Generation of a homozygous knock-in human embryonic stem cell line expressing mEos4b-tagged CTR1

Yi-Hung Chen ${ }^{\text {a,f }}$, Pei-San Huang ${ }^{\text {a }}$, Meng-Hsuan Wen ${ }^{\text {a }}$, Manhua Pan ${ }^{\text {a }}$, Dung-Fang Lee ${ }^{\text {b,c,d,e, }, ~}$ Tai-Yen Chen ${ }^{\text {a },{ }^{,}}$
${ }^{\text {a D Department of Chemistry, University of Houston, Houston, TX 77204, USA }}$
${ }^{\mathrm{b}}$ Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
${ }^{\text {c The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical }}$ Sciences, Houston, TX 77030, USA
${ }^{d}$ Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
${ }^{e}$ Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
fDevelopment, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA

Abstract

Copper transporter 1 (CTR1) is the major membrane protein responsible for cellular copper (Cu) uptake and mediates cellular copper homeostasis. To elucidate CTR1's behavior using imaging approaches, we generated a homozygous knock-in human embryonic stem cell (hESC) clone expressing photoconvertible fluorescence protein mEos4b-tagged endogenous CTR1 using CRISPR-Cas9 mediated homologous recombination. The engineered cells express functional CTR1-mEos4b fusion and have normal stem cell morphology. They remain pluripotent and can be differentiated into all three germ layers in vitro. This resource allows the study of CTR1 at an endogenous level in different cellular contexts using microscopy.

[^0]
1. Resource table

Unique stem cell line identifier	WAe001-A-79
Alternative name(s) of stem cell line	H1_CTR 1-mEos $4 \mathrm{~b} / \mathrm{UHMCe} 002-\mathrm{A}-79$
Institution	Department of Chemistry, University of Houston, Houston
Contact information of the reported cell line distributor	Tai-Yen Chen (tchen37@central.uh.edu)
Type of cell line	Human embryonic stem cells
Origin	Human
Additional origin info (applicable for human ESC or iPSC)	Age: N/A Sex: Male
	Ethnicity if known: N/A
Cell Source	H1 hESCs (NIH Registration Number: 043, WiCell, passage 2830)
Method of reprogramming	N/A
Clonality	Clonal by manual single-cell colony picking
Evidence of the reprogramming transgene loss (including genomic copy if applicable)	N/A
Cell culture system used	mTeSR ${ }^{\text {TM }}$ plus/Matrigel ${ }^{\text {TM }}$ (1\%)
Type of Genetic Modification	Transgene generation (fluorescent protein tagging)
Associated disease	N/A
Gene/locus	9q32; SLC31A1 (ENSG00000136868)
Method of modification/site-specific nuclease used	CRISPR/Cas 9
Site-specific nuclease (SSN) delivery method	Electroporation
All genetic material introduced into the cells	Linearized HDR donor vector (carried by pMiniT 2.0)
	Cas plasmid (pSpCas9(BB)-2A-Puro (PX459))
Analysis of the nuclease-targeted allele status	Genotyping PCR, sequencing of the targeted allele, and Southern blotting
Method of the off-target nuclease activity surveillance	N/A
Name of transgene	mEos 4 b followed by a Flag-tag
Eukaryotic selective agent resistance (including inducible/gene expressing cell-specific)	N/A
Inducible/constitutive system details	N/A
Date archived/stock date	2022-05-12
Cell line repository/bank	Human Pluripotent Stem Cell Registry: https://hpscreg.eu/cell-line/WAe001-A-79
Ethical/GMO work approvals	Cell lines were used according to institutional guidelines. UTHealth approval number: SCRO-16-01
Addgene/public access repository recombinant DNA sources' disclaimers (if applicable)	pSpCas9(BB)-2A-Puro (PX459) was a gift from Feng Zhang (Addgene plasmid \# 48139; http://n2t.net/addgene:48139; RRID: Addgene_48139)

2. Resource utility

The generation of this homozygous knock-in hESC line expressing mEos4b-tagged copper transporter 1 (H1_CTR1-mEos4b) enables the study of CTR1 using single-molecule imaging approaches in various human cells at an endogenous level. The differentiated
engineered hESCs will be used to dissect the molecular behaviors of CTR1 and understand

3. Resource details

Copper transporter CTR1, encoded by SLC31A1, is a homotrimeric and the major membrane protein responsible for cellular Cu uptake. Heterozygous deficiency of CTR1 in mammals shows cerebral Cu accumulation; homozygous mutation is embryonic lethal because defective cuproenzymes lead to poor connective tissue development (Lee et al., 2001). Despite its substantial role in cellular Cu supply and systematic Cu homeostasis, the molecular regulations of CTR1's cell-type-specific distributions, intracellular trafficking, and oligomerization dynamics are still unclear. To elucidate the behaviors of CTR1 at an endogenous level in different cellular contexts using single-molecule super-resolution microscopy (Xie et al., 2018), we genetically modified H1 hESCs by CRISPR-Cas9 mediated homologous recombination to insert a photoconvertible fluorescence protein, mEos4b with a Flag-tag, intramolecularly at the location four amino acids before the HCH domain of the endogenous CTR1 cytoplasmic tail to avoid perturbing Cu uptake function (Fig. 1A). A heterozygous clone was first obtained and subjected to a repeat of the CRISPRCas9 induced mEos4b knock-in to generate the homozygous line, H1_CTR1-mEos4b. The targeted homozygous mEos 4 b insertion is confirmed by genotyping PCR and Southern blot analysis using CTR1 specific probes (Fig. 1B and Suppl. Fig. 1, respectively). The sequence of the genomic DNA PCR product matches the reference engineered genome, showing that the mEos 4 b insertion is precise and in-framed (Fig. 1C and Suppl. Fig. 2). The expression of CTR1-mEos 4 b fusion is validated by detecting mRNA spanning across the CTR1-mEos4b junction using RT-qPCR (Fig. 1D). mEos4b mRNA level was also measured to investigate any off-target mEos 4 b expression. Compared to the heterozygous line, the H1_CTR1-mEos4b line shows a doubled mEos4b and CTR1-mEos4b transcripts, indicating that there is no extra copy of mEos 4 b expressed other than the CTR1-mEos 4 b fusion (Fig. 1D). The fluorescence measurements also show the expected elevated mEos 4 b fluorescence signal compared to the heterozygous, supporting the conclusion of the absence of off-target mEos 4 b expression and, at the same time, suggesting the presence of CTR1-mEos 4 b fusion at the protein level (Fig. 1E). To assess the functionality of H1_CTR1-mEos4b, we conducted ICP-MS measurements to compare the intracellular Cu content with the parental H 1 under Cu treatment. H1_CTR1-mEos4b line shows a comparable Cu uptake capability, indicating that the engineered protein is functional (Fig. 1F). H1_CTR1-mEos4b has a matched short tandem repeat (STR) identity to its H1 parental (data available upon request), and 16 out of 22 metaphases show normal karyotype (Suppl. Fig. 3). The cells exhibit normal hESC morphology (Fig. 1G). The expressions of pluripotency transcription factors NANOG, OCT3/4, and SOX2 are demonstrated by both RT-qPCR and immunostaining (Fig. 1 H and I, respectively). In vitro differentiation shows that the line can be differentiated into ectoderm, mesoderm, and endoderm, demonstrated by positive immunostaining of the differentiated cells using germ-layer-specific markers (Fig. 1J). The characterization and validation of H1_CTR1-mEos4b are summarized in Table 1. In short, H1_CTR1-mEos4b is a homozygous pluripotent hESC line expressing mEos 4 b tagged endogenous CTR1. Its
ability to differentiate into different tissue types provides a versatile platform for imaging-

4. Materials and methods

4.1. Cell culture

H1 hESCs were cultured as previously described (Huang et al., 2021; Wen et al., 2019). Accutase was used for cell detachment, and ROCK-inhibitor was added on the day of cell attachment.

4.2. CRISPR-Cas9

We adopted the protocol from Koch et al. (Koch et al., 2018) and designed sgRNAs targeting near the stop codon of CTR1 using Benchling. H1 hESCs were co-electrotransfected with a sgRNA-containing plasmid (PX459, Addgene) and the linearized (EcoRI digested) recombination donor sequence carried by pMiniT 2.0 (NEB). Transfected cells were plated on feeder cells (Gibco), followed by puromycin selection for 3 days. Clones were then manually picked and expanded under a feeder-free system again.

4.3. PCR and sequencing

Genomic DNA was extracted using the MasterPure Complete DNA and RNA Purification Kit (Epicentre). PCR for screening was performed using AccuStart II GelTrack SuperMix (QuantaBio) with the annealing temperature $\left(\mathrm{T}_{\mathrm{a}}\right)$ of $60^{\circ} \mathrm{C}$. Genomic fragments for Sanger sequencing were amplified using Q5 Hot Start High-Fidelity DNA Polymerase (NEB) with the same primer set at $\mathrm{T}_{\mathrm{a}}=66^{\circ} \mathrm{C}$.

4.4. Southern blotting

Genomic DNA was digested with HindIII-HF, resolved via electrophoresis, and transferred to blots. The probe was synthesized using PCR DIG Probe Synthesis Kit (Roche) at T_{a} $=63{ }^{\circ} \mathrm{C}$. Southern blot was performed according to the Roche DIG Manual for Filter Hybridization with the hybridization temperature of $37^{\circ} \mathrm{C}$. The expected fragment sizes are 4617 bp for CTR1 wild type and 3694 bp for CTR1-mEos 4 b .

4.5. RT-qPCR

Total RNA was extracted the same way as DNA and converted to cDNA using iScript R.T. Supermix (Bio-Rad). Quantitative PCR was performed using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) with the following program: $50^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 95^{\circ} \mathrm{C}$ for 5 $\min , 40$ cycles of $95^{\circ} \mathrm{C}$ for 10 sec and $60^{\circ} \mathrm{C}$ for $30 \mathrm{sec}(1 \mathrm{~min} 45 \mathrm{sec}$ for CTR1mEos 4 b junctional primers), $95^{\circ} \mathrm{C}$ for 10 sec , and Melt Curve 65 to $95^{\circ} \mathrm{C}$, increment $0.5^{\circ} \mathrm{C}$ for 5 sec. Data were analyzed in triplicate and normalized to GAPDH expression.

4.6. Inductively coupled plasma-mass spectrometry (ICP-MS)

Cells with Cu -treatment ($50 \mu \mathrm{M} \mathrm{CuCl}_{2}, 1 \mathrm{~h}$) were dissociated from dishes and washed two times with PBS. The cell pellets were digested in ultrapure $70 \% \mathrm{HNO}_{3}$, heated at $70^{\circ} \mathrm{C}$ for 30 min followed by $95^{\circ} \mathrm{C}$ for additional 2 h , cooled down to room temperature, and further
diluted in ultrapure water. Copper and sulfur contents were detected by Agilent 8800 triple

4.7. Fluorescence measurement

Cells were dissociated and washed. Around one million cells were resuspended in PBS. Fluorescent intensity of mEos 4 b was detected by Spark ${ }_{\circledR}$ multimode microplate reader (Tecan) with Ex 480 nm (width 10 nm)/Em 516 nm (width 20 nm).

4.8. Karyotyping and STR analysis

The G-band karyotyping and STR analysis was carried out by the University of Texas MD Anderson Cancer Center Cytogenetics and Cell Authentication Core Facility.

4.9. In vitro differentiation into three germ layers

In vitro differentiation was performed using STEMdiff Trilineage Differentiation Kit (STEMCELL Technologies).

4.10. Mycoplasma testing

Mycoplasma testing was performed using Mycoplasma PCR Detection Kit (Applied Biological Materials).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors gratefully acknowledge financial support from the National Institute of Health (R35GM133505) and the University of Houston.

References

Lee J, Prohaska JR, Thiele DJ, 2001. Essential role for mammalian copper transporter Ctr 1 in copper homeostasis and embryonic development. Proc. Natl. Acad. Sci 98, 6842-6847. [PubMed: 11391005]
Xie X, Cheng Y-S, Wen M-H, Calindi A, Yang K, Chiu C-W, Chen T-Y, 2018. Quantifying the Oligomeric States of Membrane Proteins in Cells through Super-resolution Localizations. J. Phys. Chem. B 122, 10496-10504. [PubMed: 30384609]
Huang P-S, Wen M-H, Xie X, Xu A, Lee D-F, Chen T-Y, 2021. Generation of a homozygous knock-in human embryonic stem cell line expressing SNAP-tagged SOD1. Stem Cell Res. 54, 102415.
Wen M-H, Xie X, Tu J, Lee D-F, Chen T-Y, 2019. Generation of a genetically modified human embryonic stem cells expressing fluorescence tagged ATOX1. Stem Cell Res. 41, 101631.
Koch B, Nijmeijer B, Kueblbeck M, Cai Y, Walther N, Ellenberg J, 2018. Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat. Protoc 13, 1465-1487. [PubMed: 29844520]

Fig. 1.
Characterization of H1_CTR1-mEos4b.

nuew doułn*	łd!ıอsnuew ıOYın*			
Table 1				
Characterization and validation.				
Classification (optional italicized)		Test	Result	Data
Morphology	Photography	Normal	Fig. 1G	
Pluripotency status evidence for the described cell line	Qualitative analysis: Immunocytochemistry	Positive nuclear staining for pluripotency markers NANOG, OCT3/4, and SOX2	Fig. 1I	
	Quantitative analysis: $R T-q P C R$	$\begin{aligned} & \text { NANOG: } 0.55 \pm 0.119 \% ; \text { SOX2: } 0.81 \pm 0.482 \% ; \text { OCT4: } 1.11 \pm \\ & 0.129 \% \text { (Mean } \pm \text { SEM) } \end{aligned}$	Fig. 1H	
Karyotype	Karyotype (G-banding)	Band resolution: 450	Supplementary Fig. 3	
		A total of 22 metaphases were karyotyped by G-banding: 16 showed normal karyotype 46, XY.		
Genotyping for the desired genomic alteration/allelic status of the gene of interest	Targeted allele-specific PCR	Genomic DNA PCR aiming at the targeted site indicates homozygous knock-in	Fig. 1B	
	Transgene-specific PCR	See "Sequencing (genomic DNA PCR)"	See "Sequencing (genomic DNA PCR)"	
Verification of the absence of random plasmid integration events	PCR	$\mathrm{pSpCas} 9(\mathrm{BB})-2 \mathrm{~A}-$ Puro (PX459): no random integration; pMiniT 2.0: random backbone integration (does not contain the transgene)	Supplementary Fig. 4	
Parental and modified cell line genetic identity evidence	STR analysis	14 sites were tested; all match parental H1	Data available with authors and submitted in an archive with the journal	
Mutagenesis / genetic modification outcome analysis	Sequencing (genomic DNA PCR)	Genomic DNA PCR sequence across the targeted site matches the reference engineered genome	Fig. 1C and Supplementary Fig. 2	
	PCR-based analyses	See "Targeted allele-specific PCR" and "Sequencing (genomic DNA PCR)	See "Targeted allele-specific PCR" and "Sequencing (genomic DNA PCR)"	
	Southern Blot	Homozygous transgene insertion at the targeted allele	Supplementary Fig. 1	
Off-target nuclease analysis-	PCR across top $5 / 10$ predicted top likely off-target sites, whole genome/exome sequencing	N/A	N/A	
Specific pathogen-free status	Mycoplasma: PCR	Negative	Supplementary Fig. 5	
Multilineage differentiation potential	In vitro differentiation: Immunocytochemistry	Differentiated cells show positive staining for ectoderm markers: Nestin and $\beta 3$-Tubulin; mesoderm markers: Brachyury and Troponin T ; endoderm markers: FoxA2 and Sox17	Fig. 1J	
Donor screening (OPTIONAL)	HIV $1+2$ Hepatitis B, Hepatitis C	N/A	N/A	
Genotype - additional histocompatibility info (OPTIONAL)	Blood group genotyping	N/A	N/A	
	HLA tissue typing	N/A	N/A	

Reagents details．

Antibodies and stains used for immunocytochemistry／flow－cytometry			
	Antibody	Dilution	Company Cat \＃and RRID
Pluripotency Marker	Goat anti－NANOG	$10 \mu \mathrm{~g} / \mathrm{ml}$（ICC）	R\＆D Systems Cat\＃AF1997，RRID：AB＿355097
	Mouse anti－OCT3／4	1：250（ICC）	Santa Cruz Biotechnology Cat\＃sc－5279，RRID：AB＿628051
	Mouse anti－SOX2	1：250（ICC）	Santa Cruz Biotechnology Cat\＃sc－365823，RRID：AB＿10842165
Differentiation Marker	Mouse anti－Nestin	1：100（ICC）	R\＆D Systems Cat\＃MAB1259，RRID：AB＿2251304
	Rabbit anti－$\beta 3$－Tubulin	1：300（ICC）	Cell Signaling Technology Cat\＃5568，RRID：AB＿10694505
	Goat anti－Brachyury	$10 \mu \mathrm{~g} / \mathrm{ml}$（ICC）	R\＆D Systems Cat\＃AF2085，RRID：AB＿2200235
	Mouse anti－Troponin T	$10 \mu \mathrm{~g} / \mathrm{ml}$（ICC）	R\＆D Systems Cat\＃MAB1874，RRID：AB＿2206731
	Rabbit anti－FOXA2	1：400（ICC）	Cell Signaling Technology Cat\＃8186，RRID：AB＿10891055
	Mouse anti－SOX17	1： 50 （ICC）	R\＆D Systems Cat\＃MAB1924，RRID：AB＿2195646
Secondary Antibody	Donkey anti－Mouse IgG（Alexa Fluor 488 conjugated）	1：1000（ICC）	Thermo Fisher Scientific Cat\＃A－21202，RRID：AB＿141607
	Donkey anti－Goat IgG（Alexa Fluor 488 conjugated）	1：1000（ICC）	Thermo Fisher Scientific Cat\＃A－11055，RRID：AB＿2534102
	Donkey anti－Rabbit IgG（Alexa Fluor 488 conjugated）	1：1000（ICC）	Thermo Fisher Scientific Cat\＃A－32790TR，RRID：AB＿2866495
	Donkey anti－Mouse IgG（Alexa Fluor 594 conjugated）	1：1000（ICC）	Thermo Fisher Scientific Cat\＃A－21203，RRID：AB＿141633
Nuclear stain	DAPI	600 nM	Sigma Aldrich Cat\＃D9542
Site－specific nuclease			
Nuclease information	CRISPR／Cas 9		
Delivery method	Electroporation		$300 \mathrm{~V} / 500 \mu \mathrm{~F}$
Selection／enrichment strategy	Puromycin selection for gRNA－containing PX459 transfection followed by manual single－cell colony picking		Puromycin $0.5 \mu \mathrm{~g} / \mathrm{ml}$

Primers and Oligonucleotides used in this study		
	Target	Forward／Reverse primer（ $\mathbf{5}^{\prime}$－ $\mathbf{3}^{\prime}$ ）
Pluripotency Markers（qPCR）	NANOG（116bp）	TTTGTGGGCCTGAAGAAAAC T／AGGGCTGTCCTGAATAAGCAG
	OCT4（123bp）	AACCTGGAGTTTGTGCCAG GGTTT／TGAACTTCACCTTCCCTCCAACCA
	SOX2（150bp）	AGAAGAGGAGAGAGAAA GAAAGGGAGAGA／GAGAGAG GCAAACTGGAATCAGGATCAAA
House－Keeping Genes（qPCR）	GAPDH（102bp）	CCACTCCTCCACCTTTGAC／ACCCTGTTGCTGTAGCCA

Id！ıこsnuew 」oułn
Author Manuscript
Id！ıJSnuew ıOuł！
Id！uフsnuew ıoyıņ

Primers and Oligonucleotides used in this study		
	Target	Forward／Reverse primer（ $5^{\prime},-3^{\prime}$ ）
Target Genes（qPCR）	$m E o s 4 b$（119bp）	TTGACTTTCGAAGACGGG GG／CCCGCCAATGGTCCAGTTAT
	CTR1－mEos $4 b$ junction（769bp）	TCAATACAGCTGGAGAAAT GGC／CCCGCCAATGGTCCAGTTAT
Genotyping	SLC31A1 intron 4 to exon 5 （Wild type： 1718 bp ；transgene insertion： 2444bp）	AGGTCATGAGCAGGC CAAAGGA／ATCTCAT GGGTGGCTTCTCCTTA
Southern Blot Probe Synthesis	SLC31A1 intron 4 （227bp）	AGGTCATGAGCAGGCCAAAGGA／G AGGACAGGGCTGACTAGGTG
Potential random integration－detecting PCRs	pSpCas9（BB）－2A－Puro（PX459）（1883bp）	CGGACAGGTATCCGGTAAGC／A GAAGCTGTCGTCCACCTTG
	pMinit 2.0 backbone（1868bp）	GGGAACCGGAGCTGAAT GAA／CTTCTATAGTGTC ACCTAAATGCGT
gRNA oligonucleotide	SLC31A1 exon 5	GCCATAGAGTTTGATGTCAA
Genomic target sequence（s）	SLC31A1 exon 5	Hg38 reference genome：chr9，113260272－113264492 PAM：TGG Cut locus：chr9：－113260473

Id!uosnuew ıoułn甘

[^0]: This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
 *Corresponding author. tchen37@central.uh.edu (T.-Y. Chen).
 Declaration of Competing Interest
 The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
 Appendix A. Supplementary data
 Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2022.102845.

