
fmed-09-856853 June 14, 2022 Time: 11:54 # 1

ORIGINAL RESEARCH
published: 16 June 2022

doi: 10.3389/fmed.2022.856853

Edited by:
Marios Kyriazis,

National Gerontology Centre, Cyprus

Reviewed by:
Koray Kaya,

National Eye Institute (NIH),
United States
Tim Jackson,

King’s College London,
United Kingdom

*Correspondence:
Bernardo Lemos

blemos@hsph.harvard.edu

Specialty section:
This article was submitted to

Ophthalmology,
a section of the journal

Frontiers in Medicine

Received: 17 January 2022
Accepted: 19 May 2022

Published: 16 June 2022

Citation:
Mallik S, Grodstein F, Bennett DA,

Vavvas DG and Lemos B (2022)
Novel Epigenetic Clock Biomarkers

of Age-Related Macular
Degeneration. Front. Med. 9:856853.

doi: 10.3389/fmed.2022.856853

Novel Epigenetic Clock Biomarkers
of Age-Related Macular
Degeneration
Saurav Mallik1, Fran Grodstein2, David A. Bennett2, Demetrios G. Vavvas3 and
Bernardo Lemos1,4*

1 Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan
School of Public Health, Boston, MA, United States, 2 Rush Alzheimer’s Disease Center, Rush University Medical Center,
Chicago, IL, United States, 3 Ines and Frederick Yeatts Retina Research Laboratory, Retina Service, Department
of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States, 4 Broad Institute of Harvard
and MIT, Cambridge, MA, United States

Age-Related Macular Degeneration (AMD) is a bilateral ocular condition resulting in
irreversible vision impairment caused by the progressive loss of photoreceptors in the
macula, a region at the center of the retina. The progressive loss of photoreceptor
is a key feature of dry AMD but not always wet AMD, though both forms of AMD
can lead to loss of vision. Regression-based biological age clocks are one of the
most promising biomarkers of aging but have not yet been used in AMD. Here we
conducted analyses to identify regression-based biological age clocks for the retina
and explored their use in AMD using transcriptomic data consisting of a total of 453
retina samples including 105 Minnesota Grading System (MGS) level 1 samples, 175
MGS level 2, 112 MGS level 3 and 61 MGS level 4 samples, as well as 167 fibroblast
samples. The clocks yielded good separation among AMD samples with increasing
severity score viz., MGS1-4, regardless of whether clocks were trained in retina tissue,
dermal fibroblasts, or in combined datasets. Clock application to cultured fibroblasts,
embryonic stem cells, and induced Pluripotent Stem Cells (iPSCs) were consistent with
age reprograming in iPSCs. Moreover, clock application to in vitro neuronal differentiation
suggests broader applications. Interesting, many of the age clock genes identified
include known targets mechanistically linked to AMD and aging, such as GDF11,
C16ORF72, and FBN2. This study provides new observations for retina age clocks and
suggests new applications for monitoring in vitro neuronal differentiation. These clocks
could provide useful markers for AMD monitoring and possible intervention, as well as
potential targets for in vitro screens.

Keywords: age related macular degeneration (AMD), age acceleration, age clocks, biomarkers, GDF11, retina,
clocks, FBN2

INTRODUCTION

Age-related macular degeneration (AMD) is one of the leading causes of central vision loss
among individuals aged 50 years and older (1–9). As the aging population increases, the increased
prevalence of AMD continues to be a health concern. Globally, AMD was estimated to affect 196
million people in 2020 and is predicted to reach 288 million people by 2040 (3). AMD is classically
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divided in two categories. The non-exudative non-neovascular
AMD (also known as “dry” AMD) affecting about 85% of the
AMD population, and the exudative/neovascular AMD, also
known as “wet” AMD affecting 15% of the AMD population.
Though there has been good success in treating neovascular
AMD (4, 10–12) the same cannot be told for the non-
exudative “dry” AMD (6). Non-exudative AMD in its early
and intermediate stages is characterized by sub-retinal pigment
epithelium (RPE) deposits called drusen under the neuroretina
(13) and RPE pigmentary variation with mild to moderate visual
disturbances, while in its advanced atrophic stage is characterized
by loss of photoreceptor/RPE/choriocapillaries complex and
significant vision loss (9, 14, 15).

It is well accepted that AMD is complex multi-factorial
disease (6, 9, 16–19). Despite successes in the identification
of genes and molecular/cellular processes that contribute
to AMD risk, mechanisms by which specific genetic
variants contribute to AMD progression remain a matter
of debate (20–27). Genetic studies have found over 35
genetic variants that increase risk of developing AMD,
with many of those variants mapped to the complement
system (28). In addition, variants pointed to lipid biology,
turnover of the extracellular matrix (ECM) components,
as well as inflammation as likely contributors to AMD
pathogenesis. Other genetic variations connected to AMD
include fibroblast growth factor 2, DNA excision repair
protein, apolipoprotein E, and age-related maculopathy
susceptibility protein 2.

Epigenetic biomarkers of aging include epigenetic clocks
that are useful to estimate the biological age and that are built
through measurements of DNA methylation, microRNAs,
mRNAs as well as other epigenomic features. Epigenetic clocks
are relevant for determining environmental and genetic factors
that impact the aging process, for providing potential markers
for disease monitoring, and to accelerate analyses of potential
rejuvenating treatments. Research to identify biomarkers
and predict biological age used data that ranged from DNA
methylation to transcriptomics, microbiome, proteomics, frailty
assessment, and neuro-imaging (5, 29, 30). Alterations in DNA
methylation and RNA abundance have downstream impacts
and play key regulatory roles; changes in RNA abundance are
particularly pronounced in aging (31). These age-associated
changes provide the raw material for novel aging biomarkers.
For instance, DNA methylation age (DNAm age) were initially
proposed from a set of age predictive CpG sites identified
by elastic net penalized regression (32, 33). A positive or
negative epigenetic age acceleration indicates an individual
who is biologically older or younger than their chronological
age. Assessment of biological age enabled the identification of
individuals with substantial deviations from their chronological
age and led to discoveries that accelerated biological aging in
relation to diabetes, dementia, unhealthy behaviors, frailty,
cancer, and more (34). Positive epigenetic age acceleration
identifies individuals who are epigenetically older than their
chronological age, while negative epigenetic age acceleration
identifies individuals who are epigenetically younger than their
chronological age.

A variety of models are able to ascertain association between
expression/methylation patterns and age (32, 33, 35–39) but
epigenetic clock applications to AMD and to in vitro neuronal
differentiation has not been fully addressed. Hunter et al. found
hypermethylation of Glutathione S-transferase isoform mu1
(GSTM1) and mu5 (GSTM5) promoter in RPE cells from AMD
donor eyes when compared to control (40). Wei et al. (41)
and Oliver et al. (42) found conflicting information about the
methylation status of IL17RC in peripheral blood mononuclear
cells from AMD and control patients (41, 42). A single genome-
wide epigenetic study of AMD reported hypomethylation at
the ARMS2/HTRA1 locus and hypermethylation at the protease
serine 50 (PRSS50) locus compared to controls (43). Wang et al.
(44) using ATAC-Seq analysis revealed a widespread decrease
of chromatin accessibility in RPE cells from AMD patients
(44). Vallée et al. (45) provided a survey that highlighted the
importance of circadian rhythm dysregulation in exudative (wet)
AMD by abnormal upregulation of the canonical WNT/β-catenin
pathway (45). Ratnapriya et al. (46) conducted a study on the
genetic landscape of AMD and built an Eye Genotype Expression
(EyeGEx) database for the post-GWAS-based interpretation of
ocular traits (46). Brooks et al. (47) performed an interesting
analysis to determine the regulatory signals deficient in building
retinal organoids and yielded the experimental validation
through generating a mature retina in vitro, hence facilitating
research in the disease modeling and evaluation of therapeutic
interventions (47).

Here we developed age clocks for the retina and explored
their utilization in AMD cases with increasing severity. The
proposed clocks yielded good separation among AMD samples
with increasing severity score (Minnesota Grading System scores
1–4 or, MGS scores 1–4), regardless of whether clocks had
been trained in retina samples, dermal fibroblast samples, or in
combined retina-dermal datasets. In addition, clock application
to other related cells (viz., embryonic stem cells and iPSC
cells) confirmed age reprograming in IPSCs. Interestingly, model
application to in vitro neuronal differentiation points to broader
applications. All in all, our study provides new observations of
retina age clocks and their underlying genes that might be helpful
to understand the possible causes and factors for retinal aging and
age-associated eye diseases.

MATERIALS AND METHODS

Data Source
We first utilized human retina gene expression human data
(NCBI Gene Omnibus ID: GSE115828) collected with Illumina
HiSeq 2500 (38, 46, 47). The whole gene expression data matrix
consisted of a total of 18,053 unique genes and a total of
453 MGS samples. There were four categories/levels of MGS
samples: 105 MGS level 1 (control) samples, 175 MGS level
2 (diseased), 112 MGS level 3 (diseased) and 61 MGS level
4 (diseased) samples. The Minnesota Grading System (MGS)
score identifies the severity of AMD (48, 49). MGS1 donor
retinas demonstrated no AMD features and serve as control,
whereas MGS2 to MGS4 samples represent progressively more
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severe disease stages. In addition, we utilized three more datasets,
viz., Dermal fibroblast dataset, primary fibroblast dataset and
neuronal differentiation dataset. Dermal fibroblast data (NCBI
Gene Omnibus ID: GSE113957) consisted of 27,142 genes
and 143 samples. Primary fibroblast data (Gene Omnibus ID:
GSE97265) contained 6,732 genes and 14 samples, while the
neuronal differentiation data (Gene Omnibus ID: GSE56796)
consisted of 44,562 initial genes and 24 samples.

Detecting Outlier Genes Through Density
Based Clustering of Applications With
Reducing Noise
We applied a well-known noise removal cluster algorithm,
“Density Based Clustering of Applications with Reducing Noise”
(DBSCAN) (50, 51) using the Set of initial feature/gene vectors.
Outlier features were omitted from further analyses. Specifically,
we initially estimated the knee point using kNN distance plot;
the determined knee value was utilized as the corresponding
eps-neighborhood value. Other parameters used were default
setting parameters. This produced some density-based clusters,
while each cluster comprised of (i) core features, (ii) border
features and (iii) noisy features. Thereafter, we removed those
noisy features from the data. The noise-free features were then
used for the next step (cross validation and regression analysis).
The cluster plot generated by DBSCAN clustering technique
was examined. In DBSCAN clustering algorithm, two necessary
user-defined parameters were termed as (i) epsilon (eps) and
(ii) minimum points (MinPts). The eps that was the radius of
the neighborhood around any point, was termed as epsilon-
neighborhood (e-neighborhood) of that point, while MinPts was
the minimum number of neighbors inside eps. Whenever a point
had a neighbor count score that was higher than or equal to
MinPts, the point is stated as a core point. If the number of
the neighbors of any point was less than MinPts, but the point
belonged to the e-neighborhood of a core point, the point was
stated as border point. When a point was neither a core point
nor a border point, that point was treated as a noisy/outlier point.
Our goal was here to determine the dense regions which could be
estimated through the number of points/objects close to a specific
point. Here initially we determined the knee-point by K-nearest
neighbor (KNN) distance plot. KNN distances were calculated
and sorted to estimate the knee-point. After that, these were
scaled to range between 0 and 1, and the derivative was evaluated.
The first point in which the derivative was higher than a certain
value (say, 1), was treated as the knee-point. The scaled distance
score of the knee-point was termed eps-neighborhood value.

For the case of retina data with full feature set, we applied
kNN distance plot with the data while k was set as the sample
size plus 1 (= 453 samples +1). Here we fixed height “h” as 5,000
in the plot to determine the knee point. That knee was used as
eps score in the next step i.e., DBSCAN clustering to identify the
outlier features. Using DBSCAN clustering, we obtained 75 noisy
features (outliers) and omitted them from the further analysis.
We then utilized the remaining noise-free features ( = 17,978)
for clock model development. For the full feature set of dermal
fibroblast data, using DBSCAN clustering, we identified 58 noisy

features and discarded them from the further analysis. We then
utilized the remaining noise-free features ( = 14,825) for clock
model development.

Building Age Clock Model Through
Glmnet Regression
After outlier detection through DBSCAN, data sets were
processed for further analysis. We utilized leave one out cross-
validation (LOOCV) in specific datasets (e.g., retina tissue
samples) to divide a dataset into training and test sets. In LOOCV,
only one sample would be used as test set, while remaining
samples belonged to the training set. That step would be repeated
for each of the remaining samples. We chose the subset of the
expression data containing only those training samples, and the
age of those training samples from clinical data. On the other
hand, we also selected the subset of the expression data consisting
of only those test samples, and the age of those test samples
from clinical data.

After identification of training and test samples through
LOOCV, we applied “glmnet” regression R tool (52–54) on
the training expression data as response variable and logarithm
transformed training aging data as predicted variable, and then
generated a lambda (λ) value whereas classification error was
equal to the least square error (lse). Here the target function
T for glmnet regression technique that utilized a mixed linear
model, is generally a single-objective function. The respective
model determined a set of coefficients (signifying a set of selected
features/genes) for which the value of T would be minimized. T
was defined in the following:

T =
1

2m

m∑
i = 1

yi −
n∑

j = 1

βixij − β0

2

+ λ

1− α

2

n∑
j = 1

β2
j + α

n∑
j = 1

∣∣βj∣∣
 ,

where m referred to as the number of samples and n denoted
the number of features. Here xij was termed as the gene
expression profile at i-th sample and j-th feature, whereas yi was
the logarithm converted chronological age of i-th sample. The
combination of lasso and ridge regulation methods with each
having equal preference had been utilized here for the inclusion
an additional penalty (also called as extra constraint) to the
coefficients of predicted variables. Here λ (> 0) was basically
a tuning parameter that helps to regulate the whole penalty
against the respective coefficients, whereas α was another tuning
parameter whose ranges lied in between 0 and 1 (0 < α < 1)
revealing the compromise between ridge technique (α = 0) and
lasso methodology (α = 1). We fixed α to 0.5. λ was chosen
through LOOCV (i.e., m-fold cross-validation, while m be the
number of sample size) internally by following the one-standard-
error policy. After determining the specific λ, we selected features
and obtained their coefficients depending upon the estimated
λ. Thereafter, we discarded those features whose coefficient was
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zero. And then we continued with remaining non-zero features
for age prediction.

For the full feature set of retina data, we used MGS level
1 samples (control samples) to build age clock models. We
applied LOOCV for splitting the data into training set and
test set. In LOOCV, only one sample would be utilized as test
set and remaining 104 samples belonged to the training set.
That step was repeated for each of the remaining samples. For
training, we selected the subset of the data consisting of only
those training samples, and the age of those training samples
from clinical data. Similarly, for the test model, we picked up
the subset of the transcriptomic data having only those test
samples, and the age of those test samples from the clinical data.
After determination of training and test samples with LOOCV,
we used “glmnet” regression on the training methylation data
having 104 samples and 17,978 features as response variable and
logarithm transformed training aging data having chronological
ages of 104 samples as predicted variable, and then determined
a lambda (λ) score for which classification error was equal
to the least square error (lse). The corresponding regression
model computed coefficients for all features among which
non-zero coefficients (i.e., feature selection) will be identified.
These corresponding features having non-zero coefficients were
termed as selected features for each model. In addition, we
computed the occurrence of each gene in all those evolved
integrated models. Similarly, for the restricted feature set of retina
data, we followed the same pipeline (LOOCV and “glmnet,”
consecutively) while working on training data containing 104
MGS1 samples and 5,321 features, and test data consisting of
only one MGS1 sample and 5,321 features during the iteration
of “glmnet” regression.

For the restricted feature set of dermal fibroblast data, using
the 143 samples, we utilized LOOCV first and then applied
glmnet regression on the training expression data containing 142
samples and 5,321 features as response variable and logarithm
transformed training aging data having chronological ages of 143
samples as predicted variable, and then determined a λ-score
for which classification error was equal to the least square error.
The regression model computed coefficients for all genes of
which non-zero coefficients (i.e., gene selection) will be identified.
Those genes having the non-zero coefficients were behaved as the
selected features for each evolved model.

For the restricted feature set of joint data, using the 248
samples, we utilized LOOCV to split the entire data into training
set and test set. In LOOCV, only one sample was treated as test
set while remaining 247 samples was used as the training set. We
repeated that step for each remaining sample (i.e., the repetitions
of total 248 times). After LOOCV, we applied “glmnet” regression
methodology on the training methylation data containing 247
samples and 5,321 features as response variable and logarithm
transformed training aging data having chronological ages of 247
samples as predicted variable, and then determined a λ-score
for which classification error was equal to the least square
error (lse). The regression model computed coefficients for all
genes of which non-zero coefficients (i.e., gene selection) will be
identified. Genes having non-zero coefficients were selected as
features in each model.

Evaluating Age Clocks
After generating the evolved age clocks from each kind of
data, we applied on other data samples to predict them
using the model coefficients. Here we mainly utilized four
evaluation metrics: (i) age acceleration (AA), (ii) Median absolute
error (MAE), (iii) Spearman’s correlation (55), and (iv) gene
occurrence. Age acceleration (AA) is stated as the difference
between predicted age and chronological (original) age. AA is
the residual following regression of predicted (biological) age
on chronological age. A positive age acceleration represents
predicted age higher (older) than chronological age, while
a negative age acceleration represents predicted age lower
(younger) than chronological age. MAA is defined as the median
score of age acceleration of a set of samples. MAE (56, 57) is
defined as the median value of all absolute differences between
the predicted and targeted scores. MAE was defined as follows:
MAE

(
ŷ, y

)
= med

(∣∣ŷ1−y1
∣∣ , ...,

∣∣ŷm−ym∣∣) , where med was
median score, ŷi referred to the predicted score of the i-th sample
and yi denoted the respective true (original) score. MAE was
a minimization objective (i.e., lower value of MAE is favored).
Spearman’s correlation is well-known linear similarity finding
method that is useful here to determine the similarity between
predicted age vectors and original (chronological) age vectors,
while gene occurrence (frequency) is termed as the number of
times it appears among all regression clock generation. Here
occurrence (in %) = occurrence∗100/total number of clocks. In
addition, rank wise cumulative sum of occurrence for each gene
was computed. Here, rank-wise cumulative sum of occurrence (in
%) = rank wise cumulative sum of occurrence ∗ 100 /total number
of events, where “total number of events” denotes the summation
of occurrence of all initially participating genes during clock
generation. Finally, we compared the different regression models
through the intersection of non-zero occurrence genes. We used
Venn diagrams to represent this intersection. Figure 1 shows a
simplified flowchart of our approach.

RESULTS

Retina Age Clocks
We initiated our analysis with transcriptome data consisting
of 18,053 features / genes and 453 Retina samples (see section
“Materials and Methods”). The set includes control samples
(MGS1) and three levels of AMD severity (i.e., MGS2-MGS4,
with MGS4 representing the most severe AMD pathology). After
quality control and noise removal (see section “Materials and
Methods”), we carried forward 17,978 features, and applied leave
one out cross-validation (LOOCV) to build 104 age clock models
using MGS 1 samples (i.e., retina control samples). For each
model, we computed the absolute error (AE) and age acceleration
(AA) for the test sample of the LOOCV. For MGS 1 samples,
we identified 49 individuals with positive age acceleration (AA+)
and 56 individuals with negative age acceleration (AA−). This
∼50% positive/negative age acceleration fits the expectation for
a training set. The maximum value of AA was +20.4 years
while the minimum value of AA was –19.1 years. The model
for which we obtained the maximum AA had 94 features/genes,

Frontiers in Medicine | www.frontiersin.org 4 June 2022 | Volume 9 | Article 856853

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-856853 June 14, 2022 Time: 11:54 # 5

Mallik et al. Biological Age Clocks in AMD

FIGURE 1 | Simplified flowchart for the generation of aging clocks and their application in AMD and related contexts.

while the model for which we identified the minimum AA had
54 features/genes. The model yielding the lowest absolute AE of
0.003 consisted of 78 features/genes.

We built age clock models using a restricted set of 5,321
features comprising genes that are (i) evolutionarily conserved
between human and mouse, and (ii) shared across all datasets
used in this study. Using this conserved and conservative feature
set, we identified 51 samples with positive age acceleration
(AA+), and 54 samples with negative age acceleration (AA−).
The maximum value of AA was 18.5 while minimum value of
AA was –17.4. The model for which we obtained the maximum
AA used 64 features, while the model for which we identified the
minimum AA used 98 features. The model yielding the lowest
AE (0.07) used 80 features. We conclude that the smaller set

of evolutionarily conserved genes yielded age clock models that
were comparable to those built with the larger gene set.

We assessed gene occurrence in the 105 AMD MGS1 clocks
both built with the conserved genes (Figure 2A). Out of all
5,321 input genes, 209 genes were represented in at least one
age clock model (i.e., occurrence = 1). The total number of
gene occurrence events across all 105 models was 8,354. The
top 200 most frequent genes accounted for 99.89% of all events
(i.e., rank wise cumulative sum of occurrence ∗ 100 / total
number of events). The top 79 most frequent genes were
represented in over 50% of all models ( = occurrence ∗ 100/total
number of models) and accounted for 88.32% of all events.
The top 22 genes which were represented in all models (100%
occurrence) were CFLAR, HSD17B6, DGKA, MYLK, FGF10,
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ARG2, PDPR, PALMD, PCDHB2, GORASP2, SNX19, BMP4,
DTNA, RHOB, LYPD1, APBB2, GALNT10, CRADD, PARD6G,
GJC1, THBS2, NEURL1B.

Application of Retina Age Clocks to
Age-Related Macular Degeneration
Next, we applied all 210 retinal age clocks (105 clocks developed
with the full gene set and 105 clocks developed with the conserved
gene set) to the MGS1-4 samples, and computed model wise
Median Absolute Error (MAE) and model wise Median of
Age Acceleration (MAA). For MGS 1, negative median age
acceleration (MAA−) was observed for most of the models (= 206
models), while positive median age acceleration (MAA+) was
only observed for 4 models. Minimum value of model wise MAA
was found as –1.72, while maximum value of model wise MAA
was 0.06. Minimum value of model wise MAE was 0.91, while
maximum value of model wise MAE was 7.61. For AMD MGS 2
samples, negative median age acceleration (MAA) was observed
for all models. Minimum value of model wise MAA was found
as –4.39 years, while maximum value of model wise MAA was –
1.39 years. The minimum and maximum values of model wise
MAE was 5.12 and 7.36 years, respectively. For AMD MGS 3
samples, MAA ranged from –11.66 to –6.80 years; MAE ranged
from 7.30 to 12.12 years. For AMD MGS 4 samples, MAA ranged
from –13.26 to –7.23 years; MAE ranged from 8.53 to 13.26
years (Supplementary Figure 1A). AMD MGS label-wise box
plot of MAA using all 105 evolved retina (AMD MGS1-based) age
models for the all-feature set and the conserve set are depicted in
Figures 3A,B, respectively. See Supplementary Figures 1, 2 for
data from each model. Analyses with models generated with the
full gene set or with the smaller set of evolutionarily conserved
genes yielded very similar results. We conclude that samples with
more advanced AMD pathology score show increasingly large
negative age acceleration (P < 0.0001 for all cases, ANOVA).

Dermal Fibroblast Age Clocks
We explored the possibility that age clock models built with skin
samples could be informative about AMD. To address the issue,
we focused on the set of 5,321 evolutionarily conserved genes
and 143 dermal fibroblast samples from donors of known age
(see section “Materials and Methods”). In the testing phase we
built 143 models with LOOCV. The analyses yielded 69 samples
with positive median age acceleration (MAA+) and 74 samples
with negative median of age acceleration (MAA–). We estimated
MAE as 3.49, considering all 143 dermal fibroblast models
together. For the prediction of all 143 dermal fibroblast samples
themselves, the model-wise MAE values ranged (2.24, 9.36), thus
the minimum MAE value (= 2.24) was extremely good. The
model-wise Spearman’s rank correlation (rho) between the vector
of predicted age and the vector of chronological age of dermal
fibroblast samples for each model ranged from 0.89 to 0.99.

Finally, we computed the frequency (occurrence) of each gene
(feature) in all 143 dermal fibroblast models (Figure 2B). The
total number of events for 143 models was 13,25. Out of all 5,321
input genes and 143 models, 276 genes were represented in at
least one model (i.e., frequency = 1). Top 200 most frequent

genes were accounted for 99.24% of all events (i.e., rank wise
cumulative sum of occurrence ∗ 100/total number of events).
Top 97 most frequent genes were selected over 50% occurrence
in all models ( = occurrence∗100/total number of models) and
accounted for 86.90% of all events. Interestingly, 11 genes were
represented in all models (i.e., 100% occurrence). These were
MLLT11, CNKSR3, FAHD2B, FBN2, ALKBH3, FAS, SLC22A15,
RPN2, BST2, XPNPEP1, CCDC8.

Application of Dermal Fibroblast Age
Clocks to Age-Related Macular
Degeneration
We used the dermal fibroblast clocks to predict age in the retina
of MGS1-4 samples (Figure 3C). All 143 models yielded negative
MAA in all retina samples, with absolute MAE that ranged from
46.23 years in MGS1 to 65.31 years in MGS4. Notwithstanding
these larger MAEs, the skin-based age models replicated the
same pattern we observed for retina-based models and readily
separated retina samples in accordance with MGS pathological
score (Figure 3C). The range of model-wise MAA of MGS1
samples for dermal fibroblast models was between –64.29 and –
46.23. The range of model-wise MAA of all MGS4 samples for
dermal fibroblast models was between –75.89 and –65.31 (MGS
1-4 box plot of MAE and model-wise line plots of MAA and
MAE using all those Dermal fibroblast age clocks are shown in
Supplementary Figure 3). Finally, we compared gene occurrence
in the dermal fibroblast clocks and retina MGS1 clocks and
identified 12 common (Figure 2D). Those genes were RHOJ,
VTI1A, CDCA7, LYPD1, PRSS12, MEST, LGR5, TMEM132B,
PCDHB2, ARSK, FAT1, BMP4.

Combined Retina-Dermal Clocks and
Application to Age-Related Macular
Degeneration
Here we pursued integrated models using both retina and
dermal fibroblast samples for training (i.e., 143 dermal fibroblast
and 105 AMD MGS1 samples together). We normalized
the evolutionarily conserved datasets gene wise using min-
max normalization and produced a combined set of 248
samples that included both the 143 dermal fibroblast samples
and 105 MGS1 samples. In the testing phase we built 248
models with LOOCV. We observed 88 samples with positive
age acceleration (AA+) and 160 samples with negative age
acceleration (AA-). The MAE value considering all 248 integrated
models together was 22.02 years. In addition, we evaluated model
performance in the retina and dermal samples separately. For
the prediction of all 143 dermal fibroblast samples themselves,
the model-wise predicted MAE values ranged (12.65, 15.86).
Spearman’s rank correlation between chronological age of
dermal fibroblast samples and predicted age were generally high
(range: 0.77–0.81). Thus, for the dermal fibroblast samples,
the integrated model fits reasonably well. For the prediction
of all 105 MGS1 samples, the model-wise predicted MAE
values range (22.68–25.64) was nearly twice as large as the
MAE for skin samples. MAEs were larger for MGS4 samples
(range: 42.12–48.59). Noteworthy, joint dermal-retina models
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FIGURE 2 | Occurrence of top genes in age clocks models. (A) Bar plot of occurrence of top 250 genes most represented in clocks using retina tissue (AMD MGS1,
conserved feature set), (B) bar plot of occurrence of top 400 genes most represented in clocks using dermal fibroblast samples, (C) bar plot of occurrence of top 50
genes most represented in clocks developed using combined retina-dermal datasets, (D) Venn diagram of genes represented in retina and dermal fibroblast clocks.

replicated the same pattern we observed for retina-only and
skin-only models, and readily separated retina samples in
accordance with MGS pathological score (Figure 3D and
Supplementary Figure 4).

In addition, we estimated the occurrence of each gene in
all 248 integrated models. Here total number of events for 248

models was 5,886. Out of all 5,321 input genes, 39 genes were
represented in at least one clock (i.e., frequency ≥ 1). Top 38
most frequent genes were accounted for 99.98% of all events
(i.e., rank wise cumulative sum of occurrence ∗ 100/total number
of events). Top 24 most frequent genes were selected over 50%
occurrence in all models ( = occurrence ∗ 100/total number of
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FIGURE 3 | Boxplots of age acceleration in AMD MGS1-4 individuals. (A) Retina age clock models (AMD MGS1, full feature set), (B) retina age clock models (AMD
MGS1, conserved feature set), (C) dermal fibroblast age clock models (conserved set), and (D) combined retina-dermal age clock models (conserved set). Shown
are median age acceleration for each retina group (AMD MGS1-4) for the different clock models. All four groups are significantly different (P < 0.001).

models) and accounted for 97.76% of all events. Interestingly,
the top 14 genes that had 100% occurrence, were SYNE2, LNX1,
VDR, PLCG1, BCAS4, RPAIN, GDF11, FBN2, CPNE8, ALKBH3,
MYO1D, ZNF518B, TEAD4, GPC2. We provided the occurrence
plot of the top 50 ranked genes in the rank wise manner in
Figure 2C.

We found 25 genes shared between clocks developed
with dermal fibroblast and clocks developed with combined

retina-dermal fibroblast datasets, viz., MLLT11, FBN2, ALKBH3,
FAS, BST2, XPNPEP1, GPC2, ZNF518B, TEAD2, SYNE2, DUSP2,
CPNE8, GDF11, C16orf72, CKAP4, TEAD4, PEG10, BCAS4,
APBB1IP, SEMA4C, RIN2, LNX1, RNF149, EXOC8, RPAIN,
and 2 genes shared between retina MGS1 and joint retina-
dermal clocks, viz., LAMA4 and MYO1D. Interestingly, literature
evidence has implicated some of these genes in AMD (viz.,
C16orf72, GDF11, FBN2) (58–61).
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Application of Age Clocks to
Reprogrammed Primary Fibroblasts
To verify model behavior, we assessed the ability of our clock
models to predict age in cell culture fibroblasts, reprogrammed
primary fibroblasts, and embryonic stem cell lines. We used
a dataset comprised of two neonatal samples (age = 0, FN1,
FN2) and their respective iPSC (IN2.1, IN2.2, IN2.4, IN2), two
samples from a 50-year-old individual (F50, F50S) and their
respective iPSC (I50.2, I50.3, I50S.1, I50S.2), and two embryonic
stem cell lines (H1 and H9). In these samples, we computed the
average predicted age across all models of a given type (retina
tissue clock, dermal clocks, or clocks with combined retina-
dermal samples). Reassuringly, all models displayed similar
overall behavior across samples (Figures 4A–C), with similar
age estimates for embryonic stem cells and iPSCs derived from
fibroblasts obtained from neonatal or 50-year-old individuals.
However, dermal age models were more accurate with age
estimates for embryonic stem cells and iPSCs that were closer
to zero. Clocks developed with dermal samples also yielded age
estimates for neonatal fibroblasts that were numerically closer to
zero relative to estimates obtained with clocks developed with
retina tissues. Similarly, all models over-estimated fibroblast age
from the 50-year-old donor. Specifically, for clocks estimated
with dermal tissues we obtained 10.49 years as the average
predicted age for neonatal fibroblasts (FN1, FN2), 6.45 years for
iPSCs derived from neonatal fibroblasts (IN2.1, IN2.2, IN2.4,
IN2.5), 269.66 years for 50-year old fibroblasts (F50, F50S), 6.96
years for iPSCs derived from 50 year old fibroblasts (I50.2, I50.3,
I50S.1, I50S.2), and 7.88 years for embryonic stem cells (H1,
H9). For retina AMD MGS1 clocks, we obtained 74.41 years as
the average predicted age for neonatal fibroblasts (FN1, FN2),
65.36 years for iPSCs derived from neonatal fibroblasts (IN2.1,
IN2.2, IN2.4, IN2.5), 77.62 years for 50-year old fibroblasts (F50,
F50S), 64.83 years for iPSCs derived from 50 year old fibroblasts
(I50.2, I50.3, I50S.1, I50S.2) and 66 years for embryonic stem
cells (H1, H9). For the 248 clocks trained on retina (MGS1)
and dermal samples together, we observed 50.59 years as the
average predicted age for neonatal fibroblasts (FN1, FN2), 21.43
years for iPSCs derived from neonatal fibroblasts (IN2.1, IN2.2,
IN2.4, IN2.5), 94.501 years for 50-year old fibroblasts (F50,
F50S), 23.20 years for iPSCs derived from 50 year old fibroblasts
(I50.2, I50.3, I50S.1, I50S.2) and 26.22 years for embryonic stem
cells [H1, H9]. Collectively, these observations indicate that age
clock model yield reasonable age estimates that are consistent
with reprogramming.

Application of Retina Clocks to in-vitro
Neuronal Differentiation
To gain further insight into our clocks we also observed model
behavior through in vitro neuronal differentiation. To address
the issue, we used a dataset consisting of a time course of
cellular differentiation from neuronal stem cells to neurons.
While we did not expect models trained on chronological age
in years to be directly applicable to neuronal differentiation in
days, a correlation between predicted age and differentiation
time might be expected. Indeed, the retina models did not

numerically recapitulate differentiation day; however, we noted
a relative increase in “age” from day 19 to day 77 that was
reproducible in two replicates (for biological replicates group A
and B samples) (Figures 5A,B and Supplementary Figure 5;
Figures 5C,D for corresponding regression plots). Furthermore,
the correlations between differentiation day and predicted age
were significant and surprisingly high; the models yielded
the following correlations between the original differentiation
day and the predicted “age”: 0.54 and 0.41 for A and B
replicates, respectively, across the full differentiation span. Next,
we conducted another experiment of readjustment of co-efficient
(i.e., two times LOOCV) procedure to predict differentiation
day. Here a second round of LOOCV was conducted using
features (i.e., genes) previously selected for the retina clocks.
As expected, the predicted time (in days) was a much better
reflection of the original differentiation day after a second round
of optimization (i.e., the predicted regression line was close
to the optimal dotted line) (Figures 6A,B and Supplementary
Figure 6). All in all, these models yielded excellent correlations
between differentiation day and predicted “age.” After the
second round to readjust coefficients, the Spearman’s rank
correlations between predicted age and original age for biological
replicates group A, B, C and D samples are 0.85, 0.86, 0.93 and
0.94, respectively.

DISCUSSION

AMD is a bilateral ocular condition especially noticed in older
individuals resulting in irreversible vision impairment caused by
the progressive loss of photoreceptors in the macula, a region
at the center of the retina. In general, AMD risk is highly
dependent upon factors such as a patient’s advanced age, familial
history of AMD, signs and symptoms of pigmentary and drusen
aberration, as well as lifestyle (e.g., drinking, smoking and diet)
(62–64). Treatment for AMD is based upon disease category
and stage. While there is no treatment in early stage AMD,
regular check-ups, lifestyle changes, and close monitoring are
important to initiate prompt treatment in case of occurrence of
one of the late-stage forms (neovascular AMD). Monitoring is
also important for intermediate AMD, as dietary supplements
(minerals and vitamins) may decrease disease progression (26,
65). However, thus far, limited research had been performed
using biological age clocks as endpoints for disease monitoring
and therapeutic intervention. Therefore, to begin addressing this
issue, we built regression age clocks for the retina and investigated
their utilization in AMD cases with increasing severity. The
clocks yielded good separation among AMD samples with
increasing severity score (MGS1-4), regardless of whether clocks
had been trained using retina tissues, dermal fibroblast samples,
or combined datasets. Interestingly, cases with more advanced
AMD pathology (MGS3 and MGS4) displayed more negative
age acceleration. Furthermore, clock application to cultured
fibroblasts, embryonic stem cells, and iPSC cells yielded the
predicted behavior of the models. For instance, iPSCs displayed
significant lower age than their fibroblast progenitors from 50-
year-old donors. Finally, clock use in other relevant systems such
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FIGURE 4 | Boxplots of predicted age (group-wise) in Primary fibroblast samples, primary embryonic stem cells, and induced pluripotent stem cells (iPSC). Shown
are estimates obtained with clocks developed using (A) retina (AMD MGS1) tissue, (B) dermal fibroblast samples, and (C) combined retina-dermal datasets for the
set of 5,321 common genes. The five groups consisted of fibroblasts from neonatal individuals (FN1, FN2), induced pluripotent stem cells (iPSC) derived from
fibroblasts from neonatal individuals (IN2.1, IN2.2, IN2.4, IN2.5), fibroblasts from 50 year old individuals (F50, F50S), induced pluripotent stem cells (iPSC) derived
from fibroblasts from 50 year old individuals (I50.2, I50.3, I50S.1, I50S.2) and embryonic stem cells (H1, H9) samples, respectively.
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FIGURE 5 | Boxplots of predicted time (clock age in days) during neuronal differentiation. (A) Group A replicates, (B) group B replicates. Regression plots showing
predicted time (age) and original differentiation time for (C) group A replicates, (D) group B replicates. Shown are data for neuronal differentiation samples and retina
(AMD MGS1) age models. Note the discrepancy between actual ages (in days) and clock age estimates (in days).

as in vitro neuronal differentiation suggests new opportunities for
broader applications.

Several genes have repeated occurrence across multiple clocks.
Among the clock genes identified with high occurrence in our
study, several (viz., C16ORF72, GDF11, FBN2) had been shown
to play a role in aging, AMD, or other age-related diseases. For

instance, Ratnapriya et al. (58) has previously identified FBN2
(Fibrillin 2) gene’s impact in AMD (58). FBN2 localizes to the
Bruch’s membrane. The expression of FBN2 gene decreases in
aging as well as in AMD eyes. Different common/rare variants
in FBN2 can lead to early onset macular degeneration with
Mendelian inheritance. In our analysis, we also identified the
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FIGURE 6 | Regression plots showing predicted time (clock age in days) and original differentiation time during neuronal differentiation. Data for (A) group A
replicates and (B) group B replicates. Shown are data for retina (AMD MGS1) age models using a LOOCV approach to re-adjust model coefficients. Note a much
closer correspondence between differentiation age (in days) and clock age estimates (in days).

C16ORF72 gene (60), which is also denoted Telomere Attrition
and p53 Response 1 (TAPR1). It is well-known that telomere
erosion in cells with insufficient amounts of telomerase reverse
transcriptase (denoted as TERT) leads to age-associated tissue

dysfunction as well as senescence at least partially through p53
(60). A genome-wide CRISPR screen in TAPR1-disrupted cells
detected a relationship with TERT. Cells lacking TAPR1 or TERT
displayed elevated p53 levels. Their transcriptional signatures
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are also consistent with the event of p53 upregulation. The
higher p53 response in the TERT- or TAPR1-deficient cells are
further exacerbated through treatment with the p53 stabilizer
nutlin-3a as well as MDM2 inhibitor, all of which coincide
with a further deterioration of cell fitness. The regulation of
p53 requires various context-specified controls that underlie its
overall functionality (66). TAPR1 protects against deleterious
telomere erosion or DNA damage through constraining p53. All
in all, C16ORF72/TAPR1 is a regulator of telomere integrity as
well as p53 and appears to play a mechanistic role in aging.

Our analysis also identified Growth differentiation factor 11
(GDF11), a secreted factor in the TGFß family of cytokines
(59, 61), as a key clock gene. It has long been suggested that
GDF11 declines with increasing age and that the restoration of
systemic GDF11 toward “young” levels could be advantageous for
some age-related conditions. GDF11 is a complex rejuvenation
factor in the aging cells. Some studies have reported the
supplementation of GDF11 in skeletal muscle regeneration (67,
68). However, outcomes and possibly mode of action are poorly
understood and seem dependent on GDF11 dose, with higher
dose leading to the skeletal muscle atrophy as well as cachexia
(69, 70). Other studies examined the effect of GDF11 gene
and downstream ActRII pathway on cardiac activity and bone
(59). GDF11 enhances the neurovascular disease as well as
neurodegenerative disease, while it also enlarges the volume
of the skeletal muscle and further improves the muscular
strength (61). Its long-term biological impact might include
the reversal of senescence in clinical aspects along with the
capability for reversing age-related pathological variation and
regulating the post-injury organ regeneration. Although some
contradictions are still ongoing regarding the activities of GDF11,
our identification of GDF11 as a key clock gene in the retina
highlight its likely role in aging and age-related diseases.

Our study generates observations regarding retina age clock
behavior and performance in AMD. One limitation of our
study is that we only focused on training clocks with a single
objective (reduction of MAE), while other factors (e.g., “gap
between predicted and chorological age”) were not incorporated
at this stage. In future, we envision extending this work through
the inclusion of new feature selection strategies along with
other machine learning approaches toward ever more useful
biomarkers of aging and AMD. Furthermore, implementation
and application of AMD targeted age clocks in screens for
therapeutic intervention as well as clinical and population
settings might be promising. The efforts could yield useful new
therapeutics as well as improved tools for monitoring AMD risk
and disease progression.
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Supplementary Figure 1 | Plots of clock evaluation metrics across the 105
models developed in retina samples (AMD MGS1, full feature set) and
implemented on MGS1-4 samples. (A) Boxplot of MAE (sample wise), (B) line plot
of Median Age Acceleration (MAA) per model and (C) line plot of MAE per model.

Supplementary Figure 2 | Plots of clock evaluation metrics across 105 models
developed in retina samples (AMD MGS1; conserved feature set) and
implemented on MGS1-4 samples: (A) line plot of Median Age Acceleration (MAA)
per model, (B) line plot of MAE per model, and (C) box plot of MAE using all retina
(AMD MGS1 sample based) age models for the set of 5,321 common genes.

Supplementary Figure 3 | Plots of clock evaluation metrics across 143 models
developed in dermal fibroblast and implemented on MGS1-4 samples: (A) line plot
of Median Age Acceleration (MAA) per model, (B) line plot of MAE per model, and
(C) box plot of MAE using all dermal fibroblast-based age models for the
conserved feature set (5,321 common genes).

Supplementary Figure 4 | Plots of clock evaluation metrics across 248 models
developed in dermal fibroblast and retina samples (AMD MGS1-based; conserved
feature set) and implemented on MGS1-4 samples: (A) line plot of Median Age
Acceleration (MAA) per model, (B) line plot of MAE per model, and (C) box plot of
MAE using all joint models for the conserved feature set (5,321 common genes).

Supplementary Figure 5 | Boxplots with age acceleration during neural
differentiation (A–D), sample group-wise boxplots of predicted time (in day) (E–H),
Regression plots (I–L) and sample group-wise line plots of MAE (M–P) for Group
A, Group B, Group C and Group D samples, respectively. Retina age clocks were
applied to neuronal differentiation without the readjustment of coefficient
procedure on the retina (AMD MGS1) age models.

Supplementary Figure 6 | Boxplots with age acceleration during neural
differentiation (A–D), sample group-wise boxplots of predicted time (in day) (E–H),
Regression plots (I–L) and sample group-wise line plots of MAE (M–P) for Group
A, Group B, Group C and Group D samples, respectively, with readjustment of
coefficient procedure on the retina (AMD MGS1) age models.
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