-risk patients for clinical intervention and for identifying 

an enriched population for enrollment in clinical trials.16 By largely adhering to data elements 

prioritized by USCDI, the developed models have a clearer path to implementation in modern 

informatics architectures capable of data transfer using standard clinical vocabularies and the fast 

healthcare interoperability resources (FHIR) standard.17 The generalizable model relies on 41 

variables, 37 of which are included in USCDI versions 1 or 2 and are therefore expected to ease 

eventual work associated with deployment. 

Many predictive models are constructed utilizing a snapshot of information from a 

discrete moment in time.18,19 For predictive models to more completely leverage the content of 

the EHR, the temporality of data must be incorporated into model features.  The performance of 

the present models was likely bolstered by incorporating features engineered using vector space 

representations of patient state, resulting in performance metrics that surpass those of other 

commonly used critical care risk models.15  The Simplified Acute Physiology Score, a commonly 

used mortality prediction tool for critically ill adults, has reported AUPRCs between 0.2-0.3 for 

in-hospital and 30-day mortality.20 The sequential organ failure assessment (SOFA), quick 

SOFA, and systemic inflammatory response syndrome criteria have reported AUPRCs of 0.06, 

0.1, and 0.09 predicting mortality at the time of sepsis onset, respectively.21 By comparison, our 

model ensemble had AUPRCs ranging from 0.39-0.78 at the development site and 0.2-0.42 at the 
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validation site. We undertook the present work with an expectation that identification of 

impending neurologic deterioration requires examination of contextual elements of care and 

more subtle vital sign and laboratory signatures which may serve as a harbinger of unfavorable 

trajectory.  

Correlation between a top-performing model and measurements of GFAP from a 

convenience cohort is compatible with our previous investigations of brain biomarkers in 

critically ill children.22  GFAP is found in astrocytes and plays a role responding to central 

nervous system injuries and related neurodegeneration.23 GFAP measurements from our 

convenience cohort were obtained for the first 7 days of the PICU stay and may have been 

obtained remote from an incurred brain injury, including one detected by the composite 

neurologic morbidity outcome. Notably, our composite neurologic morbidity outcome was 

significantly correlated with chart-adjudicated neurologic morbidity and an XGBoost model was 

significantly associated with GFAP levels.  Most extensively studied in the context of traumatic 

brain injury, a growing body of evidence suggest GFAP may be useful to identify more subtle 

insults to the central nervous system, and that the ability to measure GFAP in the bloodstream in 

non-traumatic diseases might relate to its dispersion into the bloodstream via recently discovered 

glymphatic pathways.24,25 Our models may prove useful both to determine for which patients a 

GFAP level should be obtained, as well as coupled with the GFAP measurements to bolster 

model performance. 

This work has some important limitations. Use of a composite definition of neurological 

morbidity intrinsically omits occult neurological morbidities that did not trigger clinical action 

and represents a source of potential bias in model development. While the computable composite 

definition of neurologic morbidity used in the present study has previously demonstrated high 
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specificity, the modest sensitivity of the definition suggests that the present models may miss 

neurologic morbidities that do not warrant inpatient imaging, EEG, a mental health assessment 

or a medication directed at psychosis or delirium.  This limitation, however, can be mitigated by 

assessing performance characteristics, including varied Fβ scores or sensitivities at different 

output thresholds, according to context and adjusting the model actionable threshold in a manner 

tailored to the clinical environment in which it is deployed. Moreover, while performance was 

robust at an external validation site relative to other established risk scores, statistical metrics did 

deteriorate compared to those observed in the test dataset at the development site.  Notably, the 

GCS also had a lower AUROC at the validation site compared to the GCS AUROC at the 

development site, suggesting that the choice of neurocritical care consult as an outcome 

influenced the models’ performance characteristics.  

In conclusion, we developed well-performing models for predicting children with critical 

illness at risk for neurologic morbidity.  A flexible, distributed strategy for model development in 

partnership with an external validation site demonstrated the utility of adapting to varied 

informatics infrastructures and EHR deployments to generate well-performing predictive models 

for a common clinical goal. A generalizable model demonstrated robust performance in external 

validation. Prospective, multi-site assessment of a generalizable model coupled with brain-based 

biomarkers is warranted to assess the combined utility for identifying patients at high-risk for 

incurred neurologic morbidity and evaluating interventions to improve outcomes in this 

population.   

Acknowledgements 

 We would like to posthumously thank Dr. Ron Hayes (Banyan Biomarkers) for brain 

biomarker measurements; Dr. Pat Kochanek for helpful guidance; Dr. Henry Ogoe for helping to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2024. ; https://doi.org/10.1101/2024.09.17.24313649doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.17.24313649
http://creativecommons.org/licenses/by-nc-nd/4.0/


run an early version of the pipeline at UPMC Children’s Hospital of Pittsburgh; Mrs. Nassima 

Bouhenni for her initial efforts updating code; Mr. Dan Ricketts for his assistance setting up and 

maintaining virtual machines used for the final analyses; and Mr. Thomas Mathie for his 

assistance querying EHR data. United States Patent Application No. 17/760,558 and 

International Patent Application PCT/US2020/061985 have been filed related to this work.  

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2024. ; https://doi.org/10.1101/2024.09.17.24313649doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.17.24313649
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1 Au AK, Carcillo JA, Clark RSB, Bell MJ. Brain injuries and neurological system failure are 
the most common proximate causes of death in children admitted to a pediatric intensive care 
unit. Pediatr Crit Care Med 2011; 12: 566–71. 

2 Bell JL, Saenz L, Domnina Y, et al. Acute Neurologic Injury in Children Admitted to the 
Cardiac Intensive Care Unit. Ann Thorac Surg 2019; 107: 1831–7. 

3 Pollack MM, Holubkov R, Funai T, et al. Simultaneous Prediction of New Morbidity, 
Mortality, and Survival Without New Morbidity From Pediatric Intensive Care: A New 
Paradigm for Outcomes Assessment. Crit Care Med 2015; 43: 1699–709. 

4 Sepanski RJ, Godambe SA, Mangum CD, Bovat CS, Zaritsky AL, Shah SH. Designing a 
pediatric severe sepsis screening tool. Front Pediatr 2014; 2: 56. 

5 Schlapbach LJ, MacLaren G, Festa M, et al. Prediction of pediatric sepsis mortality within 1 h 
of intensive care admission. Intensive Care Med 2017; 43: 1085–96. 

6 Ruiz VM, Saenz L, Lopez-Magallon A, et al. Early prediction of critical events for infants 
with single-ventricle physiology in critical care using routinely collected data. J Thorac 
Cardiovasc Surg 2019; 158: 234-243.e3. 

7 Sutherland SM. Electronic Health Record-Enabled Big-Data Approaches to Nephrotoxin-
Associated Acute Kidney Injury Risk Prediction. Pharmacotherapy 2018; 38: 804–12. 

8 21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT 
Certification Program. Federal Register. 2020; published online May 1. 
https://www.federalregister.gov/documents/2020/05/01/2020-07419/21st-century-cures-act-
interoperability-information-blocking-and-the-onc-health-it-certification (accessed Nov 26, 
2022). 

9 Littenberg B. Technology assessment in medicine. Academic Medicine 1992; 67: 424–8. 

10 Schröer C, Kruse F, Gómez JM. A Systematic Literature Review on Applying CRISP-DM 
Process Model. Procedia Computer Science 2021; 181: 526–34. 

11 Alcamo AM, Clark RSB, Au AK, et al. Factors Associated With Neurobehavioral 
Complications in Pediatric Abdominal Organ Transplant Recipients Identified Using 
Computable Composite Definitions. Pediatr Crit Care Med 2020; 21: 804–10. 

12 Alcamo AM, Barren GJ, Becker AE, et al. Validation of a Computational Phenotype to 
Identify Acute Brain Dysfunction in Pediatric Sepsis. Pediatr Crit Care Med 2022; 23: 1027–
36. 

13 United States Core Data for Interoperability (USCDI). https://www.healthit.gov/isa/united-
states-core-data-interoperability-uscdi (accessed Aug 8, 2022). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2024. ; https://doi.org/10.1101/2024.09.17.24313649doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.17.24313649
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 Value Set Authority Center. https://vsac.nlm.nih.gov/ (accessed Nov 6, 2023). 

15 Hauskrecht M, Batal I, Valko M, Visweswaran S, Cooper GF, Clermont G. Outlier detection 
for patient monitoring and alerting. Journal of Biomedical Informatics 2013; 46: 47–55. 

16 Harrer S, Shah P, Antony B, Hu J. Artificial Intelligence for Clinical Trial Design. Trends in 
Pharmacological Sciences 2019; 40: 577–91. 

17 Shareable Clinical Decision Support. http://www.healthit.gov/isa/shareable-clinical-decision-
support (accessed Nov 7, 2023). 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2024. ; https://doi.org/10.1101/2024.09.17.24313649doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.17.24313649
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables and Titles 

Table 1. Demographic characteristics of the entire cohort and the parsed training, validation, and 
final test datasets at the development site and the entire cohort, training, and validation datasets, 
as well as the generalizable model validation dataset at the external validation site. 
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sites. 
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outcome. 
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Supplemental Table 6. Predictive performance of the XGBoost model with a 12-hour censor 
horizon and 48-hour feature window in the test dataset, after manual tuning, and after Bayesian 
tuning.  

Supplemental Table 7. Predictive performance of the XGBoost model with a 12-hour censor 
horizon and 48-hour feature window in the validation dataset, after manual tuning, and after 
Bayesian tuning.  

Supplemental Table 8. Cohort ascertainment and exclusions for varied censored time horizons 
and feature windows at the development site. 

Supplemental Table 9. Performance of the optimal models in the validation dataset at the 
development and validation sites. 

Supplemental Table 10 A) F1 scores of top performing models in the development site 
validation dataset. B) F1 scores of top performing models in the validation site test dataset.  

Supplemental Table 11 A) �� (�=2) scores of top performing models in the development site 
validation dataset; B) �� (�=3) scores of top performing models in the development site 
validation dataset; C) �� (�=0.5) scores of top performing models in the development site 
validation dataset. 

Supplemental Table 12 A) Statistical performance of the 12-hour time horizon, 48-hour feature 
window XGBoost and logistic regression models over a range of score thresholds in the 
development site validation dataset; B) Statistical performance of the 12-hour time horizon, 48-
hour feature window XGBoost model over a range of score thresholds in the development site 
test dataset. 
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Supplemental Table 13. Cohort ascertainment and exclusions for varied feature windows for 
the validation site. 

Supplemental Table 14 A) Statistical performance of the extreme gradient boosting (XGBoost) 
and logistic regression generalizable models at the development site across varied output 
thresholds. B) Statistical performance of the extreme gradient boosting (XGBoost) and logistic 
regression generalizable models at the external validation site across varied output thresholds. 
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Figures and Legends 

Figure 1. Cohort ascertainment for the final model at the development site, which included 
features engineered using 48 hours of preceding data and censoring 12-hours prior to the event 
for cases.  Initial model development and validation proceeded using data from 2010-2019. The 
model was tested using data from 2020-2022. Abbreviations: LASSO, least absolute shrinkage 
and selection operator; PICU, pediatric intensive care unit; XGBoost, extreme gradient boosting. 

Figure 2. Average hourly scores in the test dataset (encounters with a PICU stay in the year 2020 
– 2022) for varied censored time horizon windows for the extreme gradient boosted model 
developed using a 12-hour time horizon and 48-hour feature window. The red dots are the 
average hourly scores 12 hours prior to an event and 4 hours after an event for the case 
encounters (encounters with an identified neurologic morbidity) and the shaded red region 
represents the 95% confidence interval. The black dots are the average hourly scores for the 
control encounters (encounters without an identified neurological morbidity). Confidence 
intervals for the control encounters are not discernable in the figure due to the large cohort size. 
The size of the dots is proportionate to the cohort size at that timepoint. 

Figure 3. Log-transformed maximum GFAP measurements for a convenience cohort of 64 
patients, stratified by predicted neurologic morbidity using the 12-hour time horizon 48-hour 
feature window extreme gradient boosting model. Abbreviations: GFAP, glial fibrillary acidic 
protein; mL, milliliter; pg, picogram.  

Supplemental Figure 1. A representation of the time window and censor horizons used to define 
cases and controls as part of the development, validation, and test cohorts. The blue boxes in the 
top, ‘Cases’ box identify a time window that is also demarcated by a horizontal, gold, 
bidirectional arrow, the horizontal black lines represent length of stay for individual encounters, 
the vertical black line represents the occurrence of the neurological morbidity outcome, and the 
gold, horizontal, bidirectional arrow indicates the censor horizon, or period of time that data 
were not incorporated into the model. In the bottom, ‘Controls’ box, the blue boxes indicate the 
time window of data used for each stage of model development and evaluation.  

Supplemental Figure 2. Data cleaning and feature engineering process. 

Supplemental Figure 3. A representation of the feature engineering for continuous biomarker 
measurements.  Temporal information is represented as a variety of summary measurements for 
discrete windows of time. Feature windows of 24-hours, 48-hours, and 72-hours are displayed in 
the figure. The models at the development site were trained with 6-hour, 12-hour, and 24-hour 
censored time horizons, with 12-hour and 24-hour horizons demonstrated in the figure. 
Definitions and related examples for a 24-hour window of data prior to the censor period are 
displayed in the table. Abbreviations: h, hours.  

Supplemental Figure 4. The process of BRAIN A-I model development and external validation.  
Curated data at the development site were divided into a train cohort, validation cohort, and 2-
years of holdout test data.  The curated data were used to generate synthetic data with 
comparable single variable statistical distributions. The synthetic data were then distributed to 
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the external validation site with model training code, facilitating local data curation by providing 
the necessary details of data structure. Finally, the working BRAIN A-I pipeline was applied to 
real-world data at the external validation site, applied separate training and validation datasets.  
Abbreviations: BRAIN A-I, Biodigital Rapid Alert to Identify Neuromorbidity A-I Bundle; Dev. 
Site, Development Site; Valid. Site, Validation Site. 

Supplemental Figure 5. Plots the key statistical performance metrics sensitivity (gold line), 
positive predictive value (PPV, red line), F1 score (blue line), and F2 score (green line) with 
metric values on the y-axis and model output thresholds on the x-axis for A) the logistic 
regression model with a 12-hour time horizon and 48-hour feature window in the development 
site validation dataset; B) the extreme gradient boosting model with a 12-hour time horizon and 
48-hour feature window in the development site validation dataset; and C) the extreme gradient 
boosting model with a 12-hour time horizon and 48-hour feature window in the development site 
test dataset.  

Supplemental Figure 6. Calibration plots and associated Brier scores for the top performing 
models for varied time horizons and features windows in the validation dataset. A) 6-hour time 
horizon and 24-hour feature window; B) 6-hour time horizon and 48-hour feature window; C) 6-
hour time horizon and 72-hour feature window; D) 12-hour time horizon and 24-hour feature 
window; E) 12-hour time horizon and 48-hour feature window; F) 12-hour time horizon and 72-
hour feature window; G) 24-hour time horizon and 24-hour feature window; H) 24-hour time 
horizon and 48-hour feature window; I) 24-hour time horizon and 72-hour feature window. 
Abbreviations: LR, logistic regression; XGB, extreme gradient boosted. 

Supplemental Figure 7. Top 10 biomarker feature categories based on Shap values for the 12-
hour time horizon 48-hour feature window XGBoost model from the development site. Each 
category contains several features, e.g. Temperature contains maximum temperature, minimum 
temperature, average temperature, etc. The blue bars represent the sum of the mean Shap values 
for each category. Abbreviations: biomrkrs, biomarkers. 

Supplemental Figure 8. Plots the key statistical performance metrics sensitivity (gold line), 
positive predictive value (PPV, red line), F1 score (blue line), and F2 score (green line) with 
metric values on the y-axis and model output thresholds on the x-axis for the generalizable A) 
logistic regression model in the development site test dataset; B) extreme gradient boosting 
model in the development site test data set; C) logistic regression model in the external 
validation dataset; D) extreme gradient boosting model in the external validation site dataset. 

Supplemental Figure 9. Calibration plots for the generalizable model in the A) development site 
test dataset and B) the external validation site dataset. 

Supplemental Figure 10. Feature importance analysis for the generalizable model in the A) 
development site test dataset and B) external validation site dataset. 

Additional Materials 

Supplemental Model Methods 
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Supplemental Biomarker Methods 
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Table 1. Demographic characteristics of the entire cohort and the parsed training, validation, and final test datasets at the development site and the entire 
cohort, training, and validation datasets, as well as the generalizable model validation dataset at the external validation site. 
 Development Site Validation Site 

Characteristic Entire Cohort Training Dataset Validation Dataset Final Test Dataset 
Generalizable Model 

Validation Dataset 
 N = 18,568 n = 10,744 n = 3,582 n = 4,242 N = 6,825 
Age (months), median (IQR) 70 (18, 161) 67 (18, 158) 68.5 (18, 160) 77 (19, 167) 96 (18,171) 

Female, n (%) 8,325 (45) 4,748 (44) 1,593 (44) 1,984 (47) 3,159 (46) 
Glasgow Coma Scale Score, median 
(IQR)* 15 (12, 15) 15 (11, 15) 15 (11, 15) 15 (14, 15) 

14 (14,15) 

Mechanical Ventilation, n (%) 
5,352 (29) 3,322 (31) 1,143 (32) 887 (21) 

1,948(29) 

Endotracheal Tube, n (%) 
1,759 (9) 1,142 (11) 370 (10) 247 (6) 

1,283 (19) 

Vasoactive Medication, n (%)** 

720 (4) 393 (4) 148 (4) 179 (4) 
221 (3) 

Sedative-Analgesic Medication, n 
(%)*** 4,660 (25) 2,948 (27) 987 (27) 727 (17) 

1,930 (28) 

*The last recorded Glasgow coma scale score for the encounter prior to the censored time horizon 
**Vasoactive medications include dobutamine, dopamine, epinephrine, norepinephrine, or milrinone 
***Sedative-analgesic medications include fentanyl, hydromorphone, midazolam, or morphine 
Abbreviations: IQR, interquartile range 
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Table 2. Performance of the generalizable model at the development and external validation sites. 
 

Development Site Validation Site 

Dataset Development Validation Test External Validation 

Encounters  
(Cases/Controls), N 

10,457 
(1,095/9,362) 

3,486 
(365/3,121) 

4,152 
(398/3,754) 

6,825 
(387/6,438) 

Model XGB LR XGB LR XGB LR XGB LR 
Feature Selection IG IG IG IG IG IG IG IG 
AUROC 1.00 0.90 0.81 0.81 0.87 0.86 0.81 0.82 
AUPRC 0.99 0.71 0.52 0.54 0.62 0.61 0.51 0.48 
PPV 1.00 0.84 0.67 0.69 0.82 0.80 0.26 0.18 
NPV 0.99 0.94 0.93 0.93 0.94 0.94 0.97 0.98 
Sensitivity 0.91 0.47 0.35 0.41 0.35 0.38 0.61 0.70 
Specificity 1.00 0.99 0.98 0.98 0.99 0.99 0.90 0.81 
F1 score 0.95 0.61 0.46 0.51 0.49 0.52 0.37 0.29 
F2 score 0.92 0.52 0.39 0.45 0.39 0.43 0.48 0.45 
F3 score 0.92 0.50 0.37 0.43 0.37 0.41 0.54 0.55 
F0.5 score 0.98 0.73 0.57 0.60 0.65 0.66 0.30 0.22 
Abbreviations: AUROC, area under the receiver operating characteristics curve; AUPRC, area under the precision recall curve; CFS, correlation-based feature selection; IG, information gain; LR, 
logistic regression; NB, naïve Bayes; NPV, negative predictive value; PPV, positive predictive value; XGB, XGBoost (extreme gradient boosting) 

 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity.

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
preprint 

T
he copyright holder for this

this version posted S
eptem

ber 18, 2024. 
; 

https://doi.org/10.1101/2024.09.17.24313649
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.09.17.24313649
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table 1. TRIPOD Checklist. 
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Supplemental Table 2. Littenberg framework for the assessment of medical technology as applied to BRAIN A-I 
Framework Domain Description Applicability to BRAIN A-I 
Biologic Plausibility  Does the current understanding of biology and 

disease pathology support the technology? 
Practicing pediatric neurointensive care physicians posit 
that structured data including laboratory results, vital 
signs, medications, and other non-laboratory diagnostics 
can collectively be used to assess a child’s risk of 
incurring or manifesting brain injury during the course of 
critical illness. 

Technical Feasibility Can the developed technology safely and 
reliably be delivered to the target patients? 

Developing the model in adherance to the United States 
core data for interoperability and related informatics 
standard nomenclatures for structured data will facilitate 
model deployment. 

Intermediate Outcomes What are the biological, physiologic, or clinical 
effects of the technology?  

During this development stage, model-calculated 
probabilities of neurologic deterioration were assessed 
for correlation with an available sample of measured, 
serum-based, brain-derived biomarkers.  

Patient Outcomes Are the intended patient outcomes promoted by 
use of the technology compatible with overall 
improved health? 

The developed model is intended to alert clinicians but 
not prescribe a course of action, in large part owing to 
the complexity and heterogeneity of neurologic 
morbidity that occurs among critically ill children. 
Clinicians remain the ultimate arbiters of bedside 
decision-making that adequately accounts for the balance 
of risk and benefits related to a given management 
course. 

Societal Outcomes What are the external effects of the technology 
and does it confer benefit to the larger society? 

Leveraging interoperability standards helps to reduce 
costs associated with technology deployment. By aiding 
clinicians in potentially obviating the occurrence or 
mitigating the effects of neurologic injury multiple 
population-level benefits are realized, including but not 
limited to a reduction in societal costs associated with 
long-term care of profound neurologic injury. 
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Supplemental Table 3. Data curation steps for individual data elements for the BRAIN AI outcome. 

File_Path Outcome Marker Type 

bh.csv Behavioral Health Consult behavioral 

haldol.csv Haloperidol medication 

olanzapine.csv Olanzapine medication 

dexmedetomidine.csv Dexmedetomidine medication 

eeg.csv EEG neuro 

ct.csv CT Head neuro 

mri.csv MRI Brain neuro 
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Supplemental Table 4. Data curation steps for individual data elements for BRAIN A-I 

Data Element Min Max Action Type Available at 
Both Sites 

Base deficit -30 0 Discard Numerical Yes 

Base excess 0 30 Discard Numerical Yes 

Bicarbonate 0 80 Discard Numerical Yes 

Blood urea nitrogen 0 200 Truncate Numerical Yes 

Chloride 60 190 Discard Numerical Yes 

Cisatracurium 0 1 Ignore Boolean Yes 

C-Reactive Protein 0 100 Discard Numerical Yes 

Creatinine 0.1 25 Discard Numerical Yes 

CRRT Therapy Type 0 1 Discard Boolean No 

DBP 0 200 Discard Numerical Yes 

Dobutamine 0 1 Ignore Boolean Yes 

Dopamine 0 1 Ignore Boolean Yes 

ECMO Type 0 1 Discard Boolean No 

Endotracheal tube 0 1 Discard Boolean No 

Epinephrine 0 1 Ignore Boolean Yes 

Fentanyl 0 1 Ignore Boolean Yes 

Glucose 0 2000 Discard Numerical Yes 

Hemoglobin 0 30 Discard Numerical Yes 

Hydromorphone 0 1 Ignore Boolean Yes 

INR 0 25 Discard Numerical No 

Lactate 0 30 Discard Numerical Yes 

Lorazepam 0 1 Ignore Numerical Yes 

MBP 0 160 Discard Numerical Yes 

Midazolam 0 1 Ignore Boolean Yes 

Milrinone 0 1 Ignore Boolean Yes 

Morphine 0 1 Ignore Boolean Yes 

Norepinephrine 0 1 Ignore Boolean Yes 

pCO2 5 150 Discard Numerical Yes 

Peds Coma Score 3 15 Discard Numerical Yes 

pH 6 8 Discard Numerical Yes 

Platelets 0 5000 Discard Numerical Yes 

Potassium 0.05 12 Discard Numerical Yes 

Procalcitonin 0 250 Discard Numerical Yes 

PTT 0 250 Truncate Numerical Yes 

Pulse 0 350 Discard Numerical Yes 

Pupillary Reaction    Categorical Yes 

Respiratory Rate 0 150 Discard Numerical Yes 

SBP 0 300 Discard Numerical Yes 

Sodium 80 215 Discard Numerical Yes 

SpO2 0 100 Discard Numerical Yes 

Temperature 0 46 Discard Numerical Yes 
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Ventilated 0 1 Discard Boolean Yes 

Ventilator Make/Model    Categorical Yes 

Weight 0 300 Discard Numerical Yes 

White blood cell count 0 300 Discard Numerical Yes 
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Supplemental Table 5. Standard vocabulary crosswalk for BRAIN-AI components  

BRAIN A-I Components 
Cerner 

Millennium 
Code Set 

Standard 
Vocabulary 

Standard 
Identifier Standard Display USCDI 

Laboratory Tests  

Base deficit 
72 (Clinical Event 

Observation) 
LOINC 

1922-4 Base deficit in Arterial blood 

Version 1 1923-2 Base deficit in Capillary blood 
1924-0 Base deficit in Venous blood 

30318-0 Base deficit in Blood 

Base excess 
72 (Clinical Event 

Observation) 
LOINC 

11555-0 Base excess in Blood by calculation 

Version 1 

1925-7 
Base excess in Arterial blood by 

calculation 

1926-5 
Base excess in Capillary blood by 

calculation 

1927-3 
Base excess in Venous blood by 

calculation 

Bicarbonate 
72 (Clinical Event 

Observation) 
LOINC 

1959-6 Bicarbonate [Moles/volume] in Blood 

Version 1 

1960-4 
Bicarbonate [Moles/volume] in Arterial 

blood 

1961-2 
Bicarbonate [Moles/volume] in Capillary 

blood 

14627-4 
Bicarbonate [Moles/volume] in Venous 

blood 

2028-9 
Carbon dioxide, total [Moles/volume] in 

Serum or Plasma 

20565-8 
Carbon dioxide, total [Moles/volume] in 

Blood 

Blood urea nitrogen 
72 (Clinical Event 

Observation) 
LOINC 

3094-0 
Urea nitrogen [Mass/volume] in Serum or 

Plasma Version 1 
6299-2 Urea nitrogen [Mass/volume] in Blood 

Chloride 
72 (Clinical Event 

Observation) 
LOINC 

2075-0 
Chloride [Moles/volume] in Serum or 

Plasma Version 1 
2069-3 Chloride [Moles/volume] in Blood 

C-reactive protein 
72 (Clinical Event 

Observation) 
LOINC 1988-5 

C reactive protein [Mass/volume] in 
Serum or Plasma 

Version 1 

Creatinine 
72 (Clinical Event 

Observation) 
LOINC 

2160-0 
Creatinine [Mass/volume] in Serum or 

Plasma Version 1 
38483-4 Creatinine [Mass/volume] in Blood 

Glucose 
72 (Clinical Event 

Observation) 
LOINC 

41653-7 
Glucose [Mass/volume] in Capillary 

blood by Glucometer 
Version 1 

2345-7 
Glucose [Mass/volume] in Serum or 

Plasma 
2339-0 Glucose [Mass/volume] in Blood 

Hemoglobin 
72 (Clinical Event 

Observation) 
LOINC 

718-7 Hemoglobin [Mass/volume] in Blood 

Version 1 

30351-1 
Hemoglobin [Mass/volume] in Mixed 

venous blood 

30313-1 
Hemoglobin [Mass/volume] in Arterial 

blood 

30350-3 
Hemoglobin [Mass/volume] in Venous 

blood 

International normalized ratio 
72 (Clinical Event 

Observation) 
LOINC 6301-6 

INR in Platelet poor plasma by 
Coagulation assay 

Version 1 

Lactate 
72 (Clinical Event 

Observation) 
LOINC 

2519-7 Lactate [Moles/volume] in Venous blood 
Version 1 

32693-4 Lactate [Moles/volume] in Blood 

Partial pressure of carbon 
dioxide 

72 (Clinical Event 
Observation) 

LOINC 

2020-6 
Carbon dioxide [Partial pressure] in 

Capillary blood 

Version 1 11557-6 
Carbon dioxide [Partial pressure] in 

Blood 

2019-8 
Carbon dioxide [Partial pressure] in 

Arterial blood 

pH 
72 (Clinical Event 

Observation) 
LOINC 

2745-8 pH of Capillary blood 

Version 1 11558-4 pH of Blood 
2744-1 pH of Arterial blood 
2746-6 pH of Venous blood 

Platelets 
72 (Clinical Event 

Observation) 
LOINC 777-3 

Platelets [#/volume] in Blood by 
Automated count 

Version 1 
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Supplemental Table 5. Standard vocabulary crosswalk for BRAIN-AI components  

BRAIN A-I Components 
Cerner 

Millennium 
Code Set 

Standard 
Vocabulary 

Standard 
Identifier Standard Display USCDI 

Potassium 
72 (Clinical Event 

Observation) 
LOINC 

2823-3 
Potassium [Moles/volume] in Serum or 

Plasma Version 1 
6298-4 Potassium [Moles/volume] in Blood 

Procalcitonin 
72 (Clinical Event 

Observation) 
LOINC 33959-8 

Procalcitonin [Mass/volume] in Serum or 
Plasma 

Version 1 

Partial thromboplastin time 
72 (Clinical Event 

Observation) 
LOINC 14979-9 

aPTT in Platelet poor plasma by 
Coagulation assay 

Version 1 

Sodium 
72 (Clinical Event 

Observation) 
LOINC 

2951-2 
Sodium [Moles/volume] in Serum or 

Plasma Version 1 
2947-0 Sodium [Moles/volume] in Blood 

White blood cell count 
72 (Clinical Event 

Observation) 
LOINC 

6690-2 
Leukocytes [#/volume] in Blood by 

Automated count 
Version 1 

49498-9 
Leukocytes [#/volume] in Blood by 

Estimate 

Vital signs  

Diastolic blood pressure 
72 (Clinical Event 

Observation) 
LOINC 

8453-3 Diastolic blood pressure--sitting 

Version 1 8454-1 Diastolic blood pressure--standing 
8455-8 Diastolic blood pressure--supine 
8462-4 Diastolic blood pressure 

Glasgow coma scale score 
72 (Clinical Event 

Observation) 
LOINC 

9269-2 Glasgow coma score total 

Version 3 9270-0 Glasgow coma score verbal 
9267-6 Glasgow coma score eye opening 
9268-4 Glasgow coma score motor 

Heart rate 
72 (Clinical Event 

Observation) 
LOINC 

68999-2 Heart rate --supine 

Version 1 
69000-8 Heart rate --sitting 
69001-6 Heart rate --standing 
8867-4 Heart rate 
8890-6 Heart rate Cardiac apex by Auscultation 

Mean blood pressure 
72 (Clinical Event 

Observation) 
LOINC 8478-0 Mean blood pressure Version 1 

Pulse oximetry 
72 (Clinical Event 

Observation) 
LOINC 59408-5 

Oxygen saturation in Arterial blood by 
Pulse oximetry 

Version 1 

Respiratory rate 
72 (Clinical Event 

Observation) 
LOINC 9279-1 Respiratory rate Version 1 

Systolic blood pressure 
72 (Clinical Event 

Observation) 
LOINC 8480-6 Systolic blood pressure Version 1 

Temperature 
72 (Clinical Event 

Observation) 
LOINC 

60836-4 Esophageal temperature 

Version 1 

76278-1 Bladder temperature via Foley 

8310-5 Body temperature 

8328-7 Axillary temperature 

8329-5 Body temperature - Core 

8331-1 Oral temperature 

8332-9 Rectal temperature 

8334-5 Body temperature – Urinary bladder 

Ventilator interface 
72 (Clinical Event 

Observation) 
LOINC LL5542-7 Intubation tube types 

Medical 
Device 
Class - 
Version 

Unknown 

Ventilator make 
72 (Clinical Event 

Observation) 
LOINC LL7706-7 Ventilator 

Medical 
Device 
Class - 
Version 

Unknown 

Weight 
72 (Clinical Event 

Observation) 
LOINC 29463-7 Body weight Version 1 

Medications  

Cisatracurium (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

319864 cisatracurium Version 1 

Dexmedetomidine 
(Intravenous) 

72 (Clinical Event 
Observation) 

RxNorm 
RXCUI 

48937 dexmedeTOMIDine Version 1 
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Supplemental Table 5. Standard vocabulary crosswalk for BRAIN-AI components  

BRAIN A-I Components 
Cerner 

Millennium 
Code Set 

Standard 
Vocabulary 

Standard 
Identifier Standard Display USCDI 

Dobutamine (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

3616 DOBUTamine Version 1 

Dopamine (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

3628 dopamine Version 1 

Epinephrine (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

3992 EPINEPHrine Version 1 

Fentanyl (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

4337 fentaNYL Version 1 

Haldol 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

151839 Haldol Version 1 

Hydromorphone 
(Intravenous) 

72 (Clinical Event 
Observation) 

RxNorm 
RXCUI 

3423 HYDROmorphone Version 1 

Lorazepam (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

6470 LORazepam Version 1 

Midazolam (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

6960 midazolam Version 1 

Milrinone (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

52769 milrinone Version 1 

Morphine (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

7052 morphine Version 1 

Norepinephrine (Intravenous) 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

7512 norepinephrine Version 1 

Olanzapine 
72 (Clinical Event 

Observation) 
RxNorm 
RXCUI 

61381 OLANZapine Version 1 

Non-Laboratory 
Diagnostics     

 

Brain computed tomography 
72 (Clinical Event 

Observation) 
LOINC 24725-4 CT Head Version 2 

Brain magnetic resonance 
imaging 

72 (Clinical Event 
Observation) 

LOINC 24590-2 MR Brain Version 2 

Electroencephalogram 
72 (Clinical Event 

Observation) 
LOINC 11523-8 EEG study Version 2 

Pupillary reaction 
72 (Clinical Event 

Observation) 

LOINC 79899-1 Left pupil Pupillary response 

Observatio
n Class – 
Version 

Unknown 

LOINC 79815-7 Right pupil Pupillary response 

Observatio
n Class – 
Version 

Unknown 
Consultation  

Behavioral health consult 
72 (Clinical Event 

Observation) 
SNOMED 

CT 
733870009 Assessment of delirium 

Observatio
n Class – 
Version 

Unknown 

Abbreviations: aPTT, activated partial thromboplastin time; BRAIN A-I, biodigital rapid alert for identifying 
neuromorbidity A-I bundle; CT, computed tomography; EEG, electroencephalography; MR, magnetic resonance; 
LOINC, logical object identifiers, names, and codes; RXCUI, RxNorm concept unique identifier; SNOMED CT, 
systematized nomenclature of medicine - clinical terms; USCDI, United States Core Data for Interoperability 
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Supplemental Table 6. Predictive performance of the XGBoost model with a 12-hour censor horizon and 48-
hour feature window in the validation dataset, after manual tuning, and after Bayesian tuning.  
 XGBoost Base XGBoost Manual Tuning XGBoost Bayesian Tuning 
AUROC 0.84 0.84 0.85 
AUPRC 0.61 0.62 0.63 

F1 Score 0.54 
 

0.56 0.58 

PPV 0.77 
 

0.75 0.63 

NPV 0.92 
 

0.92 0.93 

Sensitivity 0.41 
 

0.44 0.54 

Specificity 0.98 0.98 0.95 

Models were tuned to optimize the F1 score, bordered in bold. 
Abbreviations: AUPRC, area under the precision recall curve; AUROC, area under the receiver operating 
characteristics curve; NPV, negative predictive value; PPV, positive predictive value; XGBoost, extreme 
gradient boosting. 
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Supplemental Table 7. Predictive performance of the XGBoost model with a 12-hour censor horizon and 48-
hour feature window in the test dataset, after manual tuning, and after Bayesian tuning.  
 XGBoost Base XGBoost Manual Tuning XGBoost Bayesian Tuning 
AUROC 0.87 0.88 0.89 

AUPRC 0.66 0.68 0.69 

F1 Score 0.57 0.58 0.62 

PPV 0.86 0.79 0.74 

NPV 0.93 0.93 0.94 

Sensitivity 0.43 0.46 0.53 

Specificity 0.99 0.98 0.98 

Models were tuned to optimize the F1 score, bordered in bold. 
Abbreviations: AUPRC, area under the precision recall curve; AUROC, area under the receiver operating 
characteristics curve; NPV, negative predictive value; PPV, positive predictive value; XGBoost, extreme 
gradient boosting. 
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Supplemental Table 8. Cohort ascertainment and exclusions for varied censored time horizons and feature windows 
at the development site. 
Encounters 
with a PICU 
admission 

32,702 

Feature 
window 
(hours) 

24 48 72 

Censored time 
Horizon 
(hours) 

6 12 24 6 12 24 6 12 24 

Visit length or 
time to 
outcome hours 
less than 
feature 
window + time 
horizon 

2925 3435 3908 7720 8230 8703 11593 12103 12576 

Outcome 
occurred 
before PICU 
admission 

4956 

Missing age, 
admission 
time, or 
discharge time 

821 

PICU length 
of stay <1 
hour 

182 

No 
documented 
SpO2 
measurement 

7 

Discharge time 
documented 
prior to 
admission 
time 

2 

Final cohort 23873 23363 22890 19078 18568 18095 15205 14695 14222 
     Cases 2841 2331 1858 2841 2331 1858 2841 2331 1858 
     Controls 21032 16237 12364 
Cohort numbers in bold represent the cohort at a given stage of ascertainment and numbers not in bold 

represent encounter dropout at stages of cleaning. 
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Supplemental Table 9. Performance of the optimal models in the validation dataset at the development site. 
 

Development Site 

Feature Window 
(hours) 24 48 72 

Censored Time 
Horizon (hours) 6 12 24 6 12 24 6 12 24 

Model LR LR LR XGB XGB LR XGB LR XGB 
Feature Selection IG IG IG IG IG IG IG IG IG 
AUROC 0.83 0.83 0.80 0.87 0.82 0.82 0.88 0.86 0.82 
AUPRC 0.59 0.49 0.39 0.73 0.61 0.53 0.78 0.71 0.61 
PPV 0.74 0.65 0.60 0.82 0.79 0.69 0.88 0.75 0.68 
NPV 0.92 0.92 0.93 0.92 0.92 0.93 0.91 0.92 0.92 
Sensitivity 0.40 0.29 0.24 0.53 0.41 0.41 0.58 0.54 0.47 
Specificity 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.97 0.97 
Abbreviations: AUROC, area under the receiver operating characteristics curve; AUPRC, area under the precision recall curve; CFS, correlation-based feature selection; IG, information gain; LR, 
logistic regression; NB, naïve Bayes; NPV, negative predictive value; PPV, positive predictive value; XGB, XGBoost (extreme gradient boosting) 

 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity.

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
preprint 

T
he copyright holder for this

this version posted S
eptem

ber 18, 2024. 
; 

https://doi.org/10.1101/2024.09.17.24313649
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.09.17.24313649
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table 10. F1 scores of top performing models in the development site validation dataset. 

  Censored Time Horizon 

  6-hours 12-hours 24-hours 

F
ea

tu
re

 
W

in
do

w
 24-hours 

LR 
0.52 

LR 
0.40 

LR 
0.34 

48-hours 
XGB 
0.65 

XGB 
0.54 

LR 
0.51 

72-hours 
XGB 
0.70 

LR 
0.65 

XGB 
0.57 

Cells denote the best performing model and the F1 score / Brier score. 
All models at the development site were created using information gain feature selection 
Abbreviations: LR, logistic regression; XGB, XGBoost (extreme gradient boosting) 
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Supplemental Table 11A. �� (�=2) scores of top performing models in the development site validation dataset. 

  Censored Time Horizon 

  6-hours 12-hours 24-hours 

F
ea

tu
re

 
W

in
do

w
 24-hours 

XGB 
0.44 (0.44) 

XGB 
0.33 (0.32) 

LR 
0.27 (0.25) 

48-hours 
LR 

0.59 (0.58) 
LR 

0.49 (0.45) 
LR 

0.45 (0.39) 

72-hours 
LR 

0.66 (0.61) 
LR 

0.58 (0.55) 
LR 

0.51 (0.46) 
Cells denote the best performing model and the �� (�=2) score. XGB and LR were the top performing models. Values within each bracket are 
the �� (�=2) scores of the other model. 
All models at the development site were created using information gain feature selection. 
Abbreviations: LR, logistic regression; XGB, XGBoost (extreme gradient boosting) 

 
Supplemental Table 11B. �� (�=3) scores of top performing models in the development site validation dataset. 

  Censored Time Horizon 

  6-hours 12-hours 24-hours 

F
ea

tu
re

 
W

in
do

w
 24-hours 

XGB 
0.42 (0.42) 

XGB 
0.31 (0.30) 

LR 
0.26 (0.24) 

48-hours 
LR 

0.58 (0.55) 
LR 

0.48 (0.43) 
LR 

0.43 (0.37) 

72-hours 
LR 

0.64 (0.59) 
LR 

0.56 (0.53) 
LR 

0.50 (0.44) 
Cells denote the best performing model and the �� (�=3) score. XGB and LR were the top performing models. Values within each bracket are 
the �� (�=3) scores of the other model. All models at the development site were created using information gain feature selection. 
Abbreviations: LR, logistic regression; XGB, XGBoost (extreme gradient boosting) 

 
 
Supplemental Table 11C. �� (�=0.5) scores of top performing models in the development site validation dataset. 

  Censored Time Horizon 

  6-hours 12-hours 24-hours 

F
ea

tu
re

 
W

in
do

w
 24-hours 

XGB 
0.62 (0.62) 

XGB 
0.52 (0.51) 

LR 
0.46 (0.46) 

48-hours 
XGB 

0.76 (0.72) 
XGB 

0.65 (0.64) 
LR 

0.61 (0.60) 

72-hours 
XGB 

0.79 (0.77) 
XGB 

0.73 (0.70) 
XGB 

0.67 (0.64) 
Cells denote the best performing model and the �� (�=0.5) score. XGB and LR were the top performing models. Values within each bracket 
are the �� (�=0.5) scores of the other model. 
All models at the development site were created using information gain feature selection. 
Abbreviations: LR, logistic regression; XGB, XGBoost (extreme gradient boosting) 
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Supplemental Table 12B. Statistical performance of the 12-hour time horizon, 48-hour feature window XGBoost model over a range of score thresholds in the 
development site test dataset. 

Threshold AUROC AUPRC 
F1 

Score 
F2 

Score 
F3 

Score 
F0.5 
Score 

PPV NPV Sensitivity Specificity Confusion Matrix - (TN, FP, FN,TP) 

XGBoost Model 
0.025 

0.873 0.671 

0.399 0.587 0.698 0.302 0.260 0.974 0.859 0.682 (2559, 1195, 69, 419) 

0.05 0.493 0.621 0.679 0.409 0.367 0.962 0.750 0.832 (3124, 630, 122, 366) 

0.1 0.573 0.623 0.642 0.531 0.505 0.954 0.662 0.916 (3438, 316, 165, 323) 

0.3 0.603 0.538 0.519 0.685 0.754 0.938 0.502 0.979 (3674, 80, 243, 245) 

0.5 0.562 0.463 0.437 0.715 0.874 0.929 0.414 0.992 (3725, 29, 286, 202) 

0.7 0.491 0.383 0.357 0.684 0.926 0.920 0.334 0.997 (3741, 13, 325, 163) 

0.9 0.390 0.287 0.264 0.610 0.975 0.910 0.244 0.999 (3751, 3, 369, 119) 

 

Supplemental Table 12A. Statistical performance of the 12-hour time horizon, 48-hour feature window XGBoost and logistic regression models over a range of 
score thresholds in the development site validation dataset. 

Threshold AUROC AUPRC 
F1 

Score 
F2 

Score 
F3 

Score 
F0.5 
Score 

PPV NPV Sensitivity Specificity Confusion Matrix - (TN, FP, FN,TP) 

XGBoost Model 
0.025 

0.818 0.601 

0.361 0.542 0.650 0.271 0.232 0.956 0.813 0.602 (1879, 1242, 86, 375) 
0.05 0.422 0.554 0.619 0.341 0.302 0.945 0.701 0.761 (2375, 746, 138, 323) 
0.1 0.483 0.554 0.582 0.429 0.399 0.938 0.614 0.863 (2694, 427, 178, 283) 
0.3 0.553 0.508 0.494 0.607 0.649 0.926 0.482 0.962 (3001, 120, 239, 222) 
0.5 0.536 0.454 0.432 0.654 0.766 0.919 0.412 0.981 (3063, 58, 271, 190) 
0.7 0.508 0.411 0.386 0.664 0.836 0.913 0.364 0.989 (3088, 33, 293, 168) 
0.9 0.429 0.325 0.301 0.629 0.915 0.904 0.280 0.996 (3109, 12, 332, 129) 

Logistic Regression Model 
0.025 

0.827 0.610 

0.318 0.518 0.656 0.229 0.193 0.966 0.894 0.449 (1402, 1719, 49, 412) 
0.05 0.384 0.561 0.662 0.292 0.252 0.958 0.809 0.645 (2012, 1109, 88, 373) 
0.1 0.452 0.574 0.631 0.372 0.333 0.947 0.701 0.793 (2475, 646, 138, 323) 
0.3 0.549 0.538 0.535 0.561 0.568 0.931 0.531 0.940 (2935, 186, 216, 245) 
0.5 0.557 0.494 0.477 0.638 0.707 0.924 0.460 0.972 (3033, 88, 249, 212) 
0.7 0.533 0.444 0.420 0.668 0.803 0.917 0.399 0.986 (3076, 45, 277, 184) 
0.9 0.450 0.346 0.321 0.645 0.908 0.906 0.299 0.996 (3107, 14, 323, 138) 
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Supplemental Table 13. Cohort ascertainment and exclusions for varied feature windows for the 
validation site. 

Timeframe  4/2018-2023 

Encounters with a PICU admission 9,039 

Feature Window 48-hours 

Visit length <24 hours or PICU length of stay <1 hour 1,791 

Missing age, discharge time or sex  329 

No documented SpO2 measurement 15 

No accurate Neuro Consultation records prior 2018 --- 

Outcome event prior to PICU admission 79 

Key data missing within Feature Window  --- 

Final Cohort 6,825 

     Cases 387 

     Controls 6,438 
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Supplemental Table 14. Statistical performance of the extreme gradient boosting (XGBoost) and logistic regression generalizable models at the development site 
across varied output thresholds.  

Threshold AUROC AUPRC F1 
Score 

F2 
Score 

F3 
Score 

F0.5 
Score 

PPV NPV Sensitivity Specificity Confusion Matrix - (TN, FP, FN,TP) 

XGBoost Model 
0.025 

0.872 0.617 

0.365 0.551 0.665 0.272 0.233 0.976 0.837 0.708 (2658, 1096, 65, 333) 
0.05 0.459 0.598 0.666 0.372 0.330 0.970 0.751 0.838 (3147, 607, 99, 299) 
0.1 0.528 0.591 0.615 0.478 0.450 0.960 0.641 0.917 (3442, 312, 143, 255) 
0.3 0.547 0.481 0.462 0.635 0.711 0.943 0.445 0.981 (3682, 72, 221, 177) 
0.5 0.489 0.394 0.370 0.645 0.818 0.935 0.349 0.992 (3723, 31, 259, 139) 
0.7 0.421 0.316 0.292 0.629 0.939 0.928 0.271 0.998 (3747, 7, 290, 108) 
0.9 0.312 0.222 0.202 0.527 0.974 0.921 0.186 0.999 (3752, 2, 324, 74) 

Logistic Regression Model 
0.025 

0.855 0.605 

0.303 0.497 0.633 0.218 0.183 0.977 0.869 0.590 (2213, 1541, 52, 346) 
0.05 0.388 0.552 0.643 0.299 0.260 0.969 0.769 0.767 (2881, 873, 92, 306) 
0.1 0.481 0.571 0.609 0.415 0.380 0.960 0.653 0.887 (3330, 424, 138, 260) 
0.3 0.562 0.513 0.499 0.621 0.668 0.947 0.485 0.974 (3658, 96, 205, 193) 
0.5 0.520 0.429 0.406 0.658 0.801 0.938 0.384 0.990 (3716, 38, 245, 153) 
0.7 0.489 0.383 0.357 0.677 0.911 0.934 0.334 0.997 (3741, 13, 265, 133) 
0.9 0.367 0.267 0.245 0.584 0.968 0.924 0.226 0.999 (3751, 3, 308, 90) 
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