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Simple Summary: Sheep are affected by a viral infection that causes an incurable and difficult to
treat lung, joint and brain disease that decreases production efficiency. This small ruminant lentivirus
is closely related to human immunodeficiency virus (HIV) that causes AIDS in humans. Differences
in breed susceptibility to disease are known in sheep that indicate genetic, or hereditary, resilience
factors exist. Our objective was to study the source of this hereditary advantage so that it can
eventually be translated into a tool for sheep breeders to improve herd health. Previously, one such
hereditary region was detected, but little was known about possible mechanisms or nearby mutations.
Here, we report several mutations that may underlie this hereditary mechanism and are in regions
of DNA that are known to affect genes by increasing or decreasing gene expression, akin to gene
“on/off switches.” These mutations were strongly associated with a predictor of disease severity
in live animals and had a greater predicted effect on the degree of disease than previously studied
mutations. Statistical association (p < 0.05) of disease was demonstrated in two different groups of
sheep that were reared in different environments, which indicates increased likelihood that a genetic
factor is producing this effect.

Abstract: Small ruminant lentivirus (SRLV) causes Maedi-Visna or Ovine Progressive Pneumonia in
sheep and creates insidious livestock production losses. This retrovirus is closely related to human
immunodeficiency virus and currently has no vaccines or cure. Genetic marker assisted selection
for sheep disease resiliency presents an attractive management solution. Previously, we identified
a region containing a cluster of zinc finger genes that had association with ovine SRLV proviral
concentration. Trait-association analysis validated a small insertion/deletion variant near ZNF389
(rs397514112) in multiple sheep breeds. In the current study, 543 sheep from two distinct populations
were genotyped at 34 additional variants for fine mapping of the regulatory elements within this
locus. Variants were selected based on ChIP-seq annotation data from sheep alveolar macrophages
that defined active cis-regulatory elements predicted to influence zinc finger gene expression. We
present a haplotype block of variants within regulatory elements that have improved associations and
larger effect sizes (up to 4.7-fold genotypic difference in proviral concentration) than the previously
validated ZNF389 deletion marker. Hypotheses for the underlying causal mutation or mutations
are presented based on changes to in silico transcription factor binding sites. These variants offer
alternative markers for selective breeding and are targets for future functional mutation assays.
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1. Introduction

Ovine lentivirus (OvLV) exists as a collection of viral subtypes in sheep also termed
small ruminant lentiviruses (SRLV) [1]. These are retroviruses which infect both sheep and
goats and belong to the same genus as human immunodeficiency virus (HIV). Conserved
host factors have been discovered that effect viral restriction of lentiviruses in both humans
and small ruminants, such as TRIM5α [2]. The SRLV retrovirus is macrophage-tropic and
incorporates into the host DNA through reverse transcription that results in pervasive
life-long infection [3,4]. In sheep, the disease is referred to as Ovine Progressive Pneumonia
in the U.S. and Maedi-Visna in many other countries [5], because it targets the lungs,
central nervous system and joints. SRLV was documented to cause production losses by
increased lamb mortality [6], reduced lamb weights in diseased older ewes [7], reduced
fertility [8], and early culling of breeding stock [9]. These losses can be difficult to quantify
and are frequently underestimated in individual flocks since producers may not test all
animals or maintain quantitative records on all potential measures of lost production [10].
Nonetheless, economic and production efficiency consequences of SRLV are significant
since 36% to 66% of commercial flocks in the U.S. contained positive sheep on serological
studies [11–13]. Complete eradication is impractical for many flocks since retroviruses have
a very small minimum infectious dose [14], and serology is the standard diagnostic testing
method available with imperfect sensitivity [15,16]. Once infected there is no cure, and no
approved vaccine is commercially available to prevent infection [17]. Selective breeding
for sheep that better control the virus, after infection, is an option to combat economic
losses and welfare issues associated with SRLV without requiring complete eradication
from the flock.

Previously, a genome-wide association study identified a locus containing zinc finger
genes that were associated with host control of the virus and lesion severity after infec-
tion [18,19]. Proviral load in the blood has been documented to correlate with histological
lesion severity in sheep [19] and is likely a useful phenotype to predict disease resiliency in
sheep since this is well documented in humans with HIV [20]. Early efficient control of
viral replication is generally associated with reduced disease severity for HIV and other
lentiviruses [21]. Proviral load in humans is associated with disease severity, clinical pro-
gression, treatment response and is documented to be very low to exceptionally low in
slow progressors and elite controllers infected with HIV [20–24]. In sheep, we are defining
the phenotype of reduced proviral load as resiliency to small ruminant lentivirus because
it is a marker of control of the pathogen after infection potentially involving aspects of
disease tolerance and is not considered resistance, which is defined as imperviousness to
infection or elimination of infection [25]. Breeding for tolerance or resiliency may create
less selective pressure on the pathogen than breeding for strict resistance [26]. The locus
contains four zinc finger genes ZNF389, ZKSCAN8, ZSCAN16, and ZNF165 [27–29] that
had not been otherwise documented to affect viral infections in vivo. However, other zinc
finger proteins, such as ZAP, have been shown to restrict retroviruses [30]. In fact, this
innate host factor has been shown to restrict viral replication in a variety of retroviruses
from several species [1]. Zinc finger genes have also been demonstrated to coevolve in
the host with endogenous and exogenous retroviruses [31,32]. Eight markers across the
locus, mostly within genes, were tested in previous work, and a single insertion/deletion
marker (rs397514112) near ZNF389 was validated in three sheep populations [33]. This
marker and the haplotype it tracks were found to have no negative associations with
production traits [34], meaning this locus could be used for selective breeding without
obvious unintended negative effects.

The four zinc finger genes in the region associated with lentiviral resiliency in sheep
are the Cys2/His2-type (C2H2) and include Kruppel associated box (KRAB) domains with
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known repressive function [35]. C2H2 zinc finger genes contain repeated domains that
form finger-like protein structures of 28–30 amino acids which bind the DNA helix. C2H2
zinc finger proteins are one of the largest families of transcription factors in eukaryotic
genomes, however those with greater than three zinc finger domains at the C-terminus
such as ZNF389, ZKSCAN8, ZSCAN16 and ZNF165, are the most poorly understood [36],
and prediction of their DNA binding sequence becomes less accurate when there are higher
numbers of zinc finger domains. Domestic cattle and pigs, other artiodactyl species related
to sheep, have annotated orthologs of ZNF389; ZKSCAN8, ZSCAN16, and ZNF165 are
annotated in many mammalian species including humans in the current Refseq annota-
tions [37–40]. In humans, a pseudogene ZKSCAN8P1, has been implicated as ZNF389 but
it is currently unclear if this is an orthologous gene to ZNF389 annotated in sheep. At the
time of the association analysis of the zinc finger gene region in sheep [33], the specific
functional implications for the intergenic validated marker near ZNF389 and the zinc finger
genes were unknown.

Reported here, further assessment of polymorphisms in the region were completed
to identify the functional importance of these variants and to examine additional mark-
ers that may be useful for genetic marker-assisted selection. DNA regulatory elements
were previously annotated by chromatin immunoprecipitation and high throughput se-
quencing (ChIP-seq) for histone post-translational modification marks including H3K27ac
and H3K4me3 in sheep [41] and used to focus the search for polymorphic variants of
interest to the SRLV resilient phenotype. These regulatory elements are associated with
reproducible biological functions such as gene enhancers and promoters. For instance, the
histone modification H3K27ac denoted active chromatin regions typically associated with
enhancers [42,43]. Chromatin that has the histone modification H3K4me3 and H3K27ac
near the transcription start site of a gene defines active promoter elements that indicate
active gene expression [44,45].

Associations were tested across 34 variants within the eight regulatory elements
recently annotated [41] in this chromatin domain. A haplotype within experimentally
determined active DNA regulatory elements from previously determined ChIP-seq data
in sheep was associated with a resilient phenotype against small ruminant lentivirus.
Variants within active cis-regulatory elements such as promoters and enhancers often have
functional consequences for transcription factor binding and gene expression which will be
explored further. These results are consistent with the model that most causal mutations of
complex disease phenotypes are within noncoding regulatory elements rather than coding
regions of genes and influence gene expression [46–48].

2. Materials and Methods
2.1. Ethics Statement

Animals were cared for and handled according to protocols approved by the Washing-
ton State University Institutional Animal Care and Use Committee (ASAF 4618 and 6632)
or by the U.S. Sheep Experiment Station Institutional Animal Care and Use Committee
(protocols: 10-06 and 10-07).

2.2. DNA Extractions and Genotyping

Whole blood was collected via jugular venipuncture into EDTA-vacutainer tubes for
DNA extraction as previously described [31] from two sheep populations in a total of
543 animals. Rambouillet purebred ewes (population 1) were sampled at the U.S. Sheep
Experiment Station in Idaho and crossbred (Rambouillet, Columbia) ewes (population 2)
from a privately owned production flock in Montana. Population 1 consisted of 164 small
ruminant lentivirus infected ewes between one to five years of age. Flock SRLV prevalence
for population 1 was 42.2% [33]. Population 2 consisted of 379 ewes, between one to six
years of age, selected by a random number generator from the 533 SRLV infected animals in
the flock. Older infected animals aged seven to eight years were excluded for estimability
due to low numbers of animals in these groups since age was included in the model. Popu-
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lation 2 SRLV prevalence was 87.2%. Additional characteristics of the populations were
reported in previous publications [18,33]. No animals were shared between population
groups. The GeneCatcher gDNA Blood Kit (Invitrogen, Life Technologies, Carlsbad, CA)
was used according to manufacturer’s instructions for DNA extraction.

Four individual Rambouillet animals were selected from population 1 based on al-
ternate homozygous genotype status at the ZNF389 validated marker for whole genome
high-throughput sequencing (Rambouillet) in order to select variants within regulatory
elements for further genotyping in all 543 sheep. These four Rambouillet were selected to fit
the overall population trend, in that the two insertion homozygous animals had low provi-
ral concentrations and two deletion homozygous animals had high proviral concentrations.
Two additional uninfected Rambouillet from the same flock as population 1 and two cross-
bred sheep (Suffolk, Polypay, Rambouillet, Targhee) from a Washington research flock [41],
were sequenced at high depth and included in evaluation for DNA variants to screen
for rare alleles (crossbred sheep). Paired-end sequencing (Illumina) produced between
600–700 million reads per animal that passed read quality and adapter trimming with
BBDuk from the BBTools suite (Bushnell, 2021, http://sourceforge.net/projects/bbmap/)
(accessed on 1 November 2020). Reads were aligned to the Rambouillet reference genome
(Oar_Rambouillet_v1.0, GCF_002742125.1) [27] with BWA [49]. Aligned reads were quality
filtered, sorted, and indexed with SAMtools [50].

The region on chromosome 20 between 32.92 Mb and 33.01 Mb was evaluated for
variants in the sequenced Rambouillet sheep by comparison to the Rambouillet reference
genome and the sequenced crossbred sheep. Variants were selected by sequence inspection
of aligned reads in IGV [51] that appeared to be on the same or similar haplotypes as the
validated marker and were within the active regulatory elements as determined by ChIP-
seq. ChIP-seq annotations in the zinc finger region were utilized from those previously
published [41] and with attention to regions annotated as transcription start sites from
cap analysis gene expression (CAGE) data [27]. ChIP-seq signal consensus BED files
combined from two animals for the histone modifications H3K4me3 (promoters) and
H3K27ac (active enhancers and promoters) and raw ChIP-seq signal BigWig tracks in each
individual animal were used for regulatory element annotation. CAGE data that shows
transcription start sites for genes from publicly available annotation data was overlaid
with the active cis-regulatory elements of interest [27,41]. ChIP-seq BigWig signal tracks for
CTCF (insulators) and H3K27me3 (silencers/heterochromatin) enrichment were used to
define the boundaries of the chromatin domain and limit which regulatory elements and
genes around the previously validated marker were included in assessment.

Taqman Genotyping Assays were performed according to manufacturer’s instructions
(Applied Biosystems, Foster City, CA USA) utilizing 20 ng of genomic DNA in 10 microliter
reactions for all 543 animals in both populations. Dried genomic DNA samples were incu-
bated in liquid Polymerase Chain Reaction (PCR) reagents for 15 min at 37 ◦C immediately
prior to PCR cycling. The PCR thermal cycler program was polymerase activation at 95 ◦C for
10 min, then repeating 50 cycles of 95 ◦C denaturing for 15 s and 60 ◦C annealing/extension
for 1 min. Primers and probes were designed for variants by the manufacturer’s website tool
https://www.thermofisher.com/order/custom-genomic-products/tools/genotyping/
(accessed on 1 November 2020). Assay identification codes and sequences for primers and
fluorescent probes are provided in supplementary Table S1. Automated design for the ini-
tially selected variants failed at 11% of the sites, mostly due to a high density of additional
variants nearby. Genotyping was completed at 36 variants with successful genotyping
assay cluster differentiation.

2.3. Small Ruminant Lentivirus Phenotypes

Proviral concentration was assessed on all animals in triplicate qPCR assays as previ-
ously described [16] utilizing 1 ug of DNA extracted from peripheral blood. Only animals
infected with SRLV were included in the downstream association analyses. The two pop-

http://sourceforge.net/projects/bbmap/
https://www.thermofisher.com/order/custom-genomic-products/tools/genotyping/
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ulations of sheep were chosen for high SRLV prevalence within the flocks as previously
described [33].

2.4. Statistical Analysis

Association analyses were completed in JMP Genomics version 7.1 (SAS Institute,
Cary, NC USA). A standard least squares model was employed with independent variables
set as genotype and age in years, and sire treated as a random effect. The dependent
variable was log10-transformed SRLV proviral concentration. Age in years was treated as
a categorical (nominal) variable to account for non-linearity of proviral concentration as
sheep age. p-values less than 0.05 were considered significant. SRLV phenotypes were
reverse-transformed (10x) to viral copies/ug DNA scale for indicated results. Genotypes
were assessed for Hardy-Weinberg Equilibrium (HWE) with chi-squared analysis (p < 0.05)
which yielded 34 variants for association testing. HWE p-values are displayed for each
variant in supplementary Table S2.

2.5. Linkage Disequilibrium and Haplotype Analyses

Linkage disequilibrium measures were derived using Haploview v4.2 [52] r2 and D’
values. Haplotypes with less than 1% allele frequency were considered rare and removed
from further analysis. PHASE v2.1.1 [53,54] was used to estimate population frequency
of haplotypes, and genotypes were assigned for individual animals based on calculated
haplotypes. Animals with haplotype assignment probabilities of less than 95% were
dropped from haplotype association analysis. A standard least squares model as described
above was used to evaluate haplotype association with SRLV phenotypes.

2.6. Transcription Factor Binding Analysis

The MATCH tool [55] was used with the TRANSFAC database (version 2021.1, gen-
eXplain GmbH, Qiagen, Germantown, MD) of binding motif sequences to predict allelic
difference in binding affinity around each selected variant. Settings for motif scanning
included immune cell specific with a core and matrix match above 0.9, or vertebrate non-
redundant with minimize false positives and minimize the sum of false negative and false
positive results. Any transcription factor binding motif that was predicted to be created or
abolished between the two alleles was recorded.

3. Results
3.1. ZNF Gene Region in Detail

The chromatin domain around the previously validated marker, rs397514112 [25],
was delineated by evaluation of boundary elements from ChIP-seq for in the relevant
cell type of alveolar macrophages. Evaluation of both CTCF insulators and H3K27me3
silencers delimited the domain as extending from approximately 32.92 Mb to 33.01 Mb
on Rambouillet_v1.0 chromosome 20. These boundaries were affirmed by the presence of
annotated tRNA genes.

Four annotated genes were found within the region, ZNF389 (NCBI Gene ID 101104612),
ZKSCAN8 (NCBI Gene ID 101121465), ZSCAN16 (NCBI Gene ID 101104351) and ZNF165
(NCBI Gene ID 106990266), each containing C2H2 zinc finger repeats at the C-terminus
and KRAB or SCAN domains near the N-terminus. Each gene had a proximal 5′ active
cis-regulatory element defined by both H3K4me3 and H3K27ac enrichment of the genome.
ZNF389 also had two downstream, within-gene, smaller regulatory elements. CAGE data
indicated there were three transcription start sites for ZNF389, one within each of the
ChIP-seq regulatory elements. There were two additional active, proximal regulatory
elements upstream of two predicted lncRNAs, ZSCAN16-AS1 (NCBI Gene ID 105603808)
and LOC114108620 (NCBI Gene ID 114108620). The regions searched for variants included
approximately 14,500 bp of DNA in the eight total active regulatory elements. Taqman
genotyping assays were performed and analyzed for 34 variants including 30 single nu-
cleotide polymorphisms (SNP), one multiple nucleotide polymorphism (MNP) and three
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small insertion/deletion variants that varied from 1–3 bp. Greater than 95% of animals
were successfully genotyped, and all variants passed HWE analysis (p > 0.05), see supple-
mentary Table S2 for chi-squared results for population 1 and supplementary Table S3 for
population 2. In addition, the previously validated insertion/deletion marker (rs397514112)
was included for reference. Twenty-four of the variants were within the two regulatory
elements that immediately flanked the previously validated marker (Figure 1). The remain-
der of the variants were distributed amongst five additional regulatory elements within
57.5 Kb in the 3′ direction and within 10.7 Kb in the 5′ direction from the validated marker.
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Figure 1. Association with small ruminant lentivirus proviral concentration at variants within regulatory elements for
zinc finger genes on ovine chromosome 20. ChIP-seq annotations for H3K4me3 enrichment are shown as green bars at
the bottom, above Refseq gene annotations in black. Population 1 (purebred Rambouillet) are identified by blue dots
and population 2 (crossbred Rambouillet, Columbia) are identified by orange dots. The previously validated marker
(rs397514112) is highlighted by green circles for each population.

3.2. Population One Association Analysis

Within population one, 164 SRLV positive animals were included in the association
analyses. Overall, twenty-eight of the variants had significant association with SRLV
proviral concentration (p < 0.05) shown in Figure 1. Variant minor allele frequencies
ranged from 0.48 to 0.02 in purebred Rambouillet sheep (Table 1). For all variants with a
minor allele frequency greater than 0.05, the heterozygous animals adjusted mean proviral
concentration was not significantly different from the resilient homozygote adjusted mean.

At the previously validated marker, the association with SRLV remained (p = 6.00× 10−4)
with a proviral concentration log-transformed difference of 0.803 (Table 2) between animals
with a homozygous deletion and those with a homozygous insertion. This corresponded
to a reverse-transformed adjusted mean of 24.4 viral copies/ug of DNA in the insertion ho-
mozygotes and 155.2 viral copies/ug of DNA in the more susceptible deletion homozygotes.
Additionally, 14 variants tested had improved p-values (p = 4.00 × 10−4 to p = 5.08 × 10−7)
and greater effect sizes as calculated by the log10 proviral concentration difference be-
tween homozygous genotypes when compared to the previous validated marker as shown
in Table 2. Variants within three separate regulatory elements for ZNF389 and ZNF192
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(ZKSCAN8) had the highest log-transformed adjusted mean proviral concentration differ-
ence between genotypes of 0.838 to 0.967 in population 1. The reverse-transformed adjusted
mean proviral concentrations were 32.7 viral copies/ug DNA and 303.4 viral copies/ug
DNA for alternate homozygous genotypes at the most extreme variant (rs420471584) which
was 24 Kb 3′ from the previous validated marker.

Table 1. Minor allele frequency at each variant in the sheep population 1 purebred Rambouillet and
population 2 crossbred (Rambouillet, Columbia) sheep. Allele nucleotide bases are shown for SNPs:
adenine (A), cytosine (C), guanine (G), and thymine (T), I = insertion and D = deletion for small
indels. Total animals genotyped for each population (n). See supplementary Table S2 for animal
counts by genotype. * Previously validated marker.

Marker
Population 1

n = 164
Minor Allele Freq

Population 2
n = 379

Minor Allele Freq

rs193645606 C 0.44 T 0.45
rs418789060 A 0.35 A 0.47
rs161334222 T 0.44 C 0.44
rs398476053 C 0.42 C 0.20

rs414155747&rs425583788 TT 0.43 TT 0.20
rs427575002 T 0.36 T 0.47
rs407355422 G 0.44 C 0.44

rs397514112 * D 0.44 I 0.44
rs599110985 G 0.44 T 0.44
rs411076283 C 0.44 T 0.44
rs407841455 T 0.44 G 0.44
rs161334287 T 0.44 A 0.44
rs598937573 I 0.44 D 0.44
rs406431156 C 0.33 C 0.47

Table 2. Genotypes at each regulatory element marker tested that yielded a significant association (p < 0.05) with SRLV
phenotype of resilience in sheep. The most extreme genotypes associated with resiliency and susceptibility to SRLV and
log-transformed adjusted mean proviral concentration difference between genotypes (Genotypic log10 Conc. Diff.) for
Population 1 (purebred Rambouillet) is shown. The p-value calculated for the association analysis in population 1 and
linkage disequilibrium (r2) between each newly tested marker and the previously validated marker for both population 1
and population 2 is also shown. Genotype allele nucleotide bases are shown for SNPs: adenine (A), cytosine (C), guanine
(G), and thymine (T), I = insertion and D = deletion for small indels. See supplementary Table S4 for additional data on
population 2. * Previously validated marker.

Marker Resilient
Genotype

Susceptible
Genotype

Genotypic
Log10 Conc.

Diff.
p-Value

LD *
Pop. 1

(r2)

LD *
Pop. 2

(r2)

rs193645606 T/T C/C 0.857 8.95 × 10−5 0.950 0.989
rs418789060 C/C A/A 0.537 4.06 × 10−2 0.664 0.705
rs161334222 C/C T/T 0.830 2.57 × 10−4 0.926 0.989
rs398476053 C/C A/A 0.434 1.64 × 10−2 0.537 0.312

rs414155747&rs425583788 TT/TT GC/GC 0.445 1.46 × 10−2 0.556 0.313
rs427575002 A/A T/T 0.572 2.46 × 10−2 0.690 0.678
rs407355422 C/C G/G 0.859 8.70 × 10−5 0.950 0.989

rs397514112 * I/I 1 D/D 0.803 6.00 × 10−4 - -
rs599110985 T/T G/G 0.857 8.39 × 10−5 0.950 0.989
rs411076283 T/T C/C 0.856 9.20 × 10−5 0.950 0.989
rs407841455 G/G T/T 0.857 8.39 × 10−5 0.950 0.989
rs161334287 A/A T/T 0.857 8.72 × 10−5 0.950 0.989
rs598937573 D/D 2 I/I 0.838 1.62 × 10−4 0.950 0.989
rs406431156 T/T C/C 0.739 2.50 × 10−2 0.389 0.604

1 The insertion allele at the validated marker is AAT and the deletion allele is A. 2 The deletion allele is G and the insertion allele is GAAT.
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3.3. Population Two Association Analysis

Population two was genotyped at 20 variants which had association with SRLV
resiliency in population one. In total, 378 animals were retained in analyses as one animal
was removed for high genotyping failure rate (>10% of variants tested). Minor allele
frequency in the crossbred population ranged from 0.47 to 0.04 (Table 1). Fifteen variants
across five different regulatory elements were associated with SRLV proviral concentration
(p < 0.05), see Table 2. Eight of the variants in the haplotype had a larger adjusted mean
log-transformed proviral concentration difference between homozygous genotypes than
the previous validated marker, and nine of the variants had greater significance (lower
p-values), as displayed in Table 2. For nearly all variants tested in this population, the
adjusted mean proviral concentration in heterozygous animals was not different from the
susceptible homozygote (p > 0.05).

3.4. Significant Variants in Multiple Populations Were in Two Regulatory Elements

In both populations, the most significant and extreme variants were located within the
two regulatory elements that flank the ZNF389 insertion/deletion marker (Figure 2). These
two active regulatory elements were located at 32.931 Mb and 32.935 Mb on chromosome
20. The larger element was approximately 2100 base pairs in length and the smaller
downstream element was 1400 bp in length. The larger regulatory region was predicted to
contain approximately 29 total variants within Rambouillet, including rare variants and
those for which Taqman allelic discrimination assays could not be designed. The smaller
regulatory element was predicted to contain 17 total variants within Rambouillet. The
alleles across the markers tested in these elements are displayed in Table 2 according to
association with resiliency or susceptibility to SRLV. The same alleles were associated with
resiliency and susceptibility in both populations.
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3.5. Haplotypes and Phenotypic Association with Common Haplotypes

Linkage disequilibrium analysis showed that 7 of the 15 significant markers were in
exceptionally strong LD with the previously validated marker (r2 > 0.95) in population
1 (see Table 2) and 8 of the 15 significant markers were in exceptionally strong LD with
the previously validated marker in population 2. Haplotypes were assessed across the
15 significant markers in each population and yielded three common haplotypes that were
present for both animal groups in greater than 10% of the population (Figure 3). Three
shortened common haplotypes were determined with PHASE analysis that consisted of
the markers in the two key regulatory elements: rs414155747, rs425583788, rs407355422
and rs397514112 (validated marker). Haplotype 1 had alleles GCGD (D = deletion, A and
I = insertion, AAT) across these four markers and was most common in both populations,
with a frequency of 0.436 in population 1 and 0.554 in population 2. Haplotype 2 had alleles
TTCI with a frequency of 0.427 in population 1 and 0.201 in population 2. Haplotype 3
was composed of the alleles GCCI with a frequency of 0.125 in population 1 and 0.241 in
population 2. Haplotype 1 was highly associated with an SRLV susceptible phenotype
in population 1 (p = 2.72 × 10−5) in a dose dependent manner (0, 1 or 2 copies of the
haplotype) and in population 2 (p = 5.82 × 10−4). The reverse transformed adjusted mean
proviral concentration for population 1 was 226 viral copies/µg DNA for two copies of
the haplotype, 49.8 viral copies/µg DNA for one copy of the haplotype and 29.4 viral
copies/µg DNA for zero copies of haplotype 1. Haplotype 2 was also associated with
SRLV proviral load, but was protective with one or two copies of the haplotype associated
with a similar resiliency effect (p = 2.10 × 10−3 for population 1 and p = 2.94 × 10−2 for
population 2). Haplotype 3 was not significantly associated with SRLV phenotype (p = 0.09
and p = 0.11 for populations 1 and 2).
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types within population 1 (purebred Rambouillet) and on the right are haplotypes for population
2 (crossbred, Rambouillet, Columbia). The same three haplotypes were the most common in both
populations. The fifteen loci are shown in columns listed in the same order as in Tables 1 and 2,
with the previously validated marker listed as +. An asterisk (*) is above each locus in the two key
regulatory elements upstream of ZNF389. For loci 09 and 14, D represents the deletion allele and I
represents the insertion allele.

3.6. TRANSFAC Predictions

The variants associated with SRLV proviral concentration that were validated in both
populations were analyzed using the TRANSFAC database to identify transcription factor
binding motifs. Ten of the variants including a single insertion/deletion variant and a
single MNP (2 bp) had predicted differences in transcription factor binding based on the
allelic sequence. All variants, except one, were within the two ZNF389 regulatory elements
that flank the previous validated marker. Transcription factor proteins implicated in unique
binding at one of the alleles included GATA3, c-JUN, TCF-1, LEF-1, Ikaros, ZNF333, AP-
2alpha, NFATc2 and HNF-3beta. Ubiquitous proteins such as AP-1 and SP100 were also
implicated in predicted binding differences. At the rs427575002 variant, the repressive
transcription factors BEN and Kaiso had predicted differences in binding affinity. The
variant that is predicted to bind these repressors was found within the smaller downstream
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ZNF389 regulatory element which had an annotated difference in ChIP-seq signal in the
region between alternate homozygote animals (see Figure 2).

4. Discussion

The zinc finger chromatin domain examined in sheep represents a synteny block con-
served from humans to artiodactyls. However, one major difference in humans compared
to sheep is that ZNF389 is annotated as a pseudogene paralog of ZKSCAN8 (ZNF192) in
humans. ZNF389 is an interesting gene target for a novel viral restriction factor as it may
have functionally diverged in the caprine subfamily in response to the recent emergence
of small ruminant lentiviruses [29,32,56]. Maedi-visna, ovine progressive pneumonia and
caprine arthritis and encephalitis are caused by multiple subtypes of the same slow viral
disease in sheep and goats that have emerged in the last century [57] and cause multisys-
temic wasting characterized by chronic lymphocytic pneumonia, arthritis, mastitis, and
encephalitis. The poly-zinc finger transcription factor gene family consists of over 700 mem-
bers and examination across host clades indicates that these genes arose from repeated
duplication events followed by functional divergence [32,58]. Generally, positive selection
for new transcriptional repression activity in response to transposable retroelements and
retroviruses has been found or hypothesized [59,60]. Zinc finger transcription factors also
have emerging roles in modulating the innate immune response [61] and therefore viral re-
striction factors in one species may be protective against retroviruses from another species.
There are other well-known examples of host viral restriction factors that affect retroviruses
from multiple species, such as APOBEC3, Tetherin, ZAP and TRIM5α [30,56,62].

Through fine mapping of this region on ovine chromosome 20, we identified several
candidates for selection markers which may prove more useful for predictive breeding
decisions in other breeds of sheep than the single previously validated marker. This region
appears to contain a haplotype block of variants that are significantly associated with
SRLV resiliency within two active regulatory elements upstream of the ZNF389 gene. This
could indicate that these regulatory elements are functionally linked and influence gene
expression together or that more than one sequence variant may be playing a causal role in
the phenotype. These variants validated in two populations of sheep from different breed
backgrounds and under different environmental conditions and had greater significance
than the previously validated marker. Studies have also highlighted variability in utility
of a single genetic marker for trait selection in different breeds or environments [5], thus
it is important to mention that the related breed composition of the two populations in
this study is a limitation to broader assumptions on SRLV association with these markers.
In particular, the TMEM154 mutations for odds of infection have been shown to associate
with reduced risk [63,64] in American and European sheep and with improved control
post-infection in some U.S. sheep [65]. However, TMEM154 mutations were not associated
with SRLV infection in different breeds in several populations [66].

Importantly, the effect size is greater at some of these markers (MNP: rs414155747
and rs425583788, rs407355422) compared to the previously validated marker (rs397514112).
We hypothesize that these variants would cause a change in expression of the zinc finger
genes that restrict viral replication. The discovery of this haplotype within the regulatory
elements of zinc finger genes lends further support that one or multiple host zinc finger
genes may function as a viral restriction factor in sheep.

Genome-wide association studies in humans and livestock indicate that the majority
of functional variants lie within DNA regulatory elements [46,67–69]. Annotation of these
regulatory elements in relevant cell- and tissue- types will be of increasing importance to
elucidate the biology behind functional mutations in food producing species. Published
alveolar macrophages ChIP-seq data [41] was leveraged to evaluate active regulatory
elements in the chromosome region and identify the boundaries of the putative chromatin
domain since these cells are the primary phagocyte of the lungs. The distance searched
for variants was also limited based on decline of linkage disequilibrium with distance
in the same population of sheep (r2 < 0.25 at 35 Kb) [18]. Out of eight total regulatory
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elements evaluated within the region, the most significant variants were present within
two adjacent cis-regulatory elements nearest to ZNF389 flanking the previously validated
marker (Figures 1 and 2).

Determination of regulatory elements with trait associations is important because
polymorphisms have been detected in intergenic regions associated with critical economic
traits in livestock such as polledness [70]. The vast wealth of human literature indicates
that it is most common for genome-wide association studies to find significant polymor-
phisms for traits within promoters and enhancers rather than within coding regions of
genes [46,71]. Breaking research within livestock species indicates a similar trend emphasiz-
ing the importance of studying these regulatory elements in many species [69]. Cis-acting
DNA regulatory elements control gene expression by serving as structural elements for
many trans-acting proteins to promote or disrupt gene expression [72]. Promoters marked
by H3K4me3 are often present at many genes in the cell type that are not actively ex-
pressed [41,44]. However, if the region is also marked at nucleosomes by H3K27ac, this is
highly associated with gene expression. The zinc finger gene regulatory elements identi-
fied to contain the haplotype cluster had enrichment for both H3K27ac and H3K4me3 in
macrophages indicating they may be expressed in this key cell type for lentiviral infection.
Examination of CAGE data [27] showed that each of the two ZNF389 regulatory elements
had a narrow region of active mRNA transcription. Other members of this zinc finger
family have been implicated as transcriptional repressors; we hypothesize that increased
expression of one of these genes due to promoter variants may cause increased transcrip-
tional repression to the viral genome or provirus. ChIP-seq data in sheep indicate potential
insulators enriched by CTCF around ZNF389 and ZNF192 which would pose the most
likely gene effectors. However, these four, and many other zinc finger genes on the same
chromosome have been linked to similarly located active cis-regulatory elements in humans
from the ENCODE cell line data [73].

Evaluation of predicted in silico transcription factor binding motifs between alleles
for each variant resulted in discovery of putative functional differences in these two active
regulatory elements. This method may reveal functional variants that cause changes in
transcription factor protein binding [74,75], as described here, and found in livestock at gene
promoters for other traits of economic significance [48]. Analysis of transcription factor
binding changes yielded hypotheses for function of ten of the associated variants from
within the two ZNF389 regulatory elements that were validated in both sheep populations.
Several of the transcription factors with predicted changes have been implicated to various
degrees in altering the host response to viruses or altering viral replication. Some of these
transcription factors have been directly shown to interact with viruses such as LEF-1 in
the case of HIV [76]. However, binding of transcription factors to host promoters would
be an indirect effect. We hypothesize transcription factors function through expression
alteration in zinc finger genes which then mediate a downstream direct effect on the virus.
In mice, Gata3 has been implicated in altered anti-viral immunity [77], which was one of the
transcription factors we predicted to have differential binding affinity to sheep promoters
in the region. Functional testing for molecular effects of these variants were outside the
scope of this research study but will be performed in the future such as electrophoretic
mobility shift assays and promoter reporter assays.

Regulation of gene expression appears to be complex within this region. For example,
there is an active regulatory element for both ZSCAN16 and ZSCAN16-AS1 which is an
antisense lncRNA. Antisense RNA can act as a sponge for miRNA and protect the comple-
mentary mRNA transcript from the effects of miRNA, creating several layers of ncRNA
regulation for a single gene. However, this study cannot rule out long distance interactions
of these regulatory elements or genes with distant cis-regulatory elements along the chro-
mosome. Chromatin folding has occasionally been implicated in functional association of
gene-enhancer loops at distances of up to 1 Mb. Additionally, since several of these variants
are in high linkage disequilibrium with the previously validated marker, this study does
not fully resolve linkage association from biological function in the tested populations.
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5. Conclusions

Overall, a haplotype of variants within two active cis-regulatory elements for ZNF389
was identified that improved the association and/or effect size for small ruminant lentivirus
proviral concentration as a live-animal measure of lesion severity in Rambouillet and related
crossbreeds from the Western U.S. This provision of additional variants will prove useful
in selective breeding decisions in the future, although the utility of phenotype predictive
value in sheep from different breeds or geographical locations remains unknown. Ten
variants were identified that had predicted transcription factor binding differences between
alleles. One or more of these variants can be incorporated into a commercial test to combat
SRLV infection which ultimately has potential to improve efficiency of meat, milk, and wool
production. Since several viral restriction factors previously known affect lentiviruses from
multiple species, a novel viral restriction factor identified in sheep may have implications
for interactions between host and retroviruses in additional species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11071907/s1, supplementary Table S1: additional details on genotyping reagents; Table S2:
Hardy-Weinberg Equilibrium analysis and animal counts by genotype for population 1; Table S3:
Hardy-Weinberg Equilibrium analysis and animal counts by genotype for population 2; Table S4:
Genotypes at each regulatory element marker tested that yielded a significant association (p < 0.05)
with SRLV phenotype of resilience in sheep in population 2.
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