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R E S EA R CH L E T T E R
Citrullination of α2-antiplasmin is unlikely to contribute to

enhanced plasmin generation in COVID-19 pathophysiology
COVID-19 is caused by the SARS-CoV-2 [1]. Severe COVID-19 is

characterized by immune cell activation, leading to inflammation and

the formation of neutrophil extracellular traps (NETs) [2–4]. COVID-

19 is also associated with an imbalance in coagulation and fibrino-

lytic activity [5]. Exuberant fibrinogen production secondary to the

inflammatory response, coupled with elevated thrombin generation,

provokes fibrin deposition. However, despite paradoxically increased

plasmin generation potential in plasma from patients with COVID-19

[6,7], fibrinolytic pathways are unable to counter this process [8].

Patients with severe COVID-19 have a high risk of developing venous

thromboembolism [9], and patients with COVID-19 with venous

thromboembolism have an increased risk of death [10].

In response to inflammation, the enzyme peptidylarginine deimi-

nase 4 (PAD4) present in neutrophil granulocytes becomes activated,

leading to histone citrullination, chromatin decondensation, and NET

formation and release. During these events, exposed PAD4 may cit-

rullinate extracellular and plasma proteins, particularly those present

at high concentrations that have a relatively long circulating half-life

(t1/2) (eg, fibrinogen, antithrombin, and α2-antiplasmin [AP]) [11,12].

PAD4 can also citrullinate proteins with short t1/2 and low plasma

concentration (eg, tissue factor pathway inhibitor) in vitro [13]. Cit-

rullination of coagulation and fibrinolytic proteins has been observed

in inflammatory diseases [11,12]. For example, citrullinated fibrinogen

(t1/2 3-5 days) has been detected in rheumatoid arthritis and is

thought to incite the production of anti-citrullinated protein anti-

bodies [14]. Importantly, citrullination can alter the functional activity

of these proteins. Citrullination of AP (t1/2 2.6 days), the canonical

inhibitor of the fibrinolytic enzyme plasmin, abolishes its activity [15].

Given these observations, we hypothesized that during COVID-19,

extensive neutrophil activation and release of PAD4 promotes

plasma protein citrullination and that the generation of citrullinated

AP (CitAP) causes increased plasmin generation potential [6,7].

We tested this hypothesis by characterizing plasma samples from

28 patients with COVID-19 (11 males, 17 females, mean age 56

[range, 28-76], 19 of whom had diabetes and/or hypertension, 45%

males and 12% females had a fatal outcome). Race/ethnicity of pa-

tients with COVID-19 were as follows: 24White (17 non-Hispanic and

7 Hispanic), 2 American Indian, 1 Black, and 1 Native Hawaiian. These

patients were compared with 20 age- and gender-matched healthy

controls (18 White [17 non-Hispanic and 1 Hispanic], 1 Asian, and 1
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unknown). Neutrophil activation is accompanied by secretion of

myeloperoxidase, and as expected, plasma myeloperoxidase was

significantly elevated in patients with COVID-19 vs controls

(Figure 1A). We confirmed that patients with COVID-19 have

abnormal plasmin generation potential [16] (Figure 1B–F), including a

prolonged lag time (Figure 1C), time to peak (Figure 1D), elevated

velocity index (Figure 1E), and plasmin peak (Figure 1F). Myeloper-

oxidase levels correlated with the plasmin generation lag time

(Figure 1G) and time to peak (Figure 1H), and these correlations were

driven by measurements in patients with COVID-19. These changes

suggest that patients with COVID-19 may have quantitative or qual-

itative changes in fibrinolytic proteins. However, patients with

COVID-19 have normal or slightly reduced plasminogen [17,18], and

AP activity is in the normal range [19,20], although some studies have

reported higher [21] or lower [22] AP activity in patients with COVID-

19. We used immunoblotting and densitometry to confirm that AP

antigen was not different in our patient cohort (Figure 1I, J).

To verify that citrullination reduces AP function, we used PAD4

(Cat# 10500, Cayman Chemical) to citrullinate plasma-purified AP. To

detect CitAP, we first tested a biotinylated phenylglyoxal probe that

labels citrulline residues [23]; however, we detected considerable

nonspecific binding of this probe to negative (noncitrullinated) con-

trols (data not shown). Therefore, we used an alternate method to

detect CitAP with an Anti-Citrulline (Modified) Detection Kit (Cat#

17-347B, MilliporeSigma). This method involves first modifying

citrulline residues with 2,3-butanedione and antipyrine in the pres-

ence of FeCl3 under acidic conditions [24]. We then separated the

proteins with sodium dodecyl sulphate-polyacrylamide gel electro-

phoresis , transferred them to polyvinylidene fluoride membranes, and

probed the membranes with an antibody that detects the modified

citrulline. We visualized the signal with enhanced chemiluminescence

(Figure 2A, upper panel). This strategy successfully detected citrulli-

nated protein and did not recognize noncitrullinated protein. We

reprobed the blots with anti-AP antibody and IRDye 800CW-labeled

secondary antibody (Cat# 926-32211, Licor) to visualize total AP

(Figure 2A, lower panel). We then spiked normal pooled plasma with

exogenous AP or CitAP (final amounts indicated) and measured the

effects on plasmin generation potential. In contrast, the addition of

AP to normal pooled plasma reduced plasmin generation in a

concentration-dependent manner, and the addition of even high
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F I GUR E 1 Patients with COVID-19 have increased plasmin generation and normal α2-antiplasmin (AP) levels. (A) Myeloperoxidase measured in

plasma from healthy donors and patients with COVID-19 by ELISA (Cat# DY3173, R&D Systems). All samples were analyzed in duplicate and

averaged. (B) Representative plasmin generation curves. Diluted plasma was mixed with tissue factor, tissue plasminogen activator, and phospholipids

or with α2-macroglobulin-plasmin complex, and reactions were triggered by dispensing fluorogenic substrate and CaCl2. Quantitative parameters

included (C) lag time, (D) time to peak, (E) velocity index, and (F) peak plasmin calculated from the plasmin generation curves. All samples were analyzed

in duplicate. Spearman correlations for myeloperoxidase and plasmin generation (G) lag time and (H) time to peak. (I) Representative immunoblot of

plasma AP. Samples were subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis and transferred to a polyvinylidene membrane.

Plasma AP levels in healthy donors and patients with COVID-19 were detected by anti-AP antibody (1 μg/mL, Cat# 13228-1-AP, Proteintech) and

IRDye 800CW-labeled secondary antibody (Cat# 926-32211, Licor). (J) Total plasma APwas quantified by densitometry using a ChemiDocMP Imaging

System and Image Lab 6.1.0 software (Bio-Rad). Each blot contained normal pooled plasma (NPP) in duplicate, and the mean plasma AP value of NPP

was used to calculate the relative values of the plasma AP of the donors. Mann–Whitney U-test, *P < .05, **P < .01, ***P < .001, ****P < .0001, ns, not

significant. Each dot represents a separate individual; black dots represent deceased patients.
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F I GUR E 2 Patients with COVID-19 do not have detectable citrullinated antiplasmin (CitAP) or citrullinated fibrinogen (CitFgn). (A)

Representative immunoblots of α2-antiplasmin (AP) and CitAP were probed for citrullinated proteins (upper panel) and total AP (lower panel).

Citrullinated protein was detected using the Anti-Citrulline (Modified) Detection Kit (Cat# 17-347B, MilliporeSigma), and the same blot was

probed for total AP as in Figure 1. (B) Normal pooled plasma (NPP) was estimated to contain 0.7 μg of endogenous AP, and 50%, 100%, 200%, or

400% (0.35, 0.7, 1.4, and 2.8 μg, respectively) of additional AP or CitAP was spiked into NPP before initiating plasmin generation reactions. As a

control, NPP was spiked with a buffer containing no AP or CitAP. All samples were analyzed in quadruplicate. (C) Representative immunoblots

of CitAP and AP were purified from plasma samples via immunoprecipitation (Cat# 26149, Thermo Fisher Scientific) and detected as described

above. (D) Representative immunoblots of CitFgn and Fgn purified from plasma samples via immunoprecipitation and detected as described

above, but using primary anti-Fgn antibody (1 μg/mL, Cat# A0080, Dako-Agilent); fibrinogen runs as Aα, Bβ, and γ chains. (E) Representative

immunoblot of total citrullinated proteins in plasma samples detected as described above. The secondary antibody (goat anti-human IgG) used

in the kit recognizes the human plasma antibody heavy chain (�55 kDa) and light chain (�30 kDa). (F) Representative immunoblot of

citrullinated proteins in plasma samples where the IgGs were depleted using protein A/G columns. For immunoblots and plasma spiking

experiments, AP and CitAP and/or Fgn and CitFgn were incubated with or without peptidylarginine deiminase 4 (Cat# 10500, Cayman

Chemical, 1:10 ratio of peptidylarginine deiminase 4:protein) in 100 mM Tris-HCl pH 7.5, 5 mM CaCl2 for 2.5 hours at 37 oC; 20 ng of (Cit)AP

and 100 ng of (Cit)Fgn were loaded as controls on the blots.
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amounts of CitAP (up to 400% of normal levels, constituting 80% of

total AP) did not (Figure 2B). These results confirmed [15,25] that

CitAP is unable to inhibit plasmin.

To detect CitAP in the plasma of patients with COVID-19, we

immunoprecipitated total AP using anti-AP antibodies; this step

enabled us to specifically identify AP and CitAP within the complex

plasma milieu where multiple proteins may undergo citrullination.

We confirmed that this method captures and detects immunopre-

cipitated CitAP. We also immunoprecipitated fibrinogen (Fgn) as a

control. We then subjected the proteins to the Anti-Citrulline

(Modified) Detection Kit (Cat# 17-347B, MilliporeSigma) protocol

to identify citrullinated proteins and reprobed the membranes with

anti-AP or anti-Fgn antibodies to quantify the total AP or Fgn,

respectively. However, we were unable to detect CitAP or CitFgn in

the samples purified from the plasma of patients with COVID-19 or

controls (Figure 2C, D, upper panels). To assess if patients with

COVID-19 have elevated total citrullinated plasma proteins, we also

analyzed unfractionated plasma samples for citrullinated proteins as

described above. Since the secondary antibody in the Anti-Citrulline

(Modified) Detection Kit (Cat# 17-347B, MilliporeSigma) binds to

human immunoglobulins, the detected proteins at �55 and �30 kDa

are likely endogenous IgG heavy and light chains, respectively

(Figure 2E). However, when quantifying either total protein in the

lane or just the bands above and below these bands, there was no

difference in citrullinated proteins between controls and patients

with COVID-19 (data not shown). We also depleted immunoglobu-

lins from the samples using protein A/G columns to overcome

antibody interference, but there was still no difference in citrulli-

nated proteins between controls and patients with COVID-19

(Figure 2F).

It is possible that plasma protein citrullination occurs in COVID-

19, but these proteins are consumed faster [25] or incorporated into

the fibrin network [26]. However, our in vitro experiments show

normal plasmin generation even when up to 80% of available AP is

citrullinated. Thus, the inability to detect even small amounts of cit-

rullinated proteins in these plasma samples with abnormal plasmin

generation and fibrin formation (Bouck et al. [6] and Figure 1) suggests

that the abnormal function cannot be explained by the presence of

CitAP or CitFgn. It is also possible that a minor fraction of CitAP with

citrullination of specific arginine residues may have reduced activity

but is difficult to detect with immunoblotting; targeted mass spec-

trometry may be required to detect extremely low-level modifications.

Interestingly, Ordonez et al. [12] showed that although patients with

rheumatoid arthritis have increased levels of citrullinated anti-

thrombin, the citrullination impacted only an insignificant portion of

antithrombin, and there was no association between the citrullinated

antithrombin and the risk of thrombosis.

Although neutrophil-derived PAD4 citrullinates histones and is

essential for NETosis, PAD4 may not have a major role in citrullinating

circulating proteins [27]. In particular, protein citrullination depends

not only on exposure to PAD enzymes but also on the local envi-

ronment (eg, high calcium), which may not be achieved on a scale or

for sufficient time to citrullinate substantive amounts of circulating
proteins [28]. Collectively, our data show that despite extensive

neutrophil activation and NETosis, Fgn, and AP are not widely cit-

rullinated in plasma from patients with COVID-19, suggesting this

modification is unlikely to contribute to abnormal fibrin formation or

plasmin generation in COVID-19.
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