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Development of structure-tailored and composite
magnetic-fluorescent microspheres
through the PRI method

Haochuan Yang,1,7 Khalid Javed,1,2,7 Xi Li,1 Yuqi Zou,2 Xingliang Dai,3 Haiping He,3 Xvsheng Qiao,1,8,*

and Guangming Tao2,4,5,6,*
SUMMARY

Multifunctional micro- and nanoparticles have found their applications in fields like medicine, display ma-
terials, cosmetics, and so on. Advances in these fields have been demonstrated to need scalable uniformly
sized,mass-produced, and structured spherical particles. In this work, we proposed structure-tailored and
multifunctional composite polymeric microspheres with tunable diameter size, by using a versatile and
scalable in-fiber particle fabrication through the Plateau-Rayleigh capillary instability method. The results
show that the characteristic shapes of the luminescence spectra of CsPbBr3 remained similar before and
after embedding in the microspheres. The luminescence intensity was stabilized at 85–90% of their orig-
inal photoluminescence intensities over an extended period. Moreover, the photoluminescence lifetime
of the fluorescent microspheres was increased by 9.03% compared to CsPbBr3. The X-ray diffraction re-
sults revealed that there was no change in the crystal structure of the dopants before and after the encap-
sulation. Also, precise magnetic manipulation of Janus microspheres was successfully demonstrated.

INTRODUCTION

Multifunctional microspheres have several applications including medicine,1 anti-counterfeiting,2,3 remote manipulation, and displays.4–6 In

most of the applications, the fluorescence and magnetization functions have been used more frequently. One type of multifunctional micro-

spheres called Janus is a single particle having two regions with different properties.7 Recently, Janus microspheres have gotten great atten-

tion because of their asymmetric nature. The ability to integrate tailorable multifunctions in single particle has made them a smart building

block for designing the next generation intelligent materials.8 Several methods including microfluidic technique, surface modification, elec-

trified co-jetting, and spinning disks technique have been utilized to fabricate Janus particles with different shapes, functionalities, and

nature.9–11 For example, Li et al.12 reported the fabrication of fluorescent-magnetic Janus microspheres by electrospraying. Chen et al.13 re-

ported the fabrication of magnetic Janus photonic crystal microbeads with multiple fluorescence colors by microfluidic method. Yin et al.10

demonstrated the Janusmicrospheres fabricationwithmagnetic-fluorescent parts via themicrofluidic device. According to literature,14,15 par-

ticles’ application mostly depends on fabrication method and particle size. But, most of these wet methods used to prepare Janus particles

have issues like large particle size dispersion,16 and low yield which prevent the wide use of these methods.17 So, a reliable and easy-to-use

method to fabricate Janus particles with good control of shape, size, composition, and scalability is still considered a major challenge.

To address the challenges mentioned above, a physical top-down in fiber ‘‘Plateau-Rayleigh capillary instability (PRI)’’ method, which has

several advantages over conventional wet methods, was proposed recently. By using this method, the fabricated particles have a clean sur-

face, high yield as well as Janus structure with a diameter ranging from 100 mm down to 3 mm by optimizing parameters like temperature,

preform feed speed, and fiber draw speed. Shabahang and A. F. Abouraddy et al., (2011) reported the first observation of PRI at the core-

cladding interface in multimaterial fiber.18 Later, Kaufman and Tao et al., (2012) have shown the ability of this in-fiber PRI method to fabricate

the structured particles with uniform size by thermally drawing the multimaterial fibers.16 Also, Tao et al., (2016) presented a scalable

fabrication approach for digital designing the internal geometry of multimaterial photonic particles.19 For magnetic-fluorescent Janus
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Figure 1. In-fiber polymer microspheres fabrication through PRI method

(A) Schematic of the preform-to-fiber thermal drawing process through a fiber drawing tower.

(B) A preform (d �25 mm) has been thermally drawn into a fiber.

(C) Optical side view of the fiber during heat treatment at 380�C from 0 to 3 min.

(D) COC microspheres’ (d � 3 to 30 mm) SEM images.
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microspheres fabricated by the in-fiber PRI method, we doped superparamagnetic Fe3O4 in one semi-sphere to get magnetic functionality,

whereas for the other semi-sphere the CsPbBr3 Perovskite quantumdots (PQDs) has been used for fluorescent functionality. Althoughmost of

the researchers have used fluorescent dye molecules to prepare composite fluorescence microspheres,20,21 they have issues like unstable

optical properties, narrow excitation, and wide emission wavelength.22 To avoid these problems, we have selected CsPbBr3 PQDs because

they have exceptional photovoltaic and optoelectronic properties.23–25 However, when exposed to light, heat or moister these PQDs show

poor stability which limit their potential applications.26–28 One way to overcome this issue is polymer encapsulation of these PQDs to make

them more resistant against environmental factors.

In this work, structure-tailored and composite magnetic-fluorescent microspheres have been fabricated by using an efficient and versatile

in-fiber PRI method.29–31 Here we are reporting the synthesis of composite magnetic-fluorescent microspheres from 100 mm down to 3 mm.

Themicrospheres have been developed under the influence of surface tension, so their surface was extremely smooth.We have used a stack-

and-draw approach to putmultiple cores in a single fiber to induce PRI simultaneously for mass production. It makes them highly suitable and

potential candidates for many applications.

RESULTS AND DISCUSSION

We have used the in-fiber particle fabrication through the PRI method to preparemicrospheres with tunable diameter as shown in Figure 1. In

this method, a centimeter-scaled model called ‘‘preform’’ is heated at a specific temperature to get a viscous state, and then stretched to get

fibers. Multimaterial fibers have been realized using this technique during the last several years.32–36 The schematic of the preform-to-fiber

drawing process is shown in Figure 1A, whereas Figure 1B illustrates a section of fiber formed by thermal drawing and a conical-shaped pre-

form obtained after melting. During this process, the temperature of the furnace was set around the softening temperature of the cladding

material to maintain the continuity of the fiber and the intrinsic dimensional proportionality between the core and cladding.16 The fibers after

getting out of the heating zone were rapidly cooled to room temperature to prevent any axial instability phenomena. Typical prefabricated

rods are shown in Figure S1. SEM of the cross-section show that the fibers retain the same core/cladding structure as the preform, and the

dimensional ratios are consistent (Figure S2).

The PRI was induced in the fiber by thermal treatment,18 and the dynamics of heat treatment over time for breakup process has been

shown in Figure 1C. At the low temperature the viscosity is large which keeps the core intact, but with the increase in temperature the viscosity

decreased, and surface tension reduces the inertial viscous forces causing the instability growth until cylindrical fluid converted into droplets.

A sinusoidalmodulation emerges at the interface and the depth of thismodulation continue to increase until the core converted into droplets.
2 iScience 27, 110407, August 16, 2024
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The ‘‘mother’’ droplets were connected by a bridge until they detached and left small ‘‘satellite’’ microspheres in the middle.18,37 These mi-

crospheres remain steady in the cladding after cooling down to room temperature. The N, N-dimethylacetamide solution (DMAC) has been

used to dissolve the PSU, to release these microspheres.

This in-fiber PRI approach has several key benefits. First, the spherical microspheres with uniform and tunable diameters as well as with a

wide diameter range can be prepared. Second, it has ability for mass production/scalability. A large number of microspheres can be fabri-

cated by using stack-and-draw method, in which several cores in the same fiber breakup simultaneously. Third, the ability of this approach to

fabricate microspheres with complex structures (core-shell, Janus, and beach ball) by designing and preparing the macroscopic preform with

the required structure. The fluid instability theory describes that when a cylindrical fluid is encased in another fluid, a sinusoidal wave (wave-

length: l) will emerge at the liquid surface because of difference in materials’ surface tensions, as shown in Figure 1C. The PRI process can be

explained by the equation given below:

DP = g

�
1

R1
+

1

R2

�
(Equation 1)

here R1, and R2 are the radius of curvature, surface tension coefficient is represented by g, andDP describes the pressure difference. From two

factors we can determine the diameter of spherical microspheres: (i) instabilities wavelength (l) and (ii) rate of perturbations (t). The pertur-

bation rate ‘‘t’’ can be calculated using the Tomotika’s linear theory:38,39

t = D0mclad

� �
gi

�
1 � h2

�
Fðh;mcore =mcladÞ

�
(Equation 2)

whereDo is core diameter, m is viscosity of the material, gi is interfacial surface tension,F is a defined function,38 and h = pD0

l
. When the heat-

ing time is greater than the t, then capillary instability has enough time to shrink the steady fluid to break-up into spherical microspheres. By

controlling the core diameter ‘‘Do’’ we can tune the final particle diameter ‘‘D’’ as illustrated below:40

D =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p=2h3

p
Do (Equation 3)

Considering excellent thermal stability and exceptional optical properties of the COC, it has been selected as core material in this work.41

Also, after fiber drawing, we need to remove the cladding material using selective solvent. Thus cladding materials should have opposite

dissolution properties as compared with core material to ensure that the dissolution will not cause any loss of the core material. Furthermore,

in PRI approach the heat treatment requires that the softening temperature of the cladding material should be higher than that of the core

material. Considering this, polysulfone (PSU) was selected as the cladding material.

After getting expertise in fiber drawing process,42–47 we have analyzed and optimized different parameters like temperature, feed speed,

and draw speed, to study their effect on the fiber diameter, which has linear relation with particle diameter (Equation 3). The particle size con-

trol was confirmed by SEM images of some selected samples shown in Figure 1D, with diameter range from �30 mm to �3 mm, highlighting

the flexibility of the in-fiber PRI method in tuning particle size. This excellent tunability of diameter size from severalmillimeter to several nano-

meters is a key benefit of this approachwhich is difficult to realize by using the conventional wetmethods. Also, we can control the particle size

by optimizing the inner and outer diameters of preform.

The scalability of in-fiber particle fabrication through PRI using stack-and-draw approach was demonstrated as shown in Figure 2.We have

integrated 200 COC rods in PSU cladding to create a preform, which was thermally drawn to get a fiber with 200 cores as shown in Figures 2A

and 2B. Then, this fiber was used to obtain polymer microspheres with uniform size after heat treatment at 380�C to induce PRI as shown in

Figure 2C.

SEM images have shown that the microspheres had clean surfaces and were not adherent to each other (Figures 2D and 2E). For particle

size analysis, we used the previously reported method of calculating 100 microspheres in SEM images by the ImageJ software.48 The size

results of the distribution are shown in Figure 2F. It showed that the distribution was very narrow, with an average D �3.15 G 0.16 mm.

This stack-and-draw approach significantly increased the yield ofmicrospheres by several orders ofmagnitude. Additionally, the optical trans-

mission microscopy images revealed that due to the barrier of the cladding material between the cores, despite the close proximity of the

cores to each other (�20 mm), they remain in place after heat treatment in the form of regularly arranged three-dimensional arrays.

We have fabricated the fluorescent composite microspheres CsPbBr3@COC through PRI approach as shown in Figure 3. The solution

blendingmethodwas used tomix a 10% doping ratio of inorganic CsPbBr3 with the COCmatrix. After optimizing the parameters like compo-

sition, mixing time, and temperature, the enhanced doping effect has been achieved. The cores with fluorescence function (Figure S3) were

integrated with the cladding to form the preform. Then the fiber drawing and particle processing were conducted similarly as has been done

for undoped samples. The photograph of the fluorescent polymeric microspheres under ambient light and UV excitation, fabricated through

PRI method, was shown in Figure S4.

The confocal laser scanning microscopy (CLSM) luminescence images of two representative microspheres (size �100 mm) have been

shown in Figures 3A and 3B, and the fluorescence results demonstrated that the CsPbBr3 microspheres have been effectively encapsulated

within the polymer microspheres. To explore the spatial distribution of CsPbBr3 in the composite microspheres, we scanned a randomly

selected fluorescent microsphere using the z stack mode of the CLSM. As shown in Figure 3C, the CsPbBr3@COC displayed uniform and

bright fluorescence in every randomly selected focal plane, indicating uniform dispersion of the fluorescent substance throughout the micro-

spheres. Additionally, as revealed by the X-ray diffraction (XRD) results in Figure 3D, typical crystal diffraction peaks were observed alongside

the amorphous structure corresponding to the polymer matrix, which closely match the structure of CsPbBr3 (PDF No. 18–0364).
iScience 27, 110407, August 16, 2024 3



Figure 2. Scalable in-fiber polymer microspheres fabrication

(A) Schematic diagram of amulticore preform thermally drawn into fiber, then the cores were annealed to form spherical droplets and released from the cladding

by selective dissolution.

(B) Optical image of fiber cross-section with 200 COC cores in the PSU cladding.

(C) Fiber side view optical transmission image after inducing PRI.

(D) SEM image of 3 mm (average diameter) COC microspheres in good number.

(E) Zoomed-in SEM image of some microspheres from (D) exhibiting clean and smooth surface.

(F) The size distribution of COC microspheres.

ll
OPEN ACCESS

iScience
Article
The optical properties of the fluorescent microspheres were also characterized. Figure 3E shows the normalized fluorescence excitation

and emission spectra of CsPbBr3@COC microspheres and CsPbBr3. The results reveal that the characteristic shapes of the luminescence

spectra of CsPbBr3 remained similar before and after embedding in the microspheres. However, its photoluminescence (PL) peaks were

blue shifted from 520 nm to 515 nm compared to the CsPbBr3. This indicates that the size of the PQDs decreased after being doped into

the COC.49,50 To observe the stability of CsPbBr3@COC microspheres’ fluorescent property, PL intensity spectra has been recorded after

every 24 h for seven days. Figure 3F displays that all emission peaks for the fluorescent microspheres were stabilized at 515 nm. The lumines-

cence intensity had a decay phenomenon (�15%) in the first 1–2 days, and then the green samples were stabilized at 85–90% of their original

PL intensities in the subsequent time.

Also, the UV-Vis spectra has been shown in Figure S5, CsPbBr3 has a characteristic absorption peak at 515 nm while the pure COCmicro-

spheres have no prominent absorption peak. The combined effect of these two materials has produce an insignificant absorption peak at

515 nm for CsPbBr3@ COCmicrospheres. The time-resolved PL spectra of CsPbBr3 and CsPbBr3@COC samples were fitted using a tri-expo-

nential function.51

IðtÞ = A1 exp

�
� t

t1

�
+ A2 exp

�
� t

t2

�
+A3 exp

�
� t

t3

�
(Equation 4)

where IðtÞ is the emission intensity that changes with time, t1, t2, t3 are the lifetimes of different decay processes, and A1, A2, A3 are the co-

efficients at these lifetimes.52
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Figure 3. In-fiber fluorescent composite microspheres fabrication through PRI

(A and B) Bright-field and fluorescence images (excited by a 405 nm laser) of two fluorescent composite microspheres with diameters of about 100 mm.

(C) A series of CLSM luminescence images of sections of a microsphere, going from middle to bottom.

(D) XRD patterns of fluorescent composite microspheres.

(E) Fluorescence emission spectra of CsPbBr3 and composite microspheres.

(F) PL intensity curves of the fluorescent microspheres dispersed in DMAC for a week.

(G and H) Decay curves and fitting results of CsPbBr3 measured at 520 nm and composite microspheres measured at 515 nm.
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tavg =
A1t1

2 +A2t2
2 +A3t3

2

A1t1 +A2t2 +A3t3
(Equation 5)

The results (Figures 3G and 3H) show that the average PL lifetime of CsPbBr3 at 520 nm is 41.29 ns and that of the particles at 515 nm is

45.02 ns, which is an improvement of 9.03%. This means that non-radiative transitions are weakened and energy losses are reduced.52 This

may be because the surface of CsPbBr3 is secondarily passivated by the flexible and dense COC polymer chains, which affects the radiative

recombination of charge carriers and thus can effectively increase the fluorescence lifetime.

We have prepared the magnetic-fluorescent Janus microspheres by using this efficient and versatile in-fiber PRI method as illustrated in

Figure 4. A magnetic-fluorescent composite COC cylindrical rod has been designed and fabricated. This rod has two-halves which were ob-

tained by using a homemade customized mold. The one-half of the cylinder was doped with CsPbBr3, while the other half was doped with

Fe3O4 nanoparticles. Then this rod has been integrated with PSU cladding and thermally drawn to get the fiber. To obtain the magnetic-fluo-

rescent Janus microspheres, the fiber drawing and particle processing were conducted in a similar way as has been done for undoped

samples.

Fluorescent and magnetic functionalities of the Janus core was shown in Figures 4A, 4B and 4C. The photograph of the core rod has been

shown in Figure 4A. The fluorescence properties of the half-cylindrical core containing CsPbBr3 has been shown in Figure 4B, emitting bright
iScience 27, 110407, August 16, 2024 5



Figure 4. In-fiber fluorescent-magnetic Janus microspheres fabrication through PRI

(A–C) The Janus core of the preform processed through the customized mold, demonstrates dual functionality.

(D–F) CLSM luminescence images of the Janus particles, show clear hemispheric division.

(G) XRD patterns of Fe3O4, CsPbBr3, and Janus particles.

(H) Fluorescence emission spectra of CsPbBr3 and Janus particles.

(I) Hysteresis loop of Janus microspheres.

(J and K) Schematic and optical images showing the rotational motion of Janus particles under an external magnetic field.
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green fluorescence under UV light, while the other half shows no response to UV light excitation. And the Figure 4C demonstrates the mag-

netic properties of the semi-cylindrical core containing Fe3O4 nanoparticles. It can be seen that the core rod is attracted in mid-air by an

external magnetic field (generated by a ferromagnet). The CLSMwas used to examine the distribution of the fluorescent material in the Janus

microspheres. Figures 4D, 4E and 4F revealed that CsPbBr3 is uniformly distributed on the fluorescent half of the microspheres. Whereas the

other half containing Fe3O4 nanoparticles produced no fluorescence. Moreover, consistent with the earlier description, the images exhibit

clear boundaries between the two hemispheres, mirroring the structure prior to the induction of PRI by heat treatment. This characteristic

offers a novel approach for the future digital design of the multifunctional structured polymer microspheres. The XRD results for mag-

netic-fluorescent Janus microspheres (Figure 4G) proves that the composite particles were successfully prepared because the diffraction

peaks of composite Janus particles coincide with those of Fe3O4 as well as CsPbBr3, demonstrating that before and after the encapsulation

there is no variation in the crystal structure of the dopants.

We have also investigated the optical properties of the magnetic-fluorescent Janus microspheres, the normalized fluorescence excitation

and emission spectra of Janus microspheres and CsPbBr3 were shown in Figure 4H. Similar to the fluorescent microspheres mentioned above,

thePLemissionpeakof Janusmicrospheres undergoes a 5 nmblue-shift phenomenon. The Janusmicrospheres’magnetic propertieswere also

characterized by using vibrating sample magnetometer (VSM). The results in Figure 4I show that themagnetic induction intensity of themicro-

spheres is estimated to be�1.5 emu g� 1, which makes them good candidate for potential applications like magnetic separation and display.

Remote manipulation of these Janus microspheres has been demonstrated and full dynamics were captured as shown in Figures 4J and

4K. Themovement and orientation of the Janusmicrospheres can bemanipulated by the external-magnetic field, thusmaking them useful for
6 iScience 27, 110407, August 16, 2024
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fluorescent switching and displays. Given the superparamagnetic property of the doped iron oxide nanoparticles, we used two ferromagnets

to manipulate Janus microspheres dispersed in DMAC and captured the dynamic process by the fluorescence microscope with a camera. It

has been discovered that when the magnet is placed in such a way that its rotation axis is parallel to the substrate (Figure 4J), the rotation of

themagnet causes the Janus particles to formmultiple angles and ranges of the fluorescent face, andwhen themagnet is placed in such away

that its rotation axis is perpendicular to the substrate (Figure 4K), the Janus structuredmicrospheres follow the magnet in the in-situ rotation.

Conclusions

In this work, a versatile, flexible, and scalable in-fiber microspheres fabrication through PRI method has been used to prepare undoped COC,

CsPbBr3 doped COC, and magnetic-fluorescent Janus (CsPbBr3//Fe3O4@COC) microspheres with diameter size ranging from �100 mm

down to�3 mm. By optimizing the temperature, preform feed-speed and fiber draw-speed, we have fabricated themicrospheres with smooth

surface and narrow size distribution (CV < 5%). Also, the stack-and-draw approach enabled us to increase the microspheres’ yield by several

orders of magnitude by placing 200 fibers in preform core to induce the PRI simultaneously. The CsPbBr3@COCmicrospheres’ fluorescence

lifetime was enhanced by 9% and the fluorescence intensity remained stable around 90% of the initial intensity, whereas the Janus micro-

spheres have demonstrated good response to external magnetic field for remote manipulation in both parallel and perpendicular directions

of rotation. This work will be a key addition toward fabricating multifunctional polymeric particles with tunable size and complex structures.

Limitations of the study

Although the present work has played a significant role in the large-scale preparation of functional and/or complex structured microspheres,

we found nonuniform doping of functional materials for microspheres with small diameter (�3 mm). This is due to the fact that when doping

has been done using the solution mixing method, the functional materials are agglomerated and thus their sizes are usually beyond the sub-

micron range and some of the dopant material escapes from the substrate when the core breaks up. More efforts are needed to improve the

doping for smaller diameter particles. One possible way is to use surface modification to enhance the binding capacity of the dopant to the

matrix material.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Cyclohexane Sigma�Aldrich CAS: 110-82-7

Ferroferric oxide (Fe3O4) Aladdin CAS: 1309-37-1

N, N-Dimethylacetamide (DMAC) Sigma�Aldrich CAS: 127-19-5

Copolymers of cycloolefin (COC) Zeon TOPAS� 8007s-04

Polysulfone (PSU) Solvay UDEL� P-1700

Software and algorithms

ImageMeasure SICHANGYUE Optical Instrument www.sh-opt.com/

Image J National Institutes of Health (NIH) imagej.nih.gov/ij/

Diffrac.EVA Bruker www.bruker.com

Fluoracle Edinburgh Instrument Ltd. www.edinst.com

LAS AF Leica www.leica-microsystems.com
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xvsheng Qiao

(qiaoxus@zju.edu.cn)
Materials availability

This study did not generate new unique reagents.
Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.

� This article does not report original code.
� Any additional information required to reanalyze the data reported in this article is available from the lead contact on request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study does not use experimental methods typical in the life sciences.
METHOD DETAILS

COC/PSU preform fabrication

(i) The pellets (millimeter-sized, 8007, Zeon Corporation, Japan) were purchased to the obtain a cylindrical rod of COC with diameter�2 mm

and length �60 mm by thermally pressing them at 240�C using a customized mold between the thermos-compressor. (ii) Purchased PSU (P-

1700, Solvay, USA) pellets were placed into a mold measuring 70 mm in length, 27 mm in width, and 27 mm in height, then they were trans-

formed into a cuboid rod by using the hot press at 290�C. Next, the cuboid PSU rod was processed into a round rod (diameter �25 mm,

Length �70 mm) through a table-top lathe. Several parallel straight holes slightly larger than COC cylinders were drilled in the PSU section

by using a bench top drill. (iii) Inserted the COC rods into the PSU holes for a monolithic preform. Then, the core/cladding structured preform

was consolidated at 200�C for 1h in a vacuum oven.
CsPbBr3 preform fabrication with fluorescent function

(i) The cyclohexane solution (Sigma�Aldrich) has been used to dissolve the COCpellets and stirring was done for 1h (600 rpm, 70�C) to obtain

pure and transparent COC/cyclohexane solution. (ii) Then, the CsPbBr3 phosphors with doping ratios ranging from 1%–10% were mixed into

the above solution and stirred at 600 rpm for 12 h. (iii) To completely dry the compound the evaporation has been in a vacuum furnace. (iv)

Then, the compound was thermally pressed at 240�C through a customized mold between the thermos-compressor to form cylindrical rods

with diameter �2 mm and length �60 mm. Then, these rods were inserted into the PSU tube for a fluorescent preform.
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Janus structured preform fabrication with fluorescent-magnetic multifunction

(i) Both the fluorescent andmagnetic composites were fabricated by the dispersion of the functional particles in COCmatrix through chemical

solution. (ii) Two half-cylindrical rods were machined separately using another customized mold with a diameter �2 mm and length�60 mm

by using two kinds of composites. Then, theywere thermally combined into a round rod. (iii) The round rodwas inserted into the PSU tube for a

fluorescent-magnetic Janus preform.
Fiber thermal drawing

To provide the suitable pull when the bottom of the preform is just starting to soften, a 2 mm diameter hole was drilled horizontally at 5 mm

from the bottom of the preform. A stainless-steel wire with 10g weights was passed through the bottom hole. Then, the assemblies formed

were fitted to the custom thermal drawing tower, and the preform was thermally drawn into fibers at 260�C. The preform feeding speed was

set and maintained at 1 mm/min, the drawing speed was set around 1.5 m/min. To ensure the uniform diameter of fiber with the diameter

600 G 10 mm the drawing speed was monitored and controlled accordingly.
Particles fabrication through the PRI method

The core/cladding structured fiber was cut into 20 cm long pieces and subsequently fixed on customized glass sheets with length�20 cm and

width �2.5 cm with a high temperature tape. Next, these glass sheets were placed in a tube furnace and heat treated at 380�C for 5min. The

continuous heat input caused the fibers to soften again and provided the driving force for the core to break into particles by PRI.
Particle release

The PSU cladding has been dissolved with 99.0%DMAC (Sigma�Aldrich) at 100�C for 30–40min, to release the particles. The washed sample

was centrifuged at 15000 rpm for 5min, then the supernatant was removed. After addingDMACagain, the ultrasoundwas performed for 5min

to further dissolve the PSU cladding. This process was repeated five to six times until all the PSU has been removed and the solvent was evap-

orated, leaving the COC particles on the substrate.
Characterization

Images of the fibers were collected by an optical microscope (OM, CX40M,China) in transmitted lightmode. Themorphology of particles and

the cross-sectional images of the fiber were studied by using a scanning electronmicroscope (SEM, Zeiss Gemini SEM 360, Germany), and the

acceleration voltage was 5 kV. Elemental compositions and distribution of the fiber and the doped material were analyzed via energy disper-

sive X-ray spectrometer (EDS), during the test, the acceleration voltage was set to 15 kV and the working distance was 8.5 mm. The fluores-

cence images of CsPbBr3 in the COC microspheres were captured using a confocal laser scanning microscope (CLSM, Leica TCS SP5 II,

Germany) by exciting at 405 nm. The vibrating sample magnetometer (VSM, Lakeshore 7404, USA) was used for room temperature magnetic

analysis with a field up to 2.0 T, while the pole head diameter was 5cm, the pole pitch was 16.2 mm, the sensitivity was 53 10�7 emu, and the

measurement ranged from 53 10�7 emu–103 emu. X-ray diffraction spectra of Fe3O4 nanoparticles, CsPbBr3 powder, and composite micro-

spheres were obtained with the X-ray diffractometer (XRD, Bruker D8 Advance, Germany) equipped with Cu Ka radiation, and the measured

angle ranged from 10� to 80�, the scan speed was 0.14�/s. Photoluminescence emission spectra and decay curves were recorded on an

FLSP920 spectrometer (Edinburgh Instrument Ltd., Livingston, UK) with a 405nm EPLED laser. In this process, the fluorescence lifetime moni-

toring wavelengths of fluorescent microspheres and perovskite samples were 515nm and 520nm, respectively. Optical absorption spectra

have been observed by using the ultraviolet-visible-near infrared spectrophotometer (Shimadzu, UV-4100, Japan). The measurement ranged

from 700 nm to 250 nm, and the scan speed was 300 nm/min.
QUANTIFICATION AND STATISTICAL ANALYSIS

Data were expressed as mean G SEM (standard error of mean).
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