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Key Points

Question Can interoperable models for predicting neurological deterioration in critically ill
children be developed, correlated with serum-based brain-derived biomarkers, and validated at
an external site?

Findings A development site model demonstrated an area under the receiver operating
characteristics curve (AUROC) of 0.82 and a number needed to alert (NNA) of 2. Predictions
correlated with levels of glial fibrillary acidic protein in a subset of children. A generalizable
model demonstrated an AUROC of 0.81 and NNA of 4 at the validation site.

M eaning Well performing prediction models coupled with brain biomarkers may help to identify
critically ill children at risk for acquired neurological morbidity.
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Abstract

I mportance Declining mortality in the field of pediatric critical care medicine has shifted
practicing clinicians' attention to preserving patients neurodevelopmental potential asamain
objective. Earlier identification of critically ill children at risk for incurring neurologic morbidity
would facilitate heightened surveillance that could lead to timelier clinical detection, earlier
interventions, and preserved neurodevelopmental trajectory.

Obj ective Develop machine-learning models for identifying acquired neurologic morbidity
while hospitalized with critical illness and assess correlation with contemporary serum-based,
brain injury-derived biomarkers.

Design Retrospective cohort study.
Setting Two large, quaternary children’s hospitals.
Exposures Critical illness.

Main Outcomes and M easur es The outcome was neurologic morbidity, defined according to a
computable, composite definition at the development site or an order for neurocritical care
consultation at the validation site. Models were developed using varying time windows for
temporal feature engineering and varying censored time horizons prior to identified neurologic
morbidity. Optimal models were selected based on F1 scores, cohort sizes, calibration, and data
availability for eventual deployment. A generalizable created at the development site was
assessed at an external validation site and optimized with spline recalibration. Correlation was
assessed between development site model predictions and measurements of brain biomarkers
from a convenience cohort.

Results After exclusions there were 14,222-25,171 encounters from 2010-2022 in the

devel opment site cohorts and 6,280-6,373 from 2018-2021 in the validation site cohort. At the
development site, an extreme gradient boosted model (XGBoost) with a 12-hour time horizon
and 48-hour feature engineering window had an F1-score of 0.54, area under the receiver
operating characteristics curve (AUROC) of 0.82, and a number needed to alert (NNA) of 2. A
generalizable XGBoost modd with a 24-hour time horizon and 48-hour feature engineering
window demonstrated an F1-score of 0.37, AUROC of 0.81, AUPRC of 0.51, and NNA of 4 at
the validation site. After recalibration at the validation site, the Brier score was 0.04. Serum
levels of the brain injury biomarker glial fibrillary acidic protein measurements significantly
correlated with model output (rs=0.34; P=0.007).

Conclusions and Relevance We demonstrate a well-performing ensemble of models for
predicting neurologic morbidity in children with biomolecular corroboration. Prospective
assessment and refinement of biomarker-coupled risk models in pediatric critical illnessis
warranted.
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I ntroduction

An estimated 340,000 children are hospitalized with critical illness every year in the
United States and brain injury has been cited as the proximate cause of death in approximately
90% of previously healthy children who do not survive their intensive care admission.>? Of
children who survive critical illness, acquired neurologic morbidity can have long-lasting
implications which range from mild impairments in cognition to profound debilitation. Declining
mortality in the field of pediatric critical care has led to increased attention to the longer-term

functional outcomes of children who survive an intensive care admission.®

Granular, time-series data harbored by the el ectronic health record (EHR) offer arich
training ground for probabilistic models of important patient outcomes. Implementing well-
performing models as clinical decision support (CDS) systemsis a promising approach for
improving outcomes related to many different conditions and situations, though there are
currently no established tools for identifying children at risk for new brain injury.*” Recently
enacted federal mandates in the United States of America (USA) are promoting the devel opment
of EHRs that facilitate the deployment of interoperable decision support tools built to leverage a

core dataset.®

The main objective of the present work was to construct and externally validate
predictive models to support the identification of critically ill children at high risk for acquired
neurologic morbidity, asafirst step towards the development of a decision support tool that
might be used to forewarn of neurologic morbidity amongst critically ill children, aswell asto
aid in the enrichment of prospective trials examining strategies to mitigate the risk of brain injury
during pediatric critical illness. A second objective was to corroborate the biological

underpinnings of the developed prediction models by assessing correlation with novel, brain-


https://doi.org/10.1101/2024.09.17.24313649
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.09.17.24313649; this version posted September 18, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

derived, serum-based biomarkers of brain injury obtained from a diagnostically diverse cohort of

criticaly ill children.
M ethods
Sudy Stes

Model development used data from all encounters to a quaternary pediatric intensive care unit
(PICU) in alarge, freestanding children’s hospital between January 1, 2010 and December 31,
2022. The development site PICU serves aregion of approximately 5 million people,
encompassing Western Pennsylvania and bordering states, and is alevel 1 pediatric trauma
center. External model validation occurred using data from encounters admitted between January
1, 2018 and December 31, 2023 to a quaternary PICU in alarge, freestanding children’s hospital
that serves as areferral center for the 5-state region of Washington, Wyoming, Alaska, Montana,
and Idaho. Approval was granted by the institutional review boards of the University of
Pittsburgh (Institutional Review Board [IRB] #17030743) and Seattle Children’s Hospital (IRB
#STUDY 00001374). Findings are reported according to the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement

(Supplemental Table 1).
Model Devel opment Frameworks

Conceptualization of the model adhered to the Littenberg framework for the development of
clinical decision support tools, which considers the clinical and technical plausibility of the toal,
as well as the process outcomes, patient outcomes, and eventual societal outcomes addressed by
the tool (Supplemental Table 2).° Thefirst 5 steps of the cross-industry standard process for

data modeling (CRISP-DM) framework were followed for model design. CRISP-DM outlines
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six steps for data science projects that include 1) understanding the use case; 2) understanding
the data; 3) data curation; 4) model development; 5) model evaluation; and 6) model

deployment.*°
Mode Devel opment Approach

Model development proceeded in 2 phases. 1) Development of models for use locally at the
development site; 2) Development of generalizable models with external validation. The
outcome of neurologic morbidity was defined using structured EHR data surrogates based on
each study site's clinical and electronic workflows. At the development site, the outcome was a
previously validated, computable, composite definition of neurologic morbidity that incorporated
orders for electroencephalography (EEG), brain computed tomography (CT), brain magnetic
resonance imaging (MRI), or indicators of treated delirium within 72-hours of one another
(Supplemental Table 3)." This outcome has also been validated in a separate cohort of children
with sepsis.'? At the validation site, orders for aneurocritical care service consultation were
deemed to be the most reliable surrogate for neurologic morbidity during an episode of critical
illness. Datafor control cases (hospitalized children who did not meet the definition of a
neurologic morbidity) were collected from a random period during the encounter with preference

to awindow following the first PICU admission.

Candidate data elements for model construction were selected based on clinical expertise
and with attention to the United States Core Data for Interoperability (USCDI) requirementsto
facilitate eventual, interoperable deployment (Supplemental Tables 4 and 5).** A ‘Biodigital
Rapid Alert to Identify Neurologic morbidity, A-1 bundle (BRAIN A-I)’ standard clinical
vocabulary value set was filed with the National Library of Medicine's Value Set Authority

Center.** Features were engineered with the dual aims of representing the temporality of the data
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while also preserving clinical interpretability of the features, using methods previously
reported.™ Features were then discretized, or categorized into information bins, with missingness
encoded as afeature. In addition to preserving possible information associated with missingness,
discretization was performed to reduce the influence of outlier data, represent data nonlinearity
in linear modeling processes such as logistic regression, further mitigate overfitting, and preserve
clinical interpretability of the features. Additional details of data curation and model

development are in the Supplemental Model Methods. Supplemental Figure 4 summarizes
model construction at the development site and evaluation at the external validation site. At the
development site, data were queried from an Oracle (Oracle Corp, Austin, TX) data warehouse
containing a subset of transformed tables from the Cerner Millennium database (Oracle Cerner,
Kansas City, MO). The mode was devel oped and assessed using Python (version [v]3.10.11),
Jupyter (v1.0.0), and the packages Pandas (v1.5.3), Numpy (v1.25.0), Matplotlib (v3.71.1),

Slearn (v1.1.1), XGBoost (v1.7.3), Seaborn (v0.11.2), SHAP (v0.41.0), and tgdm (v4.65.0).
Biomolecular Corroboration of the Model at the Development Ste

Model predictions were compared to measured levels of 6 serum-based, brain-derived
biomarkers of brain injury obtained from a previously assembled convenience cohort of 101
children hospitalized between 2012-2014 (IRB #19040172). The biomarkers were ubiquitin C-
terminal hydrolase-L1 (UCH-L1), glid fibrillary acidic protein (GFAP), myelin basic protein
(MBP), neuron-specific enolase (NSE), S100 calcium binding protein B (S100B), and spectrin
breakdown product 150 (SBDP150). After prospective consent from alegal guardian, biomarker
levels were collected for up to 7 consecutive days from critically ill children with preexisting
central venous catheters or arterial catheters. Details of the assays are provided in the

Supplemental Biomarker Methods. Maximum values of each biomarker for each encounter
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were assessed for correlation with the predicted probability of neurologic deterioration for that
encounter. Patients were determined to have a neurologic complication by chart review if it

occurred no more than 7 days after the last date a biomarker was collected.

Modd Selection and Satistical Analysis

The top-performing model was selected based on F1 score, considering aclinically actionable
time horizon, as well as the volume of available training data for feature engineering. Models
with <0.15 difference in F1 scores were then compared both by visual inspection of calibration
plots and Brier scores. Additional Fj thresholds of 0.5, 2, and 3 were secondarily evaluated to
identify whether there were any substantial differencesin the optimal classifier based on the
relative weight of recall compared to precision. Statistical performances of the top-performing
models were evaluated at varied mode outputs ranging from 0.025 to 0.9. Spline regression was
performed on top-performing models to improve calibration. Normally distributed continuous
data are presented as means and 95% confidence intervals, nonparametric continuous data are
presented as medians with interquartile ranges (IQRs), and categorical data are presented as
counts with corresponding proportions. Model discrimination was compared to the
discrimination of the last Glasgow coma scale (GCS) score prior to the censored time horizon
using DelL.ong’'s method. For the biomolecular corroboration analysis, Spearman’s rank-order
correlation was assessed between a chart-adjudicated neurologic morbidity outcome and the
composite neurologic morbidity outcome, as well as between the probability output of top-
performing models and the composite neurologic morbidity outcome. Correlation was then
assessed between biomarker levels and the probability output of the top-performing models.
Notched boxplots with overlying violin plots were constructed for significantly correlated

biomarkers by dichotomizing predicted neurologic morbidity according to whether the
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probability was <0.5 or >0.5. The distributions of biomarker measurements were normalized for
plotting using log transformation and significance testing was assessed using an independent t
test. An a < 0.05 is considered significant. Statistical analyses not performed in Python were

performed in R version 4.3.1 (R Foundation, Vienna, Austria).

Results

Development Ste Models Performance

There were 32,702 encounters with a PICU stay. After exclusions, cohort sizes ranged from
14,222-25,171 encounters, with 18,568 encountersin the final model cohort (Supplemental
Table 8; Figure 1A). Patients were dightly older, received less mechanical ventilation, and less
sedative-analgesic medicationsin the final test dataset compared to the training and validation
datasets (Table 1). Thefinal models evaluated in the test dataset was the extreme gradient
boosting (XGBoost) model with a 12-hour time horizon and 48-hour feature window. This model
was determined by investigator agreement to be a reasonable balance of favorable F1 scores,
calibration as assessed by a Brier score, visual inspection of the calibration plot, clinically
actionable time horizon, and sufficient cohort size for the training, validation, and test datasets.
Complete devel opment site model performance characteristics, 1 for each of the combinations of
a6, 12, and 24-hour censored time horizons and 24, 48, and 72-hour feature windows selected
based on F1 score, are detailed in Supplemental Table 9. Each approach generated 605 features
prior to information gain feature selection. The F1 scores are reported in Supplemental Tables
10A and 10B. Additional Fp scores largely agreed with the model assessments provided by F1

scores and are presented in Supplemental Table 11A-C.
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The final model contained 352 features and had a number needed to alert (NNA) of 2
when considering a model prediction of greater than or equal to 0.5 as positive. At a model
prediction threshold of 0.025 in the test dataset, sensitivity increased to 0.86 and NAA was 4.
Statistical performance of the top-performing validation models and final test model at a range of
output thresholds are in Supplemental Table 12A and 12B and Supplemental Figure5. All
development site models had a NNA of 2-3 at this prediction threshold. In the test dataset the
final model had a sensitivity of 0.47 (range for all modelsin the validation dataset [range] 0.24-
0.63), specificity of 0.98 (range 0.96-0.99), AUPRC 0.68 (range 0.39-0.78), and AUROC of 0.89
(range 0.80-0.87). Thefina model had significantly greater discrimination compared to the last
GCSAUROC of 0.72 obtained prior to the censored time horizon, P<0.001. Calibration plots of
models with comparable performance based on F1-scores are displayed in Supplemental Figure
6. The top 10 features of the final model are displayed in Supplemental Figure 7. Average
hourly scores for cases and controls for the 12 hours preceding and 4 hours following an

outcome event are displayed in Figure 2.

Biomolecular Corroboration at the Development Ste

Of the 101 patients with available brain-derived biomarkers measured, 64 also had model
predictions for the 12-hour time horizon and 48-hour feature window models. Chart-adjudicated
neuromorbidity within 7 days of last biomarker collection was significantly correlated with the
composite neurologic morbidity outcome, r<=0.38 (P=0.002). The extreme gradient boosting
model was significantly correlated with the composite neurologic morbidity outcome, rs=0.80
(P<0.001). The logistic regression model had an F1 score that was nearly identical to the extreme

gradient boosting model and was also significantly correlated with the composite neurologic
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morbidity outcome, r<=0.55 (P<0.001). Extreme gradient boosting predictions were significantly

correlated with maximum GFAP measurements, r<=0.34 (P=0.007) (Figure 3).

Generalizable Model Performance

Cohort ascertainment for the generalizable model is reported for the 24-hour time horizon and
48-hour feature window model at the devel opment site in Supplemental Table 8 and for the
validation sitein Supplemental Table 13. The generalizable model performance at the
development and validation sitesis reported in Table 2. Performance was comparable to earlier
24-hour time horizon 48-hour feature window models at the development. As the XGBoost and
logistic regression models performed comparably, both were assessed at the validation Site.
There were 6,825 encounters in the external validation site final cohort (387 cases and 6,438
controls). Asassessed by an F1 score of 0.37 at athreshold of 0.5, the top performing model was
the XGBoost model, with an external validation AUROC of 0.81, AUPRC of 0.51, and an NNA
of 4. Modd performance characteristics across varied thresholds are displayed in Supplemental
Table 14 and Supplemental Figure 8. Calibration was again excellent at the development site,
initially poor at the external validation site, then substantially improved after spline recalibration
at the validation site (Supplemental Figure 9). Feature importance analysis for the generalizable
model was similar between the development and validation sites (Supplemental Figure 10). All

models outperformed the GCS, P<0.001.

Discussion

In this study, we constructed well-performing models for predicting neurologic morbidity among
critically ill children using EHR data from 2 large children’s hospitals. These models were

trained using more than 600 features engineered to capture nonlinear relationships between
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predictors and the outcome. Thetop performing model at the development site had 352 features
and a NNA of 2, suggesting the utility of incorporating more features than can be accommodated
by traditional, manually-tabulated clinical decision rules. A generalizable model demonstrated
robust performance at both the development site and the external validation site. All models
outperformed the GCS, supporting machine-learning-based methods to facilitate clinical
activities including identification of high-risk patientsfor clinical intervention and for identifying
an enriched population for enrollment in clinical trials.® By largely adhering to data elements
prioritized by USCDI, the developed models have a clearer path to implementation in modern
informatics architectures capable of data transfer using standard clinical vocabularies and the fast
healthcare interoperability resources (FHIR) standard.'” The generalizable model relies on 41
variables, 37 of which are included in USCDI versions 1 or 2 and are therefore expected to ease

eventual work associated with deployment.

Many predictive models are constructed utilizing a snapshot of information from a
discrete moment in time.*®**° For predictive models to more completely leverage the content of
the EHR, the temporality of data must be incorporated into model features. The performance of
the present models was likely bolstered by incorporating features engineered using vector space
representations of patient state, resulting in performance metrics that surpass those of other
commonly used critical care risk models.”> The Simplified Acute Physiology Score, acommonly
used mortality prediction tool for critically ill adults, has reported AUPRCs between 0.2-0.3 for
in-hospital and 30-day mortality.’ The sequential organ failure assessment (SOFA), quick
SOFA, and systemic inflammatory response syndrome criteria have reported AUPRCs of 0.06,
0.1, and 0.09 predicting mortality at the time of sepsis onset, respectively.?* By comparison, our

model ensemble had AUPRCSs ranging from 0.39-0.78 at the development site and 0.2-0.42 at the
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validation site. We undertook the present work with an expectation that identification of
impending neurologic deterioration requires examination of contextual elements of care and
more subtle vital sign and laboratory signatures which may serve as a harbinger of unfavorable

trajectory.

Correlation between a top-performing model and measurements of GFAP from a
convenience cohort is compatible with our previous investigations of brain biomarkersin
critically ill children.”? GFAPisfound in astrocytes and plays a role responding to central
nervous system injuries and related neurodegeneration.”* GFAP measurements from our
convenience cohort were obtained for the first 7 days of the PICU stay and may have been
obtained remote from an incurred brain injury, including one detected by the composite
neurologic morbidity outcome. Notably, our composite neurologic morbidity outcome was
significantly correlated with chart-adjudicated neurologic morbidity and an XGBoost model was
significantly associated with GFAP levels. Most extensively studied in the context of traumatic
brain injury, a growing body of evidence suggest GFAP may be useful to identify more subtle
insults to the central nervous system, and that the ability to measure GFAP in the bloodstream in
non-traumatic diseases might relate to its dispersion into the bloodstream via recently discovered
glymphatic pathways.?*? Our models may prove useful both to determine for which patients a
GFAP level should be obtained, as well as coupled with the GFAP measurements to bolster

model performance.

Thiswork has some important limitations. Use of a composite definition of neurological
morbidity intrinscally omits occult neurological morbidities that did not trigger clinical action
and represents a source of potential bias in model development. While the computable composite

definition of neurologic morbidity used in the present study has previously demonstrated high
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specificity, the modest sengitivity of the definition suggests that the present models may miss
neurologic morbidities that do not warrant inpatient imaging, EEG, a menta health assessment
or amedication directed at psychosisor ddlirium. This limitation, however, can be mitigated by
assessing performance characteristics, including varied F3 scores or sensitivities at different
output thresholds, according to context and adjusting the model actionable threshold in a manner
tailored to the clinical environment in which it is deployed. Moreover, while performance was
robust at an external validation site relative to other established risk scores, statistical metrics did
deteriorate compared to those observed in the test dataset at the development site. Notably, the
GCS aso had alower AUROC at the validation site compared to the GCSAUROC at the
development site, suggesting that the choice of neurocritical care consult as an outcome

influenced the models' performance characteristics.

In conclusion, we developed well-performing models for predicting children with critical
illness at risk for neurologic morbidity. A flexible, distributed strategy for model development in
partnership with an external validation site demonstrated the utility of adapting to varied
informatics infrastructures and EHR deployments to generate well-performing predictive models
for acommon clinical goal. A generalizable model demonstrated robust performance in external
validation. Prospective, multi-site assessment of a generalizable model coupled with brain-based
biomarkersis warranted to assess the combined utility for identifying patients at high-risk for
incurred neurologic morbidity and evaluating interventions to improve outcomesin this

population.
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aswell as the generalizable model validation dataset at the external validation site.
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horizon and 48-hour feature window in the test dataset, after manual tuning, and after Bayesian
tuning.

Supplemental Table 7. Predictive performance of the XGBoost model with a 12-hour censor
horizon and 48-hour feature window in the validation dataset, after manual tuning, and after
Bayesian tuning.

Supplemental Table 8. Cohort ascertainment and exclusions for varied censored time horizons
and feature windows at the development site.

Supplemental Table 9. Performance of the optimal models in the validation dataset at the
development and validation sites.

Supplemental Table 10 A) F1 scores of top performing modelsin the development site
validation dataset. B) F1 scores of top performing models in the validation Site test dataset.

Supplemental Table 11 A) Fj; (8=2) scores of top performing models in the devel opment site
validation dataset; B) F; (8=3) scores of top performing models in the development site
validation dataset; C) Fj (5=0.5) scores of top performing models in the devel opment site
validation dataset.

Supplemental Table 12 A) Statistical performance of the 12-hour time horizon, 48-hour feature
window X GBoost and logistic regression models over arange of score thresholdsin the
development site validation dataset; B) Statistical performance of the 12-hour time horizon, 48-
hour feature window XGBoost model over arange of score thresholds in the development site
test dataset.
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Supplemental Table 13. Cohort ascertainment and exclusions for varied feature windows for
the validation site.

Supplemental Table 14 A) Statistical performance of the extreme gradient boosting (X GBoost)
and logistic regression generalizable models at the development site across varied output
thresholds. B) Statistical performance of the extreme gradient boosting (XGBoost) and logistic
regression generalizable models at the external validation site across varied output thresholds.
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Figures and L egends

Figure 1. Cohort ascertainment for the final model at the development site, which included
features engineered using 48 hours of preceding data and censoring 12-hours prior to the event
for cases. Initial model development and validation proceeded using data from 2010-2019. The
model was tested using data from 2020-2022. Abbreviations: LASSO, |east absolute shrinkage
and selection operator; PICU, pediatric intensive care unit; XGBoost, extreme gradient boosting.

Figure 2. Average hourly scores in the test dataset (encounters with a PICU stay in the year 2020
—2022) for varied censored time horizon windows for the extreme gradient boosted model

devel oped using a 12-hour time horizon and 48-hour feature window. The red dots are the
average hourly scores 12 hours prior to an event and 4 hours after an event for the case
encounters (encounters with an identified neurologic morbidity) and the shaded red region
represents the 95% confidence interval. The black dots are the average hourly scores for the
control encounters (encounters without an identified neurological morbidity). Confidence
intervals for the control encounters are not discernable in the figure due to the large cohort size.
The size of the dots is proportionate to the cohort size at that timepoint.

Figure 3. Log-transformed maximum GFAP measurements for a convenience cohort of 64
patients, stratified by predicted neurologic morbidity using the 12-hour time horizon 48-hour
feature window extreme gradient boosting model. Abbreviations: GFAPR, glial fibrillary acidic
protein; mL, milliliter; pg, picogram.

Supplemental Figure 1. A representation of the time window and censor horizons used to define
cases and controls as part of the development, validation, and test cohorts. The blue boxesin the
top, ‘Cases' box identify a time window that is also demarcated by a horizontal, gold,
bidirectional arrow, the horizontal black lines represent length of stay for individual encounters,
the vertical black line represents the occurrence of the neurological morbidity outcome, and the
gold, horizontal, bidirectional arrow indicates the censor horizon, or period of time that data
were not incorporated into the model. In the bottom, ‘ Controls’ box, the blue boxes indicate the
time window of data used for each stage of model development and evaluation.

Supplemental Figure 2. Data cleaning and feature engineering process.

Supplemental Figure 3. A representation of the feature engineering for continuous biomarker
measurements. Temporal information is represented as a variety of summary measurements for
discrete windows of time. Feature windows of 24-hours, 48-hours, and 72-hours are displayed in
the figure. The models at the development site were trained with 6-hour, 12-hour, and 24-hour
censored time horizons, with 12-hour and 24-hour horizons demonstrated in the figure.
Definitions and related examples for a 24-hour window of data prior to the censor period are
displayed in the table. Abbreviations: h, hours.

Supplemental Figure 4. The process of BRAIN A-I model devel opment and external validation.
Curated data at the development site were divided into atrain cohort, validation cohort, and 2-
years of holdout test data. The curated data were used to generate synthetic datawith
comparable single variable statistical distributions. The synthetic data were then distributed to
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the external validation site with model training code, facilitating local data curation by providing
the necessary details of data structure. Finally, the working BRAIN A-I pipeline was applied to
real-world data at the external validation site, applied separate training and validation datasets.
Abbreviations: BRAIN A-I, Biodigital Rapid Alert to Identify Neuromorbidity A-I Bundle; Dev.
Site, Development Site; Valid. Site, Validation Site.

Supplemental Figure5. Plots the key statistical performance metrics sensitivity (gold line),
positive predictive value (PPV, red line), F1 score (blue line), and F2 score (green line) with
metric values on the y-axis and model output thresholds on the x-axisfor A) the logistic
regression model with a 12-hour time horizon and 48-hour feature window in the development
site validation dataset; B) the extreme gradient boosting model with a 12-hour time horizon and
48-hour feature window in the development site validation dataset; and C) the extreme gradient
boosting model with a 12-hour time horizon and 48-hour feature window in the development site
test dataset.

Supplemental Figure 6. Calibration plots and associated Brier scores for the top performing
models for varied time horizons and features windows in the validation dataset. A) 6-hour time
horizon and 24-hour feature window; B) 6-hour time horizon and 48-hour feature window; C) 6-
hour time horizon and 72-hour feature window; D) 12-hour time horizon and 24-hour feature
window; E) 12-hour time horizon and 48-hour feature window; F) 12-hour time horizon and 72-
hour feature window; G) 24-hour time horizon and 24-hour feature window; H) 24-hour time
horizon and 48-hour feature window; I) 24-hour time horizon and 72-hour feature window.
Abbreviations: LR, logistic regression; XGB, extreme gradient boosted.

Supplemental Figure 7. Top 10 biomarker feature categories based on Shap values for the 12-
hour time horizon 48-hour feature window X GBoost model from the development site. Each
category contains several features, e.g. Temperature contains maximum temperature, minimum
temperature, average temperature, etc. The blue bars represent the sum of the mean Shap values
for each category. Abbreviations: biomrkrs, biomarkers.

Supplemental Figure 8. Plots the key statistical performance metrics sensitivity (gold line),
positive predictive value (PPV, red line), F1 score (blue line), and F2 score (green line) with
metric values on the y-axis and model output thresholds on the x-axis for the generalizable A)
logistic regression model in the development site test dataset; B) extreme gradient boosting
model in the development site test data set; C) logistic regression model in the external
validation dataset; D) extreme gradient boosting model in the external validation Site dataset.

Supplemental Figure 9. Calibration plots for the generalizable model in the A) development site
test dataset and B) the external validation site dataset.

Supplemental Figure 10. Feature importance analysis for the generalizable model in the A)
development site test dataset and B) external validation site dataset.

Additional M aterials

Supplemental M odel Methods
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Supplemental Biomarker Methods
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Table 1. Demographic characteristics of the entire cohort and the parsed training, validation, and final test datasets at the development site and the entire
cohort, training, and validation datasets, as well as the generalizable model validation dataset at the external validation site.

Development Site

Validation Site

Characteristic Entire Cohort Training Dataset Validation Dataset Final Test Dataset Gen(_erall_zable Model
Validation Dataset
N = 18,568 n=10,744 n = 3,582 n=4,242 N = 6,825
Age (months), median (IQR) 70 (18, 161) 67 (18, 158) 68.5 (18, 160) 77 (19, 167) 96 (18,171)
Female, n (%) 8,325 (45) 4,748 (44) 1,593 (44) 1,984 (47) 3,159 (46)
Glasgow Coma Scale Score, median 14 (14,15)
(IQR)* 15 (12, 15) 15 (11, 15) 15 (11, 15) 15 (14, 15)
Mechanical Ventilation, n (%) 5,352 (29) 3,322 (31) 1,143 (32) 887 (21) 1,948(29)
Endotracheal Tube, n (%) 1,759 (9) 1,142 (11) 370 (10) 247 (6) 1,283 (19)
Vasoactive Medication, n (%) 720 (4) 393 (4) 148 (4) 179 (4) 221 (3)
(S(;‘;?H"e“Anal gesic Medication, n 4,660 (25) 2,048 (27) 987 (27) 727 (17) 1,930 (28)

*The last recorded Glasgow coma scale score for the encounter prior to the censored time horizon
**\/asoactive medi cations include dobutamine, dopamine, epinephrine, norepinephrine, or milrinone
*** Sedative-anal gesic medications include fentanyl, hydromorphone, midazolam, or morphine

Abbreviations: IQR, interquartile range
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Table 2. Performance of the generalizable model at the development and external validation sites.

Development Site

Validation Site

Dataset Development Validation Test Exter nal Validation
Encounters 10,457 3,486 4,152 6,825
(Cases/Controls), N (1,095/9,362) (365/3,121) (398/3,754) (387/6,438)

M odel XGB LR XGB LR XGB LR XGB LR
Feature Selection IG IG IG IG IG 1G I1G IG
AUROC 1.00 0.90 0.81 0.81 0.87 0.86 0.81 0.82
AUPRC 0.99 0.71 0.52 0.54 0.62 0.61 0.51 0.48
PPV 1.00 0.84 0.67 0.69 0.82 0.80 0.26 0.18
NPV 0.99 0.94 0.93 0.93 0.94 0.94 0.97 0.98
Sensitivity 0.91 0.47 0.35 0.41 0.35 0.38 0.61 0.70
Specificity 1.00 0.99 0.98 0.98 0.99 0.99 0.90 0.81
F1 score 0.95 0.61 0.46 0.51 0.49 0.52 0.37 0.29
F2 score 0.92 0.52 0.39 0.45 0.39 0.43 0.48 0.45
F3 score 0.92 0.50 0.37 0.43 0.37 041 054 0.55
FO.5 score 0.98 0.73 0.57 0.60 0.65 0.66 0.30 0.22

Abbreviations: AUROC, area under the receiver operating characteristics curve; AUPRC, area under the precision recall curve; CFS, correlation-based feature selection; |G, information gain; LR,
logistic regression; NB, naive Bayes; NPV, negative predictive value; PPV, positive predictive value; XGB, XGBoost (extreme gradient boosting)
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TRIPOD Checklist: Prediction Model Development

It is made available under a CC-BY-NC-ND 4.0 International license .
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Section/Topic Item  Checklist lem Page
Titke g Identify the study as developing and/or validating a multivariable predicton model,
the target population. and the cutcome to be predicted.
AL 2 Provide a summary of objectives, study design, setting, paricipants, sampile sze, 3
predictors. outoome. statistical analysis. results. and conclusions.
| Introduction
Explain the medical context (including whether diagnostic or prognostic) and
3a rationale for developing or validating the multivariable prediction madel, including
Background references to existing models. 45
and objectves Sing
2 Specify the ocbjectives, including whether the study descnibes the development or
validation of the model or both, 4-5
Methods
4a Deseribe the study design or source of data (e.g., randomized trial, cohort, or 6
R registry data). separately for the development and validation data sets. if applicable.
4b Specify the key study dates, including start of accrual; end of accrual; and, 5
applicable, end of follow-up.
5a Specify key elements of the study setting (e.g.. pimary care. secondary care, 5
Parficioants general population) including number and location of centres.
¥ 5b Describe eligibility criteria for participants. &
5S¢ Give details of treatments received, if relevant. 6
8a Clearly define the outcome that is predicted by the prediction model, including how 6
Outcome and when assessed.
&b Report any actions to blind assessment of the outcome to be predicted. 7
7a Clearly define all predictors used in developing or vabdating the multrvanable
Pred prediction model. including how and when they were measured. W
7b Report any actions fo blind assessment of predictors for the outcome and other
predictars. Supplgment
Sample size Explain how the study size was amived at Suppeemen
Missing data Describe how missing data were handled (e.g.. complete-case analysis, single
imputation, multiple imputation) with details of any imputation method. Slﬂiellﬁl t
10a | Describe how predictors were handled in the analyses. g
Statistical 108 Specify type of model, all model-building procedures (including any predicior
analysis selection). and method for internal validaton. Supplefnent
methods Specify all measures used to assess model performance and, if relevant, to
10d compare multiple models. 8-9, Supplemem
Risk groups 1 Provide detals on how risk groups were created, if done. Mot cone
| Results
Describe the flow of participants through the study. including the number of
13a participants with and without the outcome and, if applicable, a summary of the
Partici s follow-up time. A diagram may be helpful. 9
ticpa Describe the charactenstics of the participants (basic demographics, clinical
13b features, available predictors), induding the number of participants with missing
data for predictors and outcome. 9
Mode! 14a Specify the number of participanits and outcome evenis in each analysis. 9
If done, the u sted association between each candidate predictor and
development 14b r!mﬂ nadjs P Not dohe
Present the full prediction model to allow predictons for indviduals (Le.. all
Model 1 on fhcients, model intercept Lo i if 3
s S 5a mr:‘s_sn coe ts, and or baselfine survival at a given time Feature Iml
156 Explain how to the use the predicon model. 1114
m' 16 Report performance measures (with Cis) for the prediction model. 10-11
Discus limitatons of the study (such L le_ fi
e 5 any limitations { as nonrepresentative sample, few events
Limitationa 18 | cer pm:m:rr missing data). 13-14
) 19b Give an overall interpretation of the results, considering objectives. limitations, and
Interpretation results from similar studies, and other relevant evidence. 11-14
Implications 20 Discuss the potential clinical use of the model and implications for future research. 11-14
Other information
Supplementary 2 Provide information about the avalability of supplementary resources, such as study
inbcamiation protocol, Web calaulalor. and data sets. Supplgment
Funding 22 Give the source of funding and the role of the funders for the present study. 1,14

We recommend using the TRIPOD Checklist in conpunction with the TRIPOD Explanaton and Elaboration document.

Supplemental Table 1. TRIPOD Checklist.
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Supplemental Table 2. Littenberg framework for the assessment of medical technology as applied to BRAIN A-I

Framewor k Domain Description Applicability to BRAIN A-I
Biologic Plausibility Does the current understanding of biology and Practicing pediatric neurointensive care physicians posit
disease pathology support the technology? that structured data including laboratory results, vital

signs, medications, and other non-laboratory diagnostics
can collectively be used to assess a child's risk of
incurring or manifesting brain injury during the course of

critical illness.
Technical Feasibility Can the devel oped technology safely and Developing the model in adherance to the United States
reliably be delivered to the target patients? core data for interoperability and related informatics

standard nomenclatures for structured data will facilitate
model deployment.

Intermediate Outcomes What arethe biological, physiologic, or clinical During this devel opment stage, model-cal culated

effects of the technology? probabilities of neurologic deterioration were assessed
for correlation with an available sampl e of measured,
serum-based, brain-derived biomarkers.

Patient Outcomes Aretheintended patient outcomes promoted by The developed model isintended to alert clinicians but
use of the technology compatible with overall not prescribe a course of action, in large part owing to
improved health? the complexity and heterogeneity of neurologic

morbidity that occurs among critically ill children.
Clinicians remain the ultimate arbiters of bedside
decision-making that adequately accounts for the balance
of risk and benefits related to a given management
course.

Societal Outcomes What are the external effects of the technol ogy Leveraging interoperability standards helps to reduce
and doesiit confer benefit to the larger society? costs associated with technology deployment. By aiding
clinicians in potentially obviating the occurrence or
mitigating the effects of neurologic injury multiple
population-level benefits are realized, including but not
limited to areduction in societal costs associated with
long-term care of profound neurologic injury.



https://doi.org/10.1101/2024.09.17.24313649
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.09.17.24313649; this version posted September 18, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

Supplemental Table 3. Data curation steps for individua data elements for the BRAIN Al outcome.
File_Path Outcome Marker Type
bh.csv Behavioral Health Consult behavioral
haldol.csv Haloperidol medication
olanzapine.csv Olanzapine medication
dexmedetomidine.csv Dexmedetomidine medication
eeg.csv EEG neuro
ct.csv CT Head neuro
mri.csv MRI Brain neuro
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Supplemental Table 4. Data curation steps for individual data elements for BRAIN A-
Data Element Min Max Action Type Available at
Both Sites

Base deficit -30 0 Discard Numerical Yes
Base excess 0 30 Discard Numerical Yes
Bicarbonate 0 80 Discard Numerical Yes
Blood urea nitrogen 0 200 Truncate Numerical Yes
Chloride 60 190 Discard Numerical Yes
Cisatracurium 0 1 Ignore Boolean Yes
C-Resactive Protein 0 100 Discard Numerical Yes
Creatinine 0.1 25 Discard Numerical Yes
CRRT Therapy Type 0 1 Discard Boolean No
DBP 0 200 Discard Numerical Yes
Dobutamine 0 1 Ignore Boolean Yes
Dopamine 0 1 Ignore Boolean Yes
ECMO Type 0 1 Discard Boolean No
Endotracheal tube 0 1 Discard Boolean No
Epinephrine 0 1 Ignore Boolean Yes
Fentany! 0 1 Ignore Boolean Yes
Glucose 0 2000 Discard Numerical Yes
Hemoglobin 0 30 Discard Numerical Yes
Hydromorphone 0 1 Ignore Boolean Yes
INR 0 25 Discard Numerical No
Lactate 0 30 Discard Numerical Yes
Lorazepam 0 1 Ignore Numerical Yes
MBP 0 160 Discard Numerical Yes
Midazolam 0 1 Ignore Boolean Yes
Milrinone 0 1 Ignore Boolean Yes
Morphine 0 1 Ignore Boolean Yes
Norepinephrine 0 1 Ignore Boolean Yes
pCO2 5 150 Discard Numerical Yes
Peds Coma Score 3 15 Discard Numerical Yes
pH 6 8 Discard Numerical Yes
Platelets 0 5000 Discard Numerical Yes
Potassium 0.05 12 Discard Numerical Yes
Procalcitonin 0 250 Discard Numerical Yes
PTT 0 250 Truncate Numerical Yes
Pulse 0 350 Discard Numerical Yes
Pupillary Reaction Categorical Yes
Respiratory Rate 0 150 Discard Numerical Yes
SBP 0 300 Discard Numerical Yes
Sodium 80 215 Discard Numerical Yes
SpO2 0 100 Discard Numerical Yes
Temperature 0 46 Discard Numerical Yes
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Ventilated 0 1 Discard Boolean Yes
Ventilator Make/M odel Categorical Yes
Weight 0 300 Discard Numerical Yes
White blood cell count 0 300 Discard Numerical Yes
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Supplemental Table 5. Standard vocabulary crosswalk for BRAIN-Al components

Observation)

Automated count

Cerner Standard Standard
BRAIN A-l1 Components Millennium Vocabulary Identifier Standar d Display USCDI
Code Set
Laboratory Tests
1922-4 Base deficit in Arterial blood
- 72 (Clinical Event 1923-2 Base deficit in Capillary blood ;
Base deficit Observation) LOINC 1924-0 Base deficit in Venous blood Verson1
30318-0 Base deficit in Blood
11555-0 Base excess in Blood by calculation
1925-7 Base excessin Art_erlal blood by
72 (Clinical Event calculation .
Base excess ; LOINC Base excess in Capillary blood by Version 1
Observation) 1926-5 :
calculation
Base excess in Venous blood by
1927-3 calculation
1959-6 Bicarbonate [Moles/volume] in Blood
1960-4 Bicarbonate [Moles/volume] in Arterial
blood
1961-2 Bicarbonate [M olasg\;cz;ume] in Capillary
) 72 (Clinical Event .
Bicarbonate (()bslerlvati or\'nl) LOINC 14627-4 Bicarbonate [MolIDTg/c\)/C(jJI ume] in Venous Version 1
20289 Carbon dioxide, total [Moles/volume] in
Serum or Plasma
20565-8 Carbon dioxide, total [Moles/volume] in
Blood
. ] Urea nitrogen [Mass/volume] in Serum or
Blood urea nitrogen e é%l;:\(/::lngr\]/)ent LOINC 3094-0 Pasma Version 1
6299-2 Urea nitrogen [Mass/volume] in Blood
. g Chloride [Moles/volume] in Serum or
Chioride 2 é%'g\f:'ﬂg;’)e”t LOINC 20750 Plasma Version 1
2069-3 Chloride[Moles/'volume] in Blood
C-reactive protein 72 (Clini cal_ Event LOINC 19885 C reactive protein [Mass/volume] in Version 1
Observation) Serum or Plasma
- g Creatinine [Mass/volume] in Serum or
Crestinine 72(()%!2\(/::i5r\../)ent LOINC 2160-0 Pasma Version 1
38483-4 Creatinine [Mass/volume] in Blood
. Glucose [Mass/volume] in Capillary
72 (Clinical Event 41653-7 blood by Glucometer
Glucose (Clini V! LOINC Glucose [Mass/volume] in Serum or Version 1
Observation) 2345-7 P
asma
2339-0 Glucose [Mass/volume] in Blood
718-7 Hemoglobin [Mass/volume] in Blood
30351-1 Hemogl obi nv[el\ﬁgi/\élocl)g?e] in Mixed
] 72 (Clinical Event - - - :
Hemoglobin Observation) LOINC 303131 Hemoglobin [Magsc/’\églume] inArteria Version 1
30350-3 Hemogl obin [Mass/volume] in Venous
blood
International normalized ratio | /2O Bvent | o\ 6301-6 INR in Patelet poor plasmaby Version 1
Observation) Coagulation assay
Lactate 72 (CllnlcaI_Event LOINC 2519-7 Lactate [Moles/volume] |nYen0us blood Version 1
Observation) 32693-4 Lactate [Moles/volume] in Blood
g Carbon dioxide [Partial pressure] in
2020-6 Capillary blood
Partial pressure of carbon 72 (Clinical Event Carbon dioxide [Partial pressure] in .
dioxide Observation) LOINC 11557-6 Blood Version 1
Carbon dioxide [Partial pressure] in
2019-8 Arterial blood
2745-8 pH of Capillary blood
72 (Clinical Event 11558-4 pH of Blood ;
H ) LOINC Version 1
p Observation) 2744-1 pH of Arterial blood
2746-6 pH of Venous blood
Platdlets 72 (Clinical Event LOINC 777.3 Platel ets [#/volume] in Blood by Version 1
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Supplemental Table 5. Standard vocabulary crosswalk for BRAIN-Al components

Cerner Standard Standard
BRAIN A-l1 Components Millennium Vocabulary Identifier Standar d Display USCDI
Code Set
. . Potassium [Moles/volume] in Serum or
Potassium 2 é%'jsgr'\f:'ﬂg;’)e”t LOINC 28233 Plasma Version 1
6298-4 Potassium [Moles/volume] in Blood
Procalcitonin 72 (Cllnlcal_ Event LOINC 33959-8 Procalcitonin [Mass/volume] in Serum or Version 1
Observation) Plasma
Partial thromboplastin time | /2 (Clinical Bvent | 14979-9 aPTT in Platelet poor plasma by Version 1
Observation) Coagulation assay
. Sodium [Moles/volume] in Serum or
Sodium relinc 5{‘1’)“ LOINC 29512 Plasma Version 1
2947-0 Sodium [Moles/volume] in Blood
6690-2 Leukocytes [#/volume] in Blood by
White blood cell count 72 (Clinical Bvent | ) ¢ Auttomated count Version 1
Observation) Leukocytes [#/volume] in Blood by
49498-9 -
Estimate
Vital signs
8453-3 Diastolic blood pressure--sitting
. . 72 (Clinical Event 8454-1 Diastalic blood pressure--standing :
Diastolic blood . LOINC \Y/ 1
1astolic blood pressure Observation) 8455-8 Diastolic blood pressure--supine erson
8462-4 Diastolic blood pressure
9269-2 Glasgow coma score total
Glasgow coma scale score 72(Clini cal_ Event LOINC 9270-0 Glasgow coma score verbal' Version 3
Observation) 9267-6 Glasgow coma score eye opening
9268-4 Glasgow coma score motor
68999-2 Heart rate --supine
- 69000-8 Heart rate --sitting
72 (Clinical Event - :
Heart rate Observation) LOINC 69001-6 Heart rate --standing Version 1
8867-4 Heart rate
8890-6 Heart rate Cardiac apex by Auscultation
Mean blood pressure 72 (Clinical Event LOINC 8478-0 Mean blood pressure Version 1
Observation)
Pulse oxi metry 72 (Cli n|cal_ Event LOINC 50408-5 Oxygen saturation |r_1Arter|al blood by Version 1
Observation) Pul se oximetry
] 72 (Clinical Event . .
Respiratory rate Observation) LOINC 9279-1 Respiratory rate Version 1
. 72 (Clinical Event . .
Systalic blood pressure Observation) LOINC 8480-6 Systolic blood pressure Version 1
60836-4 Esophageal temperature
76278-1 Bladder temperature via Foley
8310-5 Body temperature
72 (Clinical Event 8328-7 Axillary temperature .
T at . LOINC Vi 1
emperalure Observation) 8329-5 Body temperature - Core ersion
8331-1 Oral temperature
8332-9 Rectal temperature
8334-5 Body temperature — Urinary bladder
Medical
- Device
Ventilator interface 72(cli nlcal_ Event LOINC LL5542-7 Intubati on tube types Class -
Observation) .
Version
Unknown
Medical
- Device
Ventilator make 2 é%!:\f:lﬂgr\]’)em LOINC LL7706-7 Ventilator Class -
Version
Unknown
. 72 (Clinical Event . .
Weight Observation) LOINC 29463-7 Body weight Version 1
Medications
) . 72 (Clinical Event RxNorm } . .
Cisatracurium (Intravenous) Observation) RXCUI 319864 cisatracurium Version 1
Dexmedetomidine 72 (Clinical Event RxNorm . .
(Intravenous) Observation) RXCUI 48937 dexmedeTOMIDine Version 1
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Supplemental Table 5. Standard vocabulary crosswalk for BRAIN-Al components

Cerner Standard Standard
BRAIN A-l1 Components Millennium Vocabulary Identifier Standar d Display USCDI
Code Set
} 72 (Clinical Event RxNorm ) .
Dobutamine (Intravenous) Observation) RXCUI 3616 DOBUTamine Version 1
. 72 (Clinical Event RxNorm . .
Dopamine (I ntravenous) Observation) RXCUI 3628 dopamine Version 1
. ) 72 (Clinical Event RxNorm . .
Epinephrine (Intravenous) Observation) RXCUI 3992 EPINEPHrine Version 1
72 (Clinical Event RxNorm .
Fentany! (Intravenous) Observation) RXCUI 4337 fentaNY L Version 1
72 (Clinical Event RxNorm .
Haldol Observation) RXCUI 151839 Haldol Version 1
Hydromorphone 72 (Clinical Event RxNorm .
(Intravenous) Observation) RXCUI 3423 HYDROmorphone Version 1
72 (Clinical Event RxNorm .
Lorazepam (Intravenous) Observation) RXCUI 6470 LORazepam Version 1
. 72 (Clinical Event RxNorm ; .
Midazolam (Intravenous) Observation) RXCUI 6960 midazolam Version 1
I 72 (Clinical Event RxNorm - .
Milrinone (Intravenous) Observation) RXCUI 52769 milrinone Version 1
) 72 (Clinical Event RxNorm ] .
Morphine (Intravenous) Observation) RXCUI 7052 morphine Version 1
. . 72 (Clinical Event RxNorm ] . .
Norepinephrine (Intravenous) Observation) RXCUI 7512 norepinephrine Version 1
: 72 (Clinical Event RxNorm . .
Olanzapine Observation) RXCUI 61381 OLANZapine Version 1
Non-L aboratory
Diagnostics
) 72 (Clinical Event .
Brain computed tomography Observation) LOINC 24725-4 CT Head Version 2
Brain magnetic resonance 72 (Clinical Event LOINC 24590-2 MR Brain Version 2
imaging Observation)
72 (Clinical Event .
Electroencephal ogram Observation) LOINC 11523-8 EEG study Version 2
Observatio
) . n Class—
LOINC 79899-1 Left pupil Pupillary response Version
. . 72 (Clinical Event Unknown
Pupillary reaction Observation) Observatio
LOINC 79815-7 Right pupil Pupillary response n Class -
ght pupil Fupiifary resp Version
Unknown
Consultation
Observatio
Behavioral health consult 72 (cli nlcal_ Event SNOMED 733870009 Assessment of delirium n Clags—
Observation) CT Version
Unknown

Abbreviations: aPTT, activated partial thromboplastin time; BRAIN A-1, biodigital rapid alert for identifying
neuromorbidity A-l bundle; CT, computed tomography; EEG, electroencephal ography; MR, magnetic resonance;
LOINC, logical object identifiers, names, and codes; RXCUI, RxNorm concept unique identifier; SNOMED CT,
systematized nomenclature of medicine - clinical terms; USCDI, United States Core Datafor Interoperability
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Supplemental Table 6. Predictive performance of the XGBoost model with a 12-hour censor horizon and 48-
hour feature window in the validation dataset, after manual tuning, and after Bayesian tuning.

XGBoost Base XGBoost Manual Tuning XGBoost Bayesian Tuning
AUROC 0.84 0.84 0.85
AUPRC 0.61 0.62 0.63
F1 Score 0.54 0.56 0.58
PPV 0.77 0.75 0.63
NPV 0.92 0.92 0.93
Sensitivity 0.41 0.44 0.54
Specificity 0.98 0.98 0.95

Models were tuned to optimize the F1 score, bordered in bold.

Abbreviations: AUPRC, area under the precision recall curve; AUROC, area under the receiver operating
characteristics curve; NPV, negative predictive value; PPV, positive predictive value; XGBoost, extreme
gradient boosting.
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Supplemental Table 7. Predictive performance of the XGBoost model with a 12-hour censor horizon and 48-
hour feature window in the test dataset, after manual tuning, and after Bayesian tuning.

XGBoost Base XGBoost Manual Tuning XGBoost Bayesian Tuning
AUROC 0.87 0.88 0.89
AUPRC 0.66 0.68 0.69
F1 Score 0.57 0.58 0.62
PPV 0.86 0.79 0.74
NPV 0.93 0.93 0.94
Sensitivity 0.43 0.46 0.53
Specificity 0.99 0.98 0.98

Models were tuned to optimize the F1 score, bordered in bold.

Abbreviations: AUPRC, area under the precision recall curve; AUROC, area under the receiver operating
characteristics curve; NPV, negative predictive value; PPV, positive predictive value; XGBoost, extreme
gradient boosting.
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Supplemental Table 8. Cohort ascertainment and exclusions for varied censored time horizons and feature windows
at the development site.
Encounters
withaPICU 32,702
admission
Feature
window 24 48 72
(hours)
Censored time
Horizon 6 12 24 6 12 24 6 12 24
(hours)
Visit length or
timeto
outcome hours
less than 2925 3435 3908 7720 8230 8703 11593 12103 12576
feature
window + time
horizon
Outcome
occurred
before PICU
admission
Missing age,
admission
time, or
discharge time
PICU length
of stay <1 182
hour
No
documented
SO,
measurement
Dischargetime
documented
prior to 2
admission
time
Final cohort 23873 | 23363 22890 19078 18568 18095 15205 14695 14222
Cases 2841 2331 1858 2841 2331 1858 2841 2331 1858
Controls 21032 16237 12364

Cohort numbers in bold represent the cohort at a given stage of ascertainment and numbers not in bold
represent encounter dropout at stages of cleaning.

4956

821
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Supplemental Table 9. Performance of the optimal models in the validation dataset at the development site.

Development Site
Feature Window
(hours) 24 48 72
Censored Time 6 1 24 6 12 24 6 12 24
Horizon (hours)
M odel LR LR LR XGB XGB LR XGB LR XGB
Feature Selection 1G IG I1G 1G IG IG 1G IG IG
AUROC 0.83 0.83 0.80 0.87 0.82 0.82 0.88 0.86 0.82
AUPRC 0.59 0.49 0.39 0.73 0.61 0.53 0.78 0.71 0.61
PPV 0.74 0.65 0.60 0.82 0.79 0.69 0.88 0.75 0.68
NPV 0.92 0.92 0.93 0.92 0.92 0.93 0.91 0.92 0.92
Sensitivity 0.40 0.29 0.24 0.53 0.41 0.41 0.58 0.54 0.47
Specificity 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.97 0.97

Abbreviations: AUROC, area under the receiver operating characteristics curve; AUPRC, area under the precision recall curve; CFS, correlation-based feature selection; |G, information gain; LR,

logistic regression; NB, naive Bayes; NPV, negative predictive value; PPV, positive predictive value; XGB, X GBoost (extreme gradient boosting)
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Supplemental Table 10. F1 scores of top performing models in the development site validation dataset.

Censored Time Horizon
6-hours 12-hours 24-hours
LR LR LR

. 24-hours 0.52 0.40 0.34
= 0O
53 XGB XGB LR
gc 48-hours 0.65 0.54 051
w= o XGB LR XGB

-hours 0.70 0.65 057
Cells denote the best performing model and the F1 score/ Brier score.
All models at the development site were created using information gain feature selection
Abbreviations: LR, logistic regression; XGB, XGBoost (extreme gradient boosting)
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Supplemental Table 11A. F; (8=2) scores of top performing models in the development site validation dataset.
Censored TimeHorizon

6-hours 12-hours 24-hours
24-hour's XGB XGB LR
o= 0.44 (0.44) 0.33(0.32) 0.27 (0.25)
528 LR LR LR
g 48-hours 0.59 (0.58) 0.49 (0.45) 0.45 (0.39)
w= o LR LR LR
-hours 0.66 (0.61) 0.58 (0.55) 0.51 (0.46)
Cells denote the best performing model and the F; (6=2) score. XGB and LR were the top performing models. Values within each bracket are

the Fj; (8=2) scores of the other model.

All models at the development site were created using information gain feature sel ection.
Abbreviations: LR, logistic regression; XGB, XGBoost (extreme gradient boosting)

Supplemental Table 11B. F; (8=3) scores of top performing models in the development site validation dataset.

Censored Time Horizon

6-hours 12-hours 24-hours
24-hour XGB XGB LR
. -hours 0.42 (0.42) 0.31 (0.30) 0.26 (0.24)
53 48h LR LR LR
g < -hours 0.58 (0.55) 0.48 (0.43) 0.43 (0.37)
L= LR LR LR
72-hours
0.64 (0.59) 0.56 (0.53) 0.50 (0.44)
Cells denote the best performing model and the F; (£=3) score. XGB and LR were the top performing models. Values within each bracket are

the Fjp (B=3) scores of the other model. All models at the development site were created using information gain feature selection.
Abbreviations: LR, logistic regression; XGB, XGBoost (extreme gradient boosting)

Supplemental Table 11C. F; (8=0.5) scores of top performing models in the devel opment site validation dataset

Censored Time Horizon

arethe F; (£=0.5) scores of the other model.
All models at the development site were created using information gain feature selection.

Abbreviations: LR, logistic regression; XGB, XGBoost (extreme gradient boosting)

6-hours 12-hours 24-hours
24-hour's XGB XGB LR
o= 0.62 (0.62) 0.52 (0.51) 0.46 (0.46)
53 XGB XGB LR
8 48-hours 0.76 (0.72) 0.65 (0.64) 0.61 (0.60)
L= o hours XGB XGB XGB
0.79 (0.77) 0.73(0.70) 0.67 (0.64)
Cells denote the best performing model and the F; (£=0.5) score. XGB and LR were the top performing models. Values within each bracket
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Supplemental Table 12A. Statistical performance of the 12-hour time horizon, 48-hour feature window XGBoost and logistic regression models over arange of
score thresholds in the devel opment site validation dataset.

Threshold AUROC AUPRC T sggre S(fjre SFc%?e PPV NPV  Sensitivity Specificity  Confusion Matrix - (TN, FP, FN.TP)
XGBoost M odd
0.025 0361 0542 0650 0271 0232 0956 0813 0.602 (1879, 1242, 86, 375)
0.05 0422 0554 0619 0341 0302 0945 0701 0.761 (2375, 746, 138, 329)
01 0483 0554 0582 0429 0399 0938 0614 0.863 (2694, 427, 178, 283)
03 0818 0601 0553 0508 0494 0607 0649 0926 0482 0.962 (3001, 120, 239, 222)
05 0536 0454 0432 0654 0766 0919 0412 0.981 (3063, 58, 271, 190)
0.7 0508 0411 0386 0664 0836 0913 0364 0.989 (3088, 33, 293, 168)
0.9 0420 0325 0301 0629 0915 0904  0.280 0.996 (3109, 12, 332, 129)
Logistic Regression M odéel

0.025 0318 0518 0656 0229 0193 0966 0894 0.449 (1402, 1719, 49, 412)
0.05 0384 0561 0662 0292 0252 0958  0.809 0.645 (2012, 1109, 88, 373)
01 0452 0574 0631 0372 0333 0947 0701 0.793 (2475, 646, 138, 323)
0.3 0827 0610 0549 0538 0535 0561 0568 0931 0531 0.940 (2935, 186, 216, 245)
05 0557 0494 0477 0638 0707 0924 0460 0.972 (3033, 88, 249, 212)
0.7 0533 0444 0420 0668 0803 0917  0.399 0.986 (3076, 45, 277, 184)
0.9 0450 0346 0321 0645 0908 0906  0.299 0.996 (3107, 14, 323, 138)

Supplemental Table 12B. Statistical performance of the 12-hour time horizon, 48-hour feature window X GBoost model over arange of score thresholdsin the
development site test dataset.

F1 F2 F3 FO.5

Threshold AUROC AUPRC Score Score Score Score PPV NPV  Sensitivity Specificity = Confusion Matrix - (TN, FP, FN,TP)
XGBoost Model

0.025 0.399 0.587 0.698 0.302 0.260 0.974 0.859 0.682 (2559, 1195, 69, 419)

0.05 0.493 0.621 0.679 0.409 0.367 0.962 0.750 0.832 (3124, 630, 122, 366)
0.1 0.573 0.623 0.642 0.531 0.505 0.954 0.662 0.916 (3438, 316, 165, 323)
0.3 0.873 0.671 0.603 0.538 0.519 0.685 0.754 0.938 0.502 0.979 (3674, 80, 243, 245)
0.5 0.562 0.463 0.437 0.715 0.874 0.929 0.414 0.992 (3725, 29, 286, 202)
0.7 0.491 0.383 0.357 0.684 0.926 0.920 0.334 0.997 (3741, 13, 325, 163)
0.9 0.390 0.287 0.264 0.610 0.975 0.910 0.244 0.999 (3751, 3, 369, 119)
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Supplemental Table 13. Cohort ascertainment and exclusions for varied feature windows for the

validation site.

Timeframe 4/2018-2023
Encounters with a PICU admission 9,039
Feature Window 48-hours
Visit length <24 hours or PICU length of stay <1 hour 1,791
Missing age, discharge time or sex 329

No documented SpO, measurement 15

No accurate Neuro Consultation records prior 2018

Outcome event prior to PICU admission 79

Key data missing within Feature Window ---

Final Cohort 6,825
Cases 387
Controls 6,438
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Supplemental Table 14. Statistical performance of the extreme gradient boosting (XGBoost) and logistic regression generalizable models at the development site

across varied output thresholds.
Threshold AUROC AUPRC  t F2 F3 P05 ppy NPV Senstivity Specificity  Confusion Matrix - (TN, FP, FN,TP)
Score Score Score Score
XGBoost Mode
0.025 0.365 0.551 0.665 0.272 0.233 0.976 0.837 0.708 (2658, 1096, 65, 333)
0.05 0.459 0.598 0.666 0.372 0.330 0.970 0.751 0.838 (3147, 607, 99, 299)
0.1 0.528 0.591 0.615 0.478 0.450 0.960 0.641 0.917 (3442, 312, 143, 255)
0.3 0.872 0.617 0.547 0.481 0.462 0.635 0.711 0.943 0.445 0.981 (3682, 72, 221, 177)
05 0.489 0.394 0.370 0.645 0.818 0.935 0.349 0.992 (3723, 31, 259, 139)
0.7 0.421 0.316 0.292 0.629 0.939 0.928 0.271 0.998 (3747, 7, 290, 108)
0.9 0.312 0.222 0.202 0.527 0.974 0.921 0.186 0.999 (3752, 2, 324, 74)
L ogistic Regression Modd
0.025 0.303 0.497 0.633 0.218 0.183 0.977 0.869 0.590 (2213, 1541, 52, 346)
0.05 0.388 0.552 0.643 0.299 0.260 0.969 0.769 0.767 (2881, 873, 92, 306)
0.1 0.481 0.571 0.609 0.415 0.380 0.960 0.653 0.887 (3330, 424, 138, 260)
0.3 0.855 0.605 0.562 0.513 0.499 0.621 0.668 0.947 0.485 0.974 (3658, 96, 205, 193)
0.5 0.520 0.429 0.406 0.658 0.801 0.938 0.384 0.990 (3716, 38, 245, 153)
0.7 0.489 0.383 0.357 0.677 0911 0934 0.334 0.997 (3741, 13, 265, 133)
0.9 0.367 0.267 0.245 0.584 0.968 0.924 0.226 0.999 (3751, 3, 308, 90)
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Data from 2010 —-2022
32,767 Encounters

Exclusions

8,230 Visitlength <48 hours {controls) or <12 hours (cases)
4,956 Owutcome occurred before PICT admission

822 Missinz age. admission tim e, or discharze time

182 PICU length of stay <1 hour

7 No documented Sp0;measurement

2 Discharge fime documented prior to admission ime

¥

Final Cohort
18,568 Encounters
2,331 Cases
16,237 Controls
Mod el Development c
Mod el Testin
and Initial Assessment e lestng
v v L Final Model
XGB
Chssifier Approaches Data from 20102019 Data from 2020-2022 oost
Logistic Regression 14,326 Encounters 4,242 Encounters
Naive Bayes _J 1,843 Cases 488 Cases
Fandom Forest 12,483 Controls 3,754 Controls
XGBoost | — —
LASSO l l
Training Data (75%0) Validation Data (25%6)
10,744 Encounters 3,582 Encounters
1,382 Cases 461 Cases
9,362 Controls 3,121 Controls

Figure 1. Cohort ascertainment for the final model at the development site, which included features engineered using 48 hours of preceding data and censoring 12-hours prior to the event for
cases. Initial model development and validation proceeded using data from 2010-2019. The model was tested using data from 2020-2022. Abbreviations: LASSO, least absolute shrinkage and
selection operator; PICU_ pediatric intensive care unit; XGBoost, extreme gradient boosting.
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Figure 2. Average houtly scores in the test dataset (encounters with a PICU stay in the year 2020 — 2022) for varied censored time horizon windows for the extreme gradient
boosted model developed using a 12-hour time horizon and 48-hour feature window at the devel opment site. The red dots are the average hourly scores 24 hours prior to an

event and 4 hours after an event for the case encounters (encounters with an identified neurologic morbidity) and the shaded redregion represents the 95% confidence interval.

The black dots are the average hourly scores for the control encounters (encounters without an identifi ed neurological morbidity). Confidence intervals for the control
encounters are not discernable in the figure due to the large cohort size. The size of the dots is proportionate to the cohort size at that timepoint.
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Maximum GFAP measurements stratified by predicted neurologic morbidity
Model developed with 48-hour fealure window and 12-hour censored time horizon

12.5 P <0.01
n=19 n=45
10.0
5
E
& 75
-
[
L)
2.0
2.5
MNeurologic Morbidity No Neurologic Morbidity

Figure 3. Log-transformed maximum GFAP measurements for a convenience cohort of 64 patients. stratified by predicted neurologic morbidity using the 12-hour time horizon
48-hour feature window extreme gradient boosting model. Abbreviations: GFAP, glial fibrillary acidic protein; mL, milliliter; pg, picogram.
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Cases

L&

e

Supplemental Figure 1. A representation of the time window and censor horizons used to define cases and controls as part of
the development, validation, and test cohorts. The blue boxes in the top, ‘Cases’ box identify a time window that is also
demarcated by a horizontal, gold, bidirectional arrow, the horizontal black lines represent length of stay for individual
encounters, the vertical black line represents the occurrence of the neurological morbidity outcome, and the gold, horizontal,

bidirectional arrow indicates the censor horizon, or period of time that data were not incorporated into the model. In the bottom,

“Controls” box, the blue boxes indicate the time window of data used for each stage of model development and evaluation. The
white “x’s” in black circles indicate the start of an encounter.
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Supplemental Figure 2. Data cleaning and feature engineering process.
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Supplemental Figure 3_ A representation of the feature engineering for continuous biomarker measurements.
Temporal information is represented as a variety of summarv measurements for discrete windows of time. Feature
windows of 24-hours_ 48-hours, and 72-hours are displayed in the figure. The models at the development site were
trained with 6-hour, 12-hour, and 24-hour censored time horizons, with 12-hour and 24-hour horizons demonstrated
in the figure. Definitions and related examples for a 24-hour window of data prior to the censor period are displayed
in the table. Abbreviations: h, hours.

Adapted from Hauskrecht M, Batal I, Valko M, Visweswaran 5, Cooper GF, Clermont G. Outlier detection for
patient monitoring and alerting. J Biomed Inform. 2013 Feb;46(1):47-55.
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Supplemental Figure 4. The process of BRAIN A-I model development and external validation. Curated data at the development site were
divided into a train cohort, validation cohort, and 2-years of holdout test data. The curated data were used to generate synthetic data with
comparable single variable statistical distributions. The synthetic data were then distributed to the external validation site with the generalizable
model. facilitating local data curation by providing the necessary details of data structure. Finally, the working BRAIN A-I model and pipeline
were applied to real-world data at the external validation site. Abbreviations: BRAIN A-I, Biodigital Rapid Alert to Identify Neuromorbidity A-I
Bundle; Dev. Site. Development Site; Valid. Site. Validation Site.
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A Key Metrics Changes on Thresholds
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C . Key Metrics Changes on Thresholds
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Supplemental Figure 5. Plots the key statistical performance metrics sensitivity (gold line),
positive predictive value (PPV, red line), F1 score (blue line), and F2 score (green line) with
metric values on the y-axis and model output thresholds on the x-axis for A) the logistic
regression model with a 12-hour time horizon and 48-hour feature window in the devel opment
site validation dataset; B) the extreme gradient boosting model with a 12-hour time horizon and
48-hour feature window in the devel opment site validation dataset; and C) the extreme gradient
boosting model with a 12-hour time horizon and 48-hour feature window in the development
site test dataset.
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Supplemental Figure 6. Calibration plots and associated Brier scores for the top performing models for varied ime
horizons and features windows in the validation dataset. A) 6-hour time horizon and 24-hour feature window; B) 6-hour
time horizon and 48-hour feature window; C) 6-hour time horizon and 72 -hour feature window; D) 12-hour time horizon
and 24-hour feature window; E)} 12-hour time horizon and 48-hour feature window; F) 12-hour time horizon and 72-
hour feature window; G) 24-hour time horizon and 24-hour feature window; H) 24-hour time horizon and 48-hour
feature window; I) 24-hour time horizon and 72-hour feature window. Abbreviations: LR, logistic regression; XGB.

extreme gradient boosted.
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Final Model Feature Importance
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Supplemental Figure 7. Top 10 biomarker feature categories based on Shap values for the 12-hour time horizon 48-hour feature window X GB oost model from the
development site. Each category contains several features, e g. Temperature contains maximum temperature, minimum temperature, average temperature, etc. The blue bars
represent the sum of the mean Shap values for each category. Abbreviations: biomrkrs, biomarkers.
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Supplemental Figure 8. Plots the kev statistical perfformance metrics sensitivity (gold line), positive predictive value (PPV, red line), F1 score (blue line), and F2 score

(green line) with metric values on the y-axis and model output thresholds on the x-axis for the generalizable A) logistic regression model in the development site test dataset;

B) extreme gradient boosting model in the development site test data set; C) logistic regression model in the external validation dataset; D) extreme gradient boosting model
in the external validation site dataset.
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Supplemental Figure 9. Calibration plots for the generalizable model in the A) devel opment site
test dataset, B) the external validation site dataset. and C) the external validation site dataset after
spline recalibration.
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Supplemental Figure 10. Feature importance analysis for the generalizable model in
the A) development site test dataset and B) external validation site dataset.
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