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Esophageal cancer is one of the most common malignant digestive diseases worldwide. Although many approaches have been
established for the treatment of esophageal cancer, the survival outcome has not improved. Pristimerin is a quinone methide
triterpenoid with anticancer, antiangiogenic, anti-inflammatory, and antiprotozoal activities. However, the role of pristimerin in
cancers such as esophageal cancer is unclear. In this study, we investigated the role and mechanisms of action of pristimerin in
esophageal cancer. First, we found that pristimerin can induce apoptosis in esophageal cancer in vivo and in vitro. CCK-8 and
clonogenic assays showed that pristimerin decreased the growth of Eca109 cells. In addition, we found that pristimerin
decreased the protein expression of CDK2, CDK4, cyclin E, and BCL-2 and increased the expression of CDKN1B. Meanwhile,
pristimerin elevated the ratio of LC3-II/LC3-I. Otherwise, downregulation of CDKN1B can reduce the esophageal cancer tumor
growth induced by pristimerin. In conclusion, our findings revealed an important role of pristimerin in esophageal cancer and
suggest that pristimerin might be a potential therapeutic agent for this cancer.

1. Introduction

Esophageal cancer (ESC) is one of the least studied and dead-
liest cancers worldwide, and it ranks sixth among all cancers
in mortality [1]. Numerous epidemiologic studies show that
smoking, hot tea drinking, alcohol consumption, and low
intake of fresh fruit and vegetables are contributing risk
factors for ESC. And the most important precancerous
disease is Barrett’s esophagus. The proportion of adenocarci-
noma and squamous cell carcinoma is more than 95% in
esophageal cancers [2, 3]. In China, esophageal squamous cell
carcinoma is the predominant esophageal cancer, and it
occurs at a rate 20 to 30 times higher than in theUnited States.
Despite improvement therapies, it still has extremely aggres-
sive nature and a poor survival rate [4, 5]. Future endeavors
will need to focus on development of new chemotherapies
to prolong the survival of patients with esophageal cancer.

Pristimerin (20α-3-hydroxy-2-oxo-24-nor-friedela-1-
10,3,5,7-tetraen-carboxylic acid-29-methylester) is a natural
quinonoid triterpene isolated from the plant families

Celastraceous and Hippocratic. Pristimerin exhibits antican-
cer activity in vitro via suppression of cell cycle progression
[6] and angiogenesis [7] and induction of apoptosis [8–11].
It has been previously reported that pristimerin inhibits
lipopolysaccharide-induced production of inflammatory
mediators in murine macrophages via downregulation of
nuclear factor- (NF-) κB and mitogen-activated protein
kinase signal pathways [12].

In this study, we found that pristimerin reduced prolifer-
ation and growth and induced cell cycle arrest and apoptosis
in Eca109 esophageal cancer cells. Additionally, we found
that pristimerin induced autophagy in Eca109 cells. Our find-
ings revealed an important role for pristimerin in esophageal
cancer and suggest that pristimerin may be a potential thera-
peutic agent for patients with this cancer.

2. Materials and Methods

2.1. Cell Culture. The human esophageal cancer cell line
Eca109 (Laboratory of Medical Genetics, Department of
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Biology, Harbin Medical University) was grown in RPMI
1640 medium containing 10% heat-inactivated fetal bovine
serum and 100 units/mL penicillin/streptomycin. Cells were
maintained in a humidified atmosphere of 5% CO2 at 37

°C.
After confluence, cells were subcultured using trypsin diges-
tion. Cells in the logarithmic phase were selected for study.
The methods used in our manuscript were followed as our
previous work [13, 14].

2.2. Plasmid and siRNA Transfection. Cells were seeded into
35 mm plates 24 h prior to transfection. To achieve silencing,
CDKN1B (Cat: stQ0001993-1, RiboBio, Guangzhou, China)
was transfected with CDKN1B siRNA or control siRNA
using lipofectamine 2000 (Invitrogen, Carlsbad, CA) with
serum-free medium according to the manufacturer’s instruc-
tions. Five hours after transfection, the medium was changed
to complete medium, and cells were subsequently cultured
for 48 hours.

2.3. Antibodies and Western Blotting. Cells were lysed with
RIPA lysis buffer containing a protease inhibitor cocktail
(Roche, Basel, Switzerland). Equal amounts of proteins were
separated by SDS-PAGE and transferred to a nitrocellulose
membrane (Pall Corporation, Port Washington, NY). After
blocking, the blots were probed with primary antibodies
against β-actin (1 : 2000), cyclin E (1 : 1000), Bcl-2 (1 : 1000)
(Santa Cruz Biotechnology, Dallas, TX), CDK2 (1 : 1000),
CDK4 (1 : 1000), and LC3-II/LC3-I (1 : 1000) (Cell Signaling
Technology, USA). After washing and incubating with rabbit
or mouse secondary antibodies (1 : 10000) (Cell Signaling
Technology, Danvers, MA), the blots were visualized using
the ECL reagent (GE Healthcare, Chicago, IL).

2.4. CCK-8 Cell Viability Assay. Cells transfected with
CDKN1B siRNA, control siRNA, or pristimerin (0.5, 1.0,
1.5, 2.0, and 4.0 μmol·L–1) were seeded into 96-well plates
at a density of 2 × 103 per well and cultured for 48 hours. Cell
viability was assessed by Cell Counting Kit-8 (Dojindo,
Tokyo, Japan).

2.5. Clonogenic Survival Assay. Next, 8 × 102 cells transfected
with CDKN1B siRNA, control siRNA, or pristimerin were
counted and seeded in 6 cm dishes. After 10 days of cultur-
ing, colonies were stained with 0.1% crystal violet in 20%
methanol for 15 min. The samples were photographed, and
the numbers of visible colonies were counted.

2.6. Tumor Xenograft Model in Nude Mice. Differently
treated cells were subcutaneously injected into the back
of male BALB/c nude mice (Vital River Laboratory Ani-
mal Technology, Beijing, China). Tumor volumes were
measured twice per week. The effects of pristimerin,
pristimerin+control siRNA, or pristimerin+CDKN1B
siRNA on tumor growth were determined. Twenty-four
days after implantation, mice were sacrificed, and tumors
were dissected.

2.7. Electron Microscopy (EM). Cells were treated as above.
The cells were harvested, washed, and fixed overnight with
2.5% glutaraldehyde (G6257; Sigma-Aldrich, St. Louis, MO)

containing 1% tannic acid. After washing, the cell pellets
were embedded in Araldite-Epon. The ultrathin sections
were observed with a Hitachi h-7650 electron microscope,
and representative images were analyzed.

2.8. Data Analysis. Data were obtained from at least three
independent experiments and presented as themean ± SEM.
We used a two-tailed, unpaired Student’s t-test for all pairwise
comparisons (GraphPad Prism version 5). P < 0 05 was
considered to represent a significant difference.

3. Results

3.1. Pristimerin Inhibits Human Esophageal Cancer Cell
Proliferation. To investigate the role of pristimerin
(Figure 1(a)) in esophageal cancer cells, the antiproliferative
effect of pristimerin on Eca109 and Ec9706 cells was
examined by exposing the cells to different concentrations
(0.5, 1.0, 1.5, 2.0, and 4.0 μmol·L–1) for 48 h (Figure 1(b)).

Flow cytometric analysis showed that pristimerin treat-
ment induced significant apoptosis in Eca109 and Ec9706
cells in a dose-dependent manner (Figure 1(c)). In the pres-
ence of 1.5 μmol·L–1 pristimerin, proliferation of Eca109
and Ec9706 cells was inhibited by approximately 50% after
treatment for 48 h. This concentration and treatment time
period were therefore used in subsequent experiments. We
also investigated apoptosis-related proteins. We found that
Bcl-2 was downregulated, whereas caspase-3, caspase-9, and
Bax were upregulated by pristimerin in a dose-dependent
manner (Figure 1(d)). These results showed that pristimerin
can induce apoptosis in Eca109 and Ec9706 cells.

The xenograft model of human esophageal cancer
Eca109 cells in nude mice was used to explore the role of
pristimerin (1.5 μmol·L–1, 48 h) in tumor proliferation
in vivo. Eca109 cells transfected with pristimerin were
injected subcutaneously into the flank of each nude mouse.
The tumor size was measured every 3 days, and growth was
plotted against the average tumor size. After 3 weeks, all the
mice were sacrificed, and their bodies and the xenografts
were weighed. As expected, tumor size and weight in the con-
trol group were significantly increased compared to the
pristimerin-treated group (Figure 1(e)).

3.2. Pristimerin Induces G0/G1 Phase Arrest by Regulating
Cell Cycle-Regulated Proteins. To determine whether pristi-
merin inhibits cell proliferation by inducing cell cycle arrest,
we examined the cell cycle distribution in cells treated with
pristimerin. As shown in Figure 2, pristimerin led to the
accumulation of cells in the G0/G1 phase and a correspond-
ing decrease in G2/M and S phases in both Eca109
(Figure 2(a)) and Ec9706 (Figure 2(b)) cells. To elucidate
the mechanisms of action, we measured the expressions of
cell cycle-regulated proteins. Pristimerin downregulated the
expressions of CDK2, CDK4, and cycle E and upregulated
the levels of CDKN1B (Figures 2(c) and 2(d)). These data
suggest that pristimerin induces G0/G1 phase arrest by alter-
ing the key molecules of G0/G1 cell cycle regulator markers.

3.3. Pristimerin Induces Autophagy and Autophagy-Related
Protein in Eca109 Cells. To investigate the role of pristimerin
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Figure 1: Continued.
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in autophagy by EM (Figure 3(a)), we further examined the
expression of autophagy-related protein LC3-II/LC3-I. The
Western blot assay showed that the ratio of LC3-II/LC3-I
was significantly augmented after treatment with pristimerin
compared with the control group (Figure 3(b)).

3.4. Downregulation of CDKN1B Promotes the Growth of
Tumors Induced by Pristimerin Inhibition. We confirmed
that CDKN1B expression was restored by CDKN1B expres-
sion vector cotransfection (Figure 4(a)). We found that the
viability of Eca109 cells inhibited by pristimerin was reversed
as determined by CCK-8 and clonogenic assays (Figures 4(b)
and 4(c)).

4. Discussion

Accumulating evidence has demonstrated the role of Chinese
traditional medicine in preventing tumorigenesis and pro-
gression of esophageal cancer. Pristimerin has been found
to be a potential novel therapeutic agent for esophageal can-
cer [15–19]. In the present study, we initially demonstrated
that pristimerin induced apoptosis, cell cycle arrest, and
autophagy both in vitro and in vivo in esophageal cancer.

Additionally, restoration of pristimerin significantly inhib-
ited cell proliferation in esophageal cancer cell lines by acting
on CDKN1B. These findings indicate an anticancer effect of
pristimerin in esophageal cancer. Our team have investigated
the effect of dihydroartemisinin (DHA) on esophageal cancer
cells [13]. We found that DHA could induce apoptosis, cell
cycle arrest, and autophagy in esophageal cancer cells. But
in our present work, we investigated the anticancer effect of
pristimerin and paid more attention on the role of CDKN1B
in the mechanism. In addition, we explored the role of
CDKN1B in vitro and in vivo.

Apoptosis, or the programmed cell death, plays the cru-
cial role in many biological processes of all the diseases.
Bcl-2 family is one of the most important regulatory families
in the progress of apoptosis. The major function of the Bcl-2
family is to mediate the permeabilization of the outer mito-
chondrial membrane, which is the most important event in
the intrinsic apoptotic pathway [20]. The Bcl-2 family can
be divided into antiapoptotic and proapoptotic proteins
according to their different structures and function, and all
family members possess the highly-conserved BCL-2 homol-
ogy (BH) domains [21]. The antiapoptotic Bcl-2 family
group includes Bcl-2, Bcl-xL, and Bcl-w. The Bcl-xL and
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Figure 1: Pristimerin inhibits human esophageal cancer cell proliferation. (a) Molecular formula of pristimerin. (b) Eca109 and Ec9706 cells
were treated with pristimerin at concentrations of 0.5, 1.0, 1.5, 2.0, and 4.0 μmol·L–1 for 48 h. Relative cell viability determined by the CCK-8
assay. (c) Cytometric analysis of Eca109 and Ec9706 cells treated with pristimerin (0.5, 1.0, 1.5, 2.0, and 4.0 μmol·L–1, 48 hours). (d) Protein
level of Bcl-2, Bax, caspase-3, and caspase-9. (e) Effect of pristimerin on the growth of Eca109 cells injected into nude mice. Male BALB/c nude
mice were subcutaneously injected with 5 × 106 Eca109 cells infected with pristimerin. Tumor volume and weight were monitored over time
as indicated, and the tumor was excised and weighed after 21 days. ∗P < 0 05 versus control group. n = 3 independent experiments for each
group.
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Bcl-2 help proteins to localize in the outer mitochondrial
membrane by their carboxyterminal hydrophobic trans-
membrane domain [22]. The cytotoxic signals provoke the
Bcl-w associate with the membrane by its conformational
changes [23]. The Bax, Bak, and Bok belong to the proapop-
totic Bcl-2 family that share three BH domains [24]. By
reconstitution of Bak into Bax/Bak, double knockout cells
indicate that the Bax might be involved in the outer mem-
brane degeneration, and Bak participate in the early stage
of mitochondrial fragmentation [25, 26]. As previously
reported, pristimerin significantly induces esophageal cancer
cell death through the NF-κB pathway [27]. In contrast, in
the present study, we observed a significant decrease in the
level of Bcl-2 accompanied by increased levels of Bax,

caspase-3, and caspase-9, indicating that pristimerin is able
to trigger intrinsic apoptosis thereby inducing esophageal
cancer cell death. Similar to our results, previous studies have
also demonstrated that pristimerin induces apoptosis in var-
ious types of cancer cells, such as breast, colon, and colorectal
cancers [28–30].

In addition, previous research indicated that pristimerin
could induce G0/G1 phase arrest [27]. Cyclin-CDK heterodi-
mers regulated cell cycle progression through each phase and
is fundamental to cell cycle checkpoints in cells. Deregulation
of cell-cycle control due to aberrant CDK activity is wide-
spread in most cancer types [31]. In addition, cyclin E,
CDK2, and CDK4 are necessary factors involved in the entry
into and progression of cells through the G1 phase of the cell
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Figure 2: Eca109 and Ec9706 cells were exposed to various concentrations of pristimerin (0, 1.0, 1.5, and 4.0 μmol·L–1) for 48 hours followed
by the cell cycle distribution assay and altered CDK2, CDK4, cyclin E, and CDKN1B. The percentage of cells in G0/G1, S, and G2/M phases of
the cell cycle following pristimerin treatment in Eca109 and Ec9706 cells (a, b). Western blotting was used to detect the ratios of CDK2, CDK4,
cyclin E, and CDKN1B expression in Eca109 (c) and Ec9706 (d) cells treated with pristimerin (1.5 μmol·L–1, 48 hours). Relative expression of
CDK2, CDK4, cyclin E, and CDKN1B was normalized to β-actin. Data are the average of three independent experiments for each group.
Comparable results were observed from another three experiments. ∗P < 0 05 versus control group.
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cycle. In conclusion, based upon our date, we found that pris-
timerin could induce the downregulation of cyclin E, CDK2,
and CDK4 to lead to the block of G0/G1 transition, which
gave rise to cell death in esophageal cancer.

Autophagy is initiated when cells need to produce
intracellular nutrients and energy, resulting in cells either
undergoing architectural remodeling or eliminating damag-
ing cytoplasmic components [32–36]. Here, our microscopy
images showed the activation of autophagy, supported by
the elevated accumulation of autophagosome, increased by
pristimerin. As previously reported, LC3-I/LC3-II is
inversely correlated with selective autophagic protein in
many diseases. In the present study, we found that pristi-
merin increased the ratio of LC3-II/LC3-I. These results indi-
cate that pristimerin may activate the autophagy signaling
pathway. Lately, evidence indicated that autophagy plays an
important role in tumor initiation and progress. However, a
much-debated question is whether autophagy in cancer cells
causes death or protects cells [37]. Some authors maintained
that autophagy is a protein degradation system in which

cellular proteins and organelles are sequestered, delivered to
lysosomes. According to other authors, autophagy might be
a response to recycle injured organelles to avoid apoptosis
[38]. They thought that it actually is an attempt to support
survival in response to cellular stress conditions. We found
that pristimerin induced apoptosis and autophagy in human
esophageal cancer cells. Therefore, there were still many
unanswered questions about the effect of autophagy in cancer
cells treated by pristimerin and the detailed mechanism
between apoptosis and autophagy.

CDKN1B, also known as p27, was initially discovered as a
nuclear cell cycle inhibitory protein. p27 exported to the
cytoplasm [39, 40] was considered as a mechanism to
inactivate the cell cycle inhibitory effects of p27 in the
nucleus and to allow human cancer cells to escape cell
cycle arrest [41–43]. However, in the present study, we found
that treatment with pristimerin significantly upregulated p27
expression. Previously, Jia showed that autophagy regulates T
lymphocyte proliferation through selective degradation of
the cell cycle inhibitor CDKN1B/p27Kip1 [44]. Chen et al.
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suggested that p27 protein protects metabolically stressed
cardiomyocytes from apoptosis by promoting autophagy
[45]. Here, we showed that knockdown of CDKN1B can
inhibit esophageal cancer cell growth.

In conclusion, our results demonstrate that pristimerin
induces apoptosis, cell cycle arrest, and autophagy in esoph-
ageal cancer cells. In addition, downregulation of CDKN1B
promotes the growth of tumors induced by pristimerin inhi-
bition. These findings may improve the understanding of the
role of pristimerin in esophageal cancer and may provide a
potential therapeutic agent for this cancer.
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