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Abstract

Background

Existing surgical innovation frameworks suffer from a unifying limitation, their qualitative

nature. A rigorous approach to measuring surgical innovation is needed that extends

beyond detecting simply publication, citation, and patent counts and instead uncovers an

implementation-based value from the structure of the entire adoption cascades produced

over time by diffusion processes. Based on the principles of evidence-based medicine and

existing surgical regulatory frameworks, the surgical innovation funnel is described. This

illustrates the different stages through which innovation in surgery typically progresses. The

aim is to propose a novel and quantitative network-based framework that will permit model-

ing and visualizing innovation diffusion cascades in surgery and measuring virality and

value of innovations.

Materials and methods

Network analysis of constructed citation networks of all articles concerned with robotic sur-

gery (n = 13,240, Scopus®) was performed (1974–2014). The virality of each cascade was

measured as was innovation value (measured by the innovation index) derived from the evi-

dence-based stage occupied by the corresponding seed article in the surgical innovation

funnel. The network-based surgical innovation metrics were also validated against real

world big data (National Inpatient Sample–NIS®).

Results

Rankings of surgical innovation across specialties by cascade size and structural virality

(structural depth and width) were found to correlate closely with the ranking by innovation

value (Spearman’s rank correlation coefficient = 0.758 (p = 0.01), 0.782 (p = 0.008), 0.624
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(p = 0.05), respectively) which in turn matches the ranking based on real world big data from

the NIS® (Spearman’s coefficient = 0.673;p = 0.033).

Conclusion

Network analysis offers unique new opportunities for understanding, modeling and measur-

ing surgical innovation, and ultimately for assessing and comparing generative value

between different specialties. The novel surgical innovation metrics developed may prove

valuable especially in guiding policy makers, funding bodies, surgeons, and healthcare pro-

viders in the current climate of competing national priorities for investment.

Introduction

Innovation has long occupied center stage in the medical and health sciences. In surgery, it has

been held up as a catalyst of unprecedented advances that have led to substantial improve-

ments in healthcare delivery and patient outcomes [1]. A variety of surgery-specific innovation

frameworks have been proposed, among which the IDEAL is the most widely implemented

paradigm that categorizes surgical innovation into distinct stages [2]. Most existing frame-

works, however, suffer from a unifying limitation. Their qualitative nature has thwarted com-

parative assessments of the innovation-generating potential of individual academic surgeons-

scientists, academic surgical research groups, institutions, countries, and surgical specialties.

Moreover, earlier attempts to assess surgical innovation solely through publication, citation,

and patent counts were premised on the oversimplifying assumption of equating innovation

value with short-lived surges in popularity, and failed to capture the long-term impact of inno-

vation upon healthcare delivery [3].

To address these shortcomings, we propose a novel and quantitative network-based frame-

work for measuring the value of surgical innovation [4]. To this end, we leverage on the struc-

ture of the adoption-induced fingerprints produced by diffusion processes as they unfold over

time [5]. Indeed, innovation typically triggers complex diffusion processes, driven by social

contagion mechanisms, in which individuals’ adoption is a function of their exposure to oth-

ers’ knowledge, attitude, or behavior. Diffusion can therefore be mapped out as a time-varying

cascade of adoptions that propagate from individual to individual over potentially many gen-

erations of adopters. Any attempt to capture how increasingly popular innovations ultimately

transform medical care ought to explicitly account for the size, structural depth, and breadth

of the whole adoption cascade underpinning diffusion [6].

This article aims to make a contribution in this direction by using citation networks to

study the structural foundations of innovation diffusion in surgery. Drawing on a unique and

comprehensive dataset on robotic surgery, we propose a novel set of network-based measures

for uncovering the virality of adoption cascades. We demonstrate how these network measures

facilitate comparative assessments of different robotic surgical procedures in terms of how

they diffuse and implement innovation. Our framework can therefore play a fundamental role

in guiding and assisting policy-makers, funding bodies, and healthcare providers.

Materials and methods

Dataset

Drawing upon SciVerse Scopus1 (Elsevier1, Amsterdam, The Netherlands) [7], we extracted

all articles concerned with robotics (i.e., containing the MeSH terms ‘robot’ and ‘robotic’ in
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their title, abstract, or keywords) across all surgical specialties from the start of the database

(1974) until December 2014. Moreover, we limited our dataset to articles published in scien-

tific journals, and restricted the scope of the analysis to the subject area ‘Medicine’. Therefore,

any article that did not represent original research studies on robotic surgery was excluded

(e.g., review article or conference article).

The initial search produced 13,240 publications, of which 9,423 were articles that either

received or made at least one citation within the broad medical field of robotics. Among these,

5,961 articles received at least one citation from another article within the field, and can therefore

be regarded as ‘sources’ of innovation, whereas 8,158 articles made at least one citation to

another article within the field, and can therefore be regarded as ‘adopters’ of innovation (Fig 1).

Using the MeSH terms reported in S1 Online Supplement, we allocated each of the 5,961

articles that received at least one citation to one of 16 categories (based on surgical specialty

and/or procedure). We limited our study to the ten specialties (the terms specialties and proce-

dures are used interchangeably) with at least 100 of the original 13,240 publications. In total,

the final dataset includes 4,918 articles. Among these, there are 2,159 articles across the ten

specialties that received at least one citation, and 2,759 articles that do not necessarily belong

to any of the ten specialties, but are part of chains of citations leading to articles in those spe-

cialties (Fig 2 and S1 Online Supplement).

Citation networks and diffusion cascades

In a citation network, the nodes are the articles, and a directed link is established from one arti-

cle to another if the former cites the latter in its bibliography [8, 9]. A citation network can

therefore be thought of as a diffusion cascade along which information spreads and adoption

of innovation propagates.

For each of the 9,423 articles that received or made at least one citation, we constructed the

diffusion cascade based on the corresponding citation network (Fig 3). In these cascades, each

Fig 1. Flow diagram illustrating the search strategy used for generating the citation networks. Note that the intersection

between the two sets of articles at the bottom used to construct the citation networks is non-empty as an article can both cite and be

cited.

https://doi.org/10.1371/journal.pone.0183332.g001
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citation-based chain of adoption can be traced back to the seed node representing the original

article in which a given innovation was introduced (as an idea description or laboratory evalu-

ation) in the first place. The structure of these cascades can therefore shed light on the depth

and breadth of the diffusion process through which innovations, once proposed, built up

momentum over time [10].

Measuring broadcast and viral diffusion processes: Citations, cascade

size, structural depth, and structural width

Popularity can be gained through two main modes of diffusion: broadcast and viral spreading

(Fig 4, panels a and b). While broadcast spreading is dominated by processes of bursty adop-

tions from a single seed article, viral spreading is typically characterised by multi-generational

branching processes in which any article receives a citation from only few others, thus yielding

multiple, widespread, and long chains of citations extending over time [5].

To investigate broadcast-driven diffusion processes, we quantified two measures. First, for

each seed article s that received at least one citation, we calculated the total number of citations

Cits received from any other article in the corresponding cascade Cs. Second, for each seed arti-

cle s, we calculated the fraction of citations Cits,year received from any other article in Cs within

one year since the date of publication of s.
To uncover the virality of diffusion processes, we computed three measures (S1 Online

Supplement). First, for each seed article s, we calculated the size SCs
of the corresponding cas-

cade CS, namely the total number of articles in CS (including seed article s). Second, drawing

on a classical graph property and recent work on online diffusion [11], we propose a measure

for quantifying the multi-generational nature of adoption cascades. Specifically, for each seed

article s we define the structural depth sdCs
of cascade CS, as the average length of the shortest

directed paths between pairs of articles in Cs. Formally, for n>1 articles,

sdCs
¼

1

l

X

i2Cs

X

j2Cs

d!
i;j
; i 6¼ j;

Fig 2. Scientific production and citations across surgical specialties. Published and cited articles per surgical specialty (top

panel). Cumulative number of published and cited articles: (a) number of published articles over time, (b) number of cited articles over

time, (c) number of citations received over time by published articles.

https://doi.org/10.1371/journal.pone.0183332.g002
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where d!
i;j

denotes the length of the directed shortest path from article i to article j, Cs is the

set of nodes belonging to the cascade originating from article s, and l is the number of

directed paths connecting pairs of articles in Cs. So constructed, sdCs
becomes larger as the

adopters of the original idea proposed by seed article s are farther apart from one another

and from s, thus producing a multi-generational cascade. An important property of

Fig 3. Network of citations. The network includes 9,423 articles that received or made at least one citation. The visualization of the

network was obtained through the network visualization software Gephi® (Gephi® Consortium, Compiegne, France). The size of each

node i is proportional to its in-degree kini (i.e., the number of citations received), and the color associated with each node denotes the

surgical specialty it belongs to. The network is partitioned into topological communities that are coextensive with surgical specialties

(S1 Online Supplement).

https://doi.org/10.1371/journal.pone.0183332.g003
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structural depth is that it varies as a function of the size of the cascade only under certain

conditions (S1 Online Supplement).

Finally, we introduce a measure for quantifying the branching structure of a diffusion cas-

cade [5, 6, 12, 13]. Specifically, we define the structural width swCs
of cascade Cs as the ratio

between the average number of second-step citations (citn
Cs

) and the average number of

Fig 4. Schematic representation of cascades and real world examples. Top panels: (a) broadcast-driven diffusion; (b) viral

diffusion. In both cases, we calculated the number of citations received by the seed node, the size of the cascade, the structural

depth, and the structural width of the cascade. Bottom panels: two real examples of cascades within (c) thyroidectomy and (d)

cardiac surgery. For each cascade, we calculated the number of citations to seed article, the cascade size, and structural depth and

width. The color of nodes denotes their distances from the seed article (red node). Links between nodes carry the color of the citing

node. The size of each node is proportional to the ratio between the node’s second-step citations and first-step citations.

https://doi.org/10.1371/journal.pone.0183332.g004
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citations (citCs
) accrued by articles in Cs. Formally, for n>1 articles,

swCs
¼

citn
Cs

citCs

:

Thus, the larger swCs
, the more widespread and locally dense the diffusion cascade is. In par-

ticular, swCs
ranges between zero in the limiting case of the star graph (with no second neigh-

bors) and indefinitely large values in cases of branching cascades with highly widespread tree-

like local structures.

Combined, cascade size, depth and width enable us to capture the multi-faceted nature of

viral innovation [5, 6, 12, 13]. While cascade size captures the overall popularity of innovation

based on total number of adopters, structural depth and width shed light on how popularity is

gained. Specifically, depth captures the multi-generational character of diffusion processes. In

this sense, innovation becomes viral not simply because it is widely adopted (typically, as a

result of extensive media coverage and large advertising efforts), but because it propagates fur-

ther beyond the first generation of initial adopters. Finally, structural width uncovers the

branching tree-like character of diffusion. In this sense, innovation becomes viral when a large

population of adopters ‘infect’ a much larger population, with ripple effects producing a rapid,

large-scale increase in popularity as in viral disease spreading. Thus, these three measures

jointly quantify virality as a function of: (a) the overall number of adopters; (b) the number of

generations of adopters; and (c) the contribution of each adopter to overall diffusion. This

enables us to create ranking lists from the most viral innovations to those that only generate

short-term surges in popularity and then quickly die out. Fig 4 (panels c and d) shows two real

cascades that differ in structural virality.

Measuring the value of surgical innovation: The implementation-based

innovation index

We propose a novel metric aimed at capturing the intrinsic value of a surgical innovation as a

function of the degree to which it has reached an implementation stage. To this end, a score

was attributed to each seed article based on its corresponding level of evidence (S1 Online

Supplement) [14]. The US Department of Health and Human Services evidence levels were

used as they only include numerical values (with no lettered subcategories) facilitating classifi-

cation [15]. Further stages of implementation were added for pre-clinical categories (descrip-

tion of idea/laboratory evaluation, animal, and cadaveric studies), as illustrated in the surgical

innovation funnel (SIF) in Fig 5. The SIF shows that innovation follows a trajectory akin to

natural selection whereby as “the going gets tough, the tough get going” (i.e., only the fittest

among attention-seeking ideas will survive as they move along the SIF) [16, 17]. All studies

were scored by two independent academic surgeons-scientists (G.G. and T.A.), and disagree-

ments arbitrated by a third academic surgeon-scientist (A.D.) Formally, for each surgical spe-

cialty g2G, we define the innovation index as

ig ¼

P
c2S

1

c �
pg

c
Pc

max
g2G

P
c2S

1

c �
pg

c
Pc

� � � 100;

where c 2 [1, . . ., 8] is an integer value labeling the ordinal category associated with the imple-

mentation stage according to level of evidence, pg
c is the count of publications by surgical spe-

cialty g appearing in category c, and Pc ¼
P

gpg
c is the total number of publications appearing

in category c across all surgical specialties in G (S1 Online Supplement).
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To validate our innovation index, additional data from the National (Nationwide) Inpatient

Sample (NIS1) database were collected and ranked in terms of the actual numbers of robotic

procedures performed in the US in 2012 (most recent publicly available database when this

study was conducted). As NIS1 approximates a 20% stratified sample of all discharges from

US community hospitals containing big data from more than seven million hospital stays per

year, it can reasonably be used to provide empirical support in favour of findings based on our

innovation index (S1 Online Supplement) [18].

Results

Ranking surgical innovations by broadcast-driven popularity

Fig 6 shows the rankings of robotic surgical procedures in terms of the medians of the distribu-

tions of: (i) citations received by seed articles (panel a); and (ii) fractions of citations received

by seed articles within one year since publication (panel b). Results from Mann-Whitney U

(for citations) and Kolmogorov-Smirnov (for fraction of citations) tests for comparing pairs of

such distributions are not statistically significantly different.

Ranking surgical innovations by virality

For each robotic surgical procedure, we measured the size, structural depth and width of each

cascade, and produced the corresponding frequency distributions. We then ranked these in

terms of the medians of such distributions (Fig 6, panels c, d, e). Cardiac surgery occupies the

top of the rankings, followed by urological procedures, specifically prostatectomy, cystectomy,

and nephrectomy. Mann-Whitney U test (for size) and Kolmogorov-Smirnov tests (for depth

and width) were used for comparing each pair of distributions (S1 Online Supplement). Cas-

cade size, structural depth, and width of cardiac surgery are statistically significantly different

from those of all other specialties, as occurs with second-ranking prostatectomy (except when

compared to colectomy). At the other end of the ranking list, thyroidectomy occupies the last

position, overtaken by transoral robotic surgery (TORS) though the difference between the

two does not reach statistical significance (p>0.05). Notice that differences between any of the

Fig 5. The surgical innovation funnel. Left-hand panel: the surgical innovation funnel illustrating the different stages through which

innovation in surgery typically progresses. Right-hand panel: the different stages of innovation implementation according to the level

of evidence.

https://doi.org/10.1371/journal.pone.0183332.g005
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Fig 6. Rankings of surgical specialties. (a) Ranking by citations to seed articles; (b) ranking by fraction of citations to seed articles

within one year; (c) ranking by cascade size; (d) ranking by structural depth; (e) ranking by structural width. Rankings were obtained

by using the medians (red lines) of the complementary cumulative distribution functions (CCDFs). In case of ties between medians,

the 75th percentiles (dotted blue lines) were used. The bottom of each panel shows results from Mann-Whitney U tests (for citations

and size) and Kolmogorov-Smirnov tests (for fraction of citations, depth, and width) of independence between pairs of distributions

(green color: p<0.05). For clarity, specialties are reported only as labels to the rows of the square matrix, but are equally listed as

Networks of surgical innovation
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three highest-ranking specialties and any of the three lowest-ranking ones are all statistically

significant (p<0.05).

Ranking surgical innovations by evidence-based innovation value

Fig 6 (panel f) reports a Sankey diagram illustrating the contribution of each surgical spe-

cialty/procedure to each level of evidence, and the ranking by innovation index (S1 Online

Supplement). Results suggest that prostatectomy ranks first with the greatest number of

Randomized Controlled Trials (RCTs), followed by cardiac surgery, hysterectomy, nephrec-

tomy and cystectomy. At the bottom of the ranking list are thyroidectomy, TORS, pulmo-

nary lobectomy, and hepatectomy. To validate our measure of innovation, we compared

the ranking of innovation across surgical specialties by innovation index with the ranking

based on real world evidence from the NIS1 database, and found a statistically significant

correlation [19, 20]. To account for the small sample size, we calculated exact p-values and

obtained: Spearman’s rank correlation coefficient = 0.673, p = 0.039; Kendall’s tau coeffi-

cient = 0.511, p = 0.047.

Comparisons across rankings of surgical specialties

The ranking of robotic surgical procedures by innovation index closely matches the rankings

by cascade size, structural depth, and width. We tested the similarity between these three pairs

of rankings by evaluating the Kendall’s concordance coefficient based on exact p-values to

account for the small sample size. We obtained: 0.879 (p = 0.007), 0.891 (p = 0.005), 0.812

(p = 0.030), respectively for the tests of independence between rankings by innovation index

and cascade size, innovation index and structural depth, innovation index and structural

width (S1 Online Supplement). Interestingly, no statistically significant correlation (p>0.05)

was found between ranking by either citations or fraction of citations received within one year,

on the one hand, and ranking by either cascade size, structural depth or width, on the other

(S1 Online Supplement). Most importantly, there is no statistically significant correlation

(p>0.05) between the ranking by either citations or fraction of citations within one year, on

the one hand, and the ranking by innovation index on the other (S1 Online Supplement). We

also tested the similarity between all pairs of distributions by calculating exact p-values and

adjusting for multiple comparisons based on false discovery rate (FDR) correction, and

obtained similar results (S1 Online Supplement).

Discussion

Despite the prominent role of innovation in surgery, only limited attention has been paid to

quantifying its value as a function of diffusion processes and implementation. An effective way

to model the global spread of ideas, knowledge, and innovation is through network analysis

[21, 22]. Network analysis has been previously used in surgical research but only in the context

of network meta-analysis and scientific collaboration networks [23–25]. This is the first study

labels to the columns from left to right. (f) Sankey diagram representing the ranking of surgical specialties in terms of innovation index.

Specialties are listed in the left column, with the top-ranked scoring the highest by innovation index. The height of colored bars is

proportional to the number of published articles in the corresponding specialty. Levels of evidence are listed in the right column, with

the top-ranked being the final implementation stage. The height of colored bars is proportional to the number of published articles at

the corresponding level of evidence across all specialties. The width of the lines connecting a given specialty to a given level of

evidence is proportional to the number of articles published by the specialty at that level of evidence. Green lines refer to contributions

of specialties to the final stage of implementation.

https://doi.org/10.1371/journal.pone.0183332.g006
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to employ network analysis for the measurement of surgical innovation in terms of value and

virality of diffusion.

Our study has made a three-fold contribution in this direction. First, we proposed a novel

measure for the value of surgical innovation that directly accounts for the evidence-based

implementation stage reached in clinical practice. The ranking of surgical specialties by this

measure was found to closely match the one based on big data derived from the real word (i.e.,

the NIS1 database). For example, it is no coincidence that robotic prostatectomy and cardiac

surgery, widely supported by RCTs, have the highest score in the ranking, while robotic thy-

roidectomy, characterized by a remarkably poor uptake in the Western world, occupies the

lowest position [26]. Second, we introduced a novel network-based framework for assessing

the structure of adoption cascades. Specifically, we proposed measures for quantifying the vir-

ality of these cascades. Third, we demonstrated that the ranking of robotic surgical procedures

by innovation value positively correlates with rankings by virality, but not with rankings by

broadcast-driven popularity.

We focused on robotic surgery for a number of reasons. First, it is a sufficiently recent inno-

vative technology so as to play a salient role in most surgeons’ work, at least in the Western

world. Second, it also boasts a sufficiently long history so as to enable the tracing of adoption

cascades over time. Moreover, as the robotic surgery market is dominated by the da Vinci1

surgical robot (Intuitive Surgical1, Inc., Sunnyvale, CA), it lies at the interface between differ-

ent surgical specialties, most of which use different versions of the same robot (e.g., standard,

S, Si, Xi), thus providing a ‘common comparator’ when it comes to ranking (the same) innova-

tion as applied to different surgical specialties [27].

Our results can have a number of implications for research, clinical practice, and policy.

First, by using citation networks to uncover the footprints of adoption behavior, our study

opens up new avenues for future work on knowledge transfer and sharing, and the way health-

care providers discover, combine, and apply new information over time. Second, our study

complements and extends existing frameworks for surgical innovation, and enables suitable

combinations of quantitative and qualitative assessments of innovation value. Third, our

framework can be easily extended to also produce rankings of institutions, research centers,

academic surgical groups, and even countries (i.e., at the macro level), and equally, at the other

end of the spectrum (i.e., at the micro level), produce rankings of individual academic sur-

geons-scientists in terms of their ability and potential to produce pioneering innovation. From

this perspective, our network-based framework can play a fundamental role in guiding policy

[28, 29], strategically directing medical research funding, and assisting healthcare providers in

their efforts to optimize resource allocation and improve the quality of healthcare delivery and

patient outcomes [30]. For example, our findings suggest that policy-makers should focus on

whether recently introduced innovations (e.g., 3D printing, percutaneous valve implantation

technology, and augmented reality for intraoperative navigation in robotic surgery), in spite of

their limited adoption history, have managed to produce highly viral diffusion cascades, and

thus have the potential of redirecting clinical practice [31, 32].

Most importantly, our findings on short-term broadcast-driven popularity should alert

healthcare providers and policy makers to the dangers of using mere citation counts as predic-

tors of value-generating potential. Seemingly successful research efforts, with a disproportion-

ally large number of citations, may quickly die out leaving no influential trace over time. By

contrast, research that is only mildly successful in the short run may well gain in popularity

over time, yield wide and multi-generational cascades of adoptions, and ultimately provide the

foundation for successful medical practice.

Therefore, our study suggests that surgical innovations that have started producing viral

adoption cascades should be further sustained, as they are likely to prove highly successful in

Networks of surgical innovation
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the end, even if they are still at their initial stage of development and diffusion. As such, the

structural virality metric can act as a forecasting tool for surgical innovation.

On the other hand, surgical innovations that only produce broadcast-like adoption cascades

or cascades with low virality values should not be further sustained in an attempt to unlock

some (hidden) potential of value generation as these represent surgical innovations that in fact

are not likely to prove successful or of practical value.

A number of limitations in our study should be noted. First, citation networks represent

but one type of innovation networks. Other networks include co-authorship and collaboration

networks where nodes represent individual surgeons-scientists or institutions. Drawing on

these networks, one could investigate the structural foundations of innovation at the individual

level, and the relationship between scientific collaboration and innovation diffusion. Second,

we did not assess whether the citation made to an innovation was positive or negative as a cita-

tion can be made to level criticism to the content of an article. This, however, is beyond the

scope of the current study, and will certainly be addressed in our future work. Third, our mea-

sures do not directly account for variations in time scales across cascades. Innovations may

trigger cascades of adoption stretching over various intervals of time, but nonetheless charac-

terized by the same degree of virality. Future work shall extend our measures to also account

for temporal variations in adoption behavior. Finally, a broader family of network metrics,

including degree correlations among adjacent nodes, will be required to fully assess the struc-

ture of adoption cascades and the multi-faceted value of surgical innovation.

In conclusion, our study has demonstrated that network analysis offers unique new oppor-

tunities for understanding, modeling and measuring surgical innovation, and ultimately for

assessing and comparing the generative value in the different specialties. When evidence-

based data are difficult to collect or not yet available, a suitable methodological substitute is

needed to inspire and guide the decisions of policy makers, funding bodies, surgeons, and

healthcare providers. This is especially relevant in the current financial climate characterized

by paucity of funding in both health-related research and healthcare delivery combined with

competing national priorities for investment. Our study constitutes an important first step in

this direction.
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