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Epithelial monolayer formation depends on the architecture and composition of the
microtubule cytoskeleton. Microtubules control bidirectional trafficking and determine
the positioning of structural cellular proteins. We studied the role of tubulin tyrosination
in epithelial cell shape and motility. Tubulin tyrosine ligase (TTL), the enzyme that
adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, was depleted or
overexpressed in 2D epithelial monolayers as well as in 3D intestinal organoids. We
demonstrate qualitatively and quantitatively that in the absence of TTL the cells comprise
high levels of detyrosinated tubulin, change their shape into an initial flat morphology
and retardedly acquire a differentiated columnar epithelial cell shape. Enhanced
adhesion and accelerated migration patterns of TTL-knockout cells combined with
reverse effects in TTL-overexpressing cells indicate that the loss of TTL affects the
organization of cell adhesion foci. Precipitation of detyrosinated tubulin with focal
adhesion scaffold components coincides with increased quantities and persistence of
focal adhesion plaques. Our results indicate that the equilibrium between microtubules
enriched in detyrosinated or tyrosinated tubulin modulates epithelial tissue formation,
cell morphology, and adhesion.

Keywords: tubulin tyrosine ligase, microtubule tyrosination/detyrosination, intestinal organoid, focal adhesion,
epithelia cells

INTRODUCTION

Dynamic arrangement and structured architecture of cytoskeletal elements ensure formation and
maintenance of epithelial cell sheets. Microtubules can be modulated by posttranslational
modifications, which include acetylation, tyrosination, detyrosination, 12 modification,
polyglutamylation, palmitoylation and phosphorylation (Janke and Magiera, 2020; Roll-Mecak,
2020). Tyrosinated (tyr-tubulin), and detyrosinated (detyr-tubulin) α-tubulin is generated
by a cycle of removal and subsequent religation of tyrosine to the carboxy terminus of this
polypeptide. Detyrosination can inhibit microtubule disassembly, whereas dynamic microtubules
are predominantly tyrosinated (Palazzo et al., 2004). Very recently, the vasohibins VASH1 and its
homolog VASH2 have been identified to remove the C-terminal tyrosine of α-tubulin (Aillaud et al.,
2017; Nieuwenhuis et al., 2017). The tubulin tyrosination cycle is then completed by the enzyme
tubulin tyrosine ligase (TTL), which catalyzes C-terminal α-tubulin tyrosination on αβtubulin
heterodimers and restores tyr-tubulin (Raybin and Flavin, 1975). Length, amino acid composition
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and additional modifications of the C-terminal α-tubulin tail
have most likely no influence on α-tubulin tyrosination by TTL
(Prota et al., 2013). In myocytes shRNA-mediated TTL-depletion
increased detyrosination, cell viscosity and contractile resistance,
thus altering myocyte mechanics (Robison et al., 2016).

Expression of TTL in general affects cell fate and there
is a widespread loss of TTL activity during tumor growth
in situ (Lafanechere et al., 1998). In accordance, an increased
level of detyr-tubulin in breast tumors predicts poor patient
survival and an enhanced risk of cancer-related complications
(Mialhe et al., 2001). Turnover of adhesive structures at the
front of migrating cells can be controlled by intracellular
traffic along microtubules for polarized delivery of adhesion
receptors, such as integrins (Bretscher and Aguado-Velasco,
1998). Microtubules thus regulate migration speed (Stehbens
and Wittmann, 2012) and their growth provides forces for
advancement of the cell edge (Balzer et al., 2012). Recent
evidence suggests that microtubule acetylation promotes fast
focal adhesion turnover rates and cell migration velocity (Bance
et al., 2019). Moreover, in detached mammary epithelial cell lines
detyrosinated microtubules are enriched in long and dynamic
protrusions of the plasma membrane (Whipple et al., 2007),
which facilitates reattachment and suggests that cell adhesion is
immediately linked to the microtubule architecture. Mechanistic
features of this link and how it can be translated into physiological
3D tissue environments is not clarified yet.

This prompted us to examine the morphology and adhesion
of epithelial cells in 2D cell culture as well as in 3D intestinal
organoids, in which the α-tubulin tyrosinating enzyme TTL has
been overexpressed or knocked out. In the absence of TTL
adherent cells in culture or forming organoids dramatically
increase the number of detyrosinated tubules. The cells have a flat
spread morphology and retardedly differentiate into columnar
epithelial monolayers. These morphological alterations following
depletion of TTL are further reflected in intestinal organoid
epithelia and enterocytes of the small intestine. Cultured cells
adhere stronger and migrate faster if TTL is knocked out. Reverse
effects in TTL-overexpressing Caco-2 or Madin-Darby Canine
Kidney (MDCK) cells indicate that the loss of TTL affects the
organization of cell adhesion foci. The knockout of TTL seems
to affect focal adhesion dynamics and stability as evidenced by
diminished recycling of integrin adhesion receptors, variable
pulldown efficiencies of vital focal adhesion components and a
longer persistence of vinculin at cell adhesion foci.

MATERIALS AND METHODS

Antibodies and DNA Constructs
The following tubulin antibodies were used: monoclonal
anti-α-tubulin (Clone DM 1A) and anti-acetylated α-tubulin
(Clone 6-11B-1) (Sigma-Aldrich), monoclonal anti-tyrosinated
α-tubulin (YL1/2, Santa Cruz), and polyclonal anti-detyrosinated
α-tubulin (Millipore). The following polyclonal antibodies were
used: anti-GAPDH (HyTest), anti-Kif5A (Abcam), and anti-TTL
(Proteintech Group). The following monoclonal antibodies
were used: anti-β-catenin (Sigma-Aldrich), anti-KANK1

(Invitrogen), anti-paxillin (BD Transduction Laboratories),
anti-sc35 (Abcam), and anti-vinculin (Sigma-Aldrich). The
monoclonal antibody directed against sucrase-isomaltase (SI)
(DRBB2/158) was generously provided by A. Quaroni. The
plasmid mCherry-Vinculin-N-21 was a gift from Michael
Davidson (Addgene plasmid #55160; RRID:Addgene_55160).

Cell Culture and Transfections
Madin-Darby Canine Kidney type II and MDCK1TTL cells
were cultured at 37◦C under 5% CO2 in minimum essential
medium (MEM; Gibco) supplemented with 5% fetal calf serum
(FCS), 2 mM glutamine, 100 U/ml penicillin, and 100 mg/ml
streptomycin. MEM medium for MDCKTTL−GFP cells contained
0.5 mg/ml G418 additionally. For the generation of MDCK1TTL
cells, TTL expression was eliminated by CRISPR/Cas9 gene
editing as described below. Plasmid transfection of MDCK cells
was performed with Lipofectamine 2000 (Invitrogen) according
to the manufacturer’s instructions.

CRISPR/Cas9 Gene Editing
The plasmid pSpCas9n(BB)-2A-Puro (PX462) V2.0 was a gift
from Feng Zhang (Addgene plasmid # 62987). Oligo pairs
encoding the 20-nt guide sequences against canine TTL (5′-CAC
CGA ATA TCT ACC TCT ATA AAG A-3′, 5′-AAA CTC TTT
ATA GAG GTA GAT ATT C-3′) were annealed and ligated into
the BbsI digested plasmid to generate pCRISPR-Cas9 1TTL (Ran
et al., 2013). Following transfection of pCRISPR-Cas9 1TTL,
cells were selected for 48 h with 2 µg/ml puromycin (Sigma-
Aldrich). Single clones were transferred to 12 well plates with
Trypsin/EDTA-soaked Whatman slices. Lysates of MDCK cell
clones were analyzed for the presence of TTL by immunoblot
with pAb anti-TTL antibody. Only those clones were selected that
showed no TTL expression.

Cloning of Lentiviral shRNA Plasmids
The lentiviral inducible shRNA expression plasmids were cloned
as follows: targeting sequences against murine TTL were selected
from the database provided by the RNAi Consortium and
a forward and reverse single-strand oligonucleotide strand
was designed containing the required shRNA sequence and
EcoRI/XhoI overhangs for cloning (mTTL_sh2_fwd: 5′-TCG
AGA AGG TAT ATT GCT GTT GAC AGT GAG CGC TCC
AGA GGA AAG AGA GAG AAT AGT GAA GCCA CAG ATG
TAT TCT CTC TCT TTC CTC TGG AGT GCC TAC TGC CTC
GG-3′; mTTL_sh2_rev: 5′-AAT TCC GAG GCA GTA GGC ACT
CCA GAG GAA AGA GAG AGA ATA CAT CTG TGG CTT
CAC TAT TCT CTC TCT TTC CTC TGG AGC GCT CAC TGT
CAA CAG CAA TAT ACC TTC-3′). The oligonucleotides were
mixed at a ratio of 1:1 in annealing buffer (100 mM NaCl, 10 mM
Tris) to a final concentration of 4.5 µM, heated to 95◦C in a
water bath and left to cool to room temperature in the water. The
mix was diluted by 1:400 in 0.5× annealing buffer. In parallel,
the target plasmid LT3GEPIR was linearized by restriction digest
with XhoI and EcoRI, followed by ligation with the annealed
oligonucleotide (Fellmann et al., 2013).
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Protein Analysis Procedures, Lysate
Preparation and Immunoblotting
For preparation of cell lysates the cells were washed with
sterile filtered PBS++ (PBS supplemented with 1 mM MgCl2
and 1 mM CaCl2), collected in lysis buffer (150 mM Tris,
pH 8; 150 mM NaCl, 150 mM EDTA, 1% Triton X-100,
freshly added protease inhibitor cocktail) after the indicated
time intervals and incubated at 4◦C on a rotating platform
for 30 min. Afterward samples were centrifuged for 15 min at
17,000 g. The protein concentrations in the supernatants were
determined by Lowry and equal protein amounts were separated
by SDS-PAGE using the Hoefer-Mini-VE system (Amersham
Pharmacia Biotech) and transferred to nitrocellulose membranes.
Membranes were blocked in 5% skimmed milk powder in
PBS for 1 h and incubated with primary antibodies overnight
at 4◦C. Detection was performed with horseradish-peroxidase-
conjugated secondary antibodies and ECL reagent (Thermo
Fischer Scientific) on an Intas gel imager. The results were
quantified using LabImage 1D software (see below).

Immunoprecipitation
Madin-Darby Canine Kidney cells were washed with PBS++,
collected in PHEM lysis buffer (50 mM PIPES, 50 mM
HEPES, 1 mM EDTA, 2 mM MgCl2, pH 6.9/2 M glycerol/2%
Triton X-100/freshly added protease inhibitor cocktail) by
mechanical detachment and incubated at 4◦C for 30 min
on a rotating platform. After centrifugation (17,000g for
15 min), cleared lysates were precleared and incubated with
RFP-nanobody agarose (RFP Trap, Chromotek) or anti-
vinculin antibodies/protein A-agarose beads for 2 h at 4◦C.
Blocked protein A-agarose beads (Chromotek) or non-specific
IgG/protein A-agarose beads were used as negative control.
Finally, beads were rinsed three times with PHEM washing buffer
(50 mM PIPES, 50 mM HEPES, 1 mM EDTA, 2 mM MgCl2, pH
6.9), once with PBS and boiled in SDS/PAGE loading buffer for
western blot analysis.

Immunofluorescence, Immunostaining of
Tissue Samples, Fluorescence
Microscopy, and Photoconversion
For immunofluorescence analysis, cells were grown on cover
slips or 24-well filter inserts and fixed with 4% paraformaldehyde
for 20 min. Afterward, cells were permeabilized with 0.1
or 0.2% Triton-X-100 for 20 min and blocked in 5%
BSA/PBS++ for 1 h. Immunostaining was performed with
the indicated primary antibodies in blocking reagent for 2 h
or overnight. Secondary antibodies labeled with the indicated
Alexa Fluor dyes were applied in PBS++ for 1 h. Nuclei
were stained with Hoechst 33342. Following incubation,
cells were washed with PBS++ and mounted with Mowiol.
Intestinal tissue was taken from patients in the Department
of Urology and Pediatric Urology, University Medical Center
Marburg for diagnostic purpose. The study was positively
evaluated by the local ethic commission. The patients were
not followed clinically in this study. Four micrometer thick
slices of formalin fixed and paraffin embedded human

small intestinal samples were steamed in Tris/EDTA for
20 min or in Citrate buffer for 5 min and blocked in 5%
goat serum/PBS. Primary and secondary antibodies were
incubated in antibody diluent (Dako). Confocal images
were acquired on a Leica TCS SP2 microscope equipped
with a 40× or 63× oil plan-apochromat objective (Leica
Microsystems). For photoconversion experiments widefield
microscopy photobleaching experiments were conducted
with N-terminal fusions of vinculin to mEOS2 (Stubb et al.,
2019). Transfected MDCK cells were imaged in a 37◦C
incubation chamber using a 40× oil immersion objective
on a Leica DMI8 microscope and photoconversion was
accomplished using the Leica infinity scanner module
with a 405 nm laser for localized mEOS2-conversion.
Epifluorescence imaging of non-switched and photoswitched
mEOS was done by excitation with the 475/575 nm
LEDs of the Leica LED8 unit and the emission filters
531/32 and 589/40.

Organoid Culture, Transduction,
Processing, and Imaging
Mouse small intestinal organoids were cultured in Matrigel
droplets and Advanced DMEM medium supplemented with
HEPES (10 mM), L-glutamine (2 mM), 10% R-Spondin1-
conditioned medium, N-2 supplement (1×), B27 supplement
(1×), N-acetylcysteine (1 mM), Noggin (100 ng/ml) EGF
(50 ng/ml), valproic acid (1 mM), and CHIR-99021 (10 µM)
at 37◦C and 5% CO2. For lentiviral transductions, newly
seeded organoids were cultured with stimulation medium
for 2 days, containing additionally 50% Wnt3a conditioned
medium and 10 mM nicotinamide. Single cells were prepared
by treatment with AccuMAX for 10 min at room temperature,
resuspended in stimulation medium with additional Y-27632
(10 µM) and mixed with lentiviral supernatants (shTTL,
shscr) that were prepared following standard protocols. The
cells were then “spinoculated” for 60 min at 600 g in a cell
culture plate centrifuge, followed by 6 h of incubation at
37◦C and 5% CO2. Cells were collected, seeded in Matrigel
and cultivated with stimulation medium with additional
Y-27632 (10 µM) for 72 h before antibiotic selection with
puromycin (0.5 µg/ml) in standard medium was carried out.
For imaging and morphological analysis shRNA-expressing
organoids were seeded into ibidi 8 well µ Slides and covered
with culture medium supplemented with doxycycline (1 µg/ml).
Imaging was done for 168 h, every 24 h using a Leica Thunder
Imaging Microscope with a 5× objective, recording z-stack
tile scans. Z-stacks were transformed into 2D images using
the Leica Application Suite X software package’s extended
depth of field functionality. Organoid morphological data
was obtained by image analysis with OrganoSeg (Borten
et al., 2018). Immunostaining was performed after 4% PFA
fixation for 1 h at room temperature. The organoids were then
permeabilized with 0.2% Triton X-100 for 30 min and blocked in
5% BSA/PBS++ for 1 h at room temperature. Primary antibody
staining was performed overnight in blocking reagent at 4◦C.
Secondary antibodies labeled with the indicated Alexa Fluor

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 February 2021 | Volume 9 | Article 635723

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-635723 January 30, 2021 Time: 18:27 # 4

Müller et al. TTL-Expression and Epithelial Morphogenesis

FIGURE 1 | Characterization of MDCK, MDCK1TTL, MDCKTTL−GFP, and MDCK1TTL + TTL−GFP cells. (A,B) Cellular levels of detyrosinated, tyrosinated and
acetylated tubulin were assessed by western blot analysis of cell lysates from polarized MDCK, MDCK1TTL, MDCKTTL−GFP, and MDCK1TTL+TTL−GFP cells. Protein
concentrations of the lysates were determined and equal amounts were loaded on each lane of the SDS-PAGE. Relative protein expression was normalized to
GAPDH levels. Relative detyrosinated, tyrosinated and acetylated tubulin expression in each cell line as compared to MDCK cells. Quantities from MDCK cells were

(Continued)
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FIGURE 1 | Continued
set as 1. Mean ± SD, n = 4. Statistical significance was tested using one-way ANOVA with Dunnet’s comparison (n.s., not significant; P < 0.05; **P < 0.01;
***P < 0.001). (C–E) At indicated time intervals after filter-seeding MDCK cells were fixed and immunostained with pAb anti-β-catenin (Alexa Fluor 555) and mAb
anti-α-tubulin (Alexa Fluor 647). Xy-scans and xz-scans are depicted for each time interval and each cell line. Nuclei are indicated in blue; scale bars, 25 µm.
Quantification of cell height (D) and cell area (E). Mean ± SD, n = 3. Statistical significance was tested with two-way ANOVA and Bonferroni’s post-test (*P < 0.05;
**P < 0.01; ***P < 0.001). (F) Transepithelial resistance-measurement of MDCK, MDCK1TTL, MDCKTTL−GFP, and MDCK1TTL+TTL−GFP cells grown on filters for
6 days. Three filters were used for every cell line and the measurement was performed in triplicates. Mean ± SD, n = 3. Statistical significance was tested with
two-way ANOVA and Bonferroni’s post-test (***P < 0.001).

dyes were added in PBS++ for 1 h at room temperature. Cells
were washed three times with PBS++. Nuclei were stained
with Hoechst 33342. Following incubation, cells were washed
with PBS++ and mounted with Mowiol for fluorescence
microscopy. Protein lysates were prepared from shRNA-
expressing organoids cultivated in standard culture medium
with doxycycline (1 µg/ml) for 96 h. Organoids were disrupted
mechanically, Matrigel was washed off with 0.1% BSA in PBS
and cells were lysed in RIPA buffer. Lysates were stored at
−20◦C.

Organoid RTqPCR
mRNA was reverse transcribed from organoids using the
Trifast, reverse transcription protocol and mRNA expression
was quantified by RTqPCR using the 11Ct method,
normalizing to the housekeeping gene Ywhaz. RTqPCR
primers: mTtl_fwd1: 5′-CGACGAGAATAGCAGCGTCT-3′,
mTtl_rev1: 5′-AGGCTCGTGACCTAGTCTCC-3′, mYwhaz_
fwd: 5′-TTACTTGGCCGAGGTTGCT-3′, mYwhaz_rev: 5′-TGC
TGTGACTGGTCCACAAT-3′.

TER Measurement
To determine transepithelial resistance (TER), equal cell densities
of MDCK cells were seeded on six-well plate filter inserts and
incubated at 37◦C. TER measurement was performed every 24 h
using the Millicell ERS-2 Voltohmmeter (Millipore) in triplicates.
All TEER values were determined after subtracting the TER of
blank inserts. Values were expressed as �·cm2.

Cell Migration Assay
Cell migration was assessed in a wound-healing assay. MDCK
cells were cultured until a confluent monolayer was formed (2–
3 days). A straight scratch was made using a sterile micropipette
tip. Consistent cell-gap widths were measured for each cell line
to receive reproducible results. The cells were then washed with
PBS three times, and incubated in complete medium at 37◦C,
5% CO2 and high humidity. Wound closure was monitored
over time using a PAULA microscope equipped with the
corresponding analysis tools (Personal Automated Lab Assistant,
Leica Microsystems).

Trypsin-Sensitive Detachment Assay
Madin-Darby Canine Kidney cells were seeded on 12-well plates
coated or not coated with collagen Type I and cultured for
5 days at 37◦C with 5% CO2. For de-adhesion, cells were washed
with pre-warmed PBS and incubated with 1× trypsin/EDTA
(0.05/0.02%) solution for the indicated time points. Detached

cells were collected, washed twice with PBS and counted using
the Countess Cell Counter (Invitrogen).

Integrin Uptake Assay
To determine integrin internalization proteins at the cell surface
were biotinylated with NHS-SS-biotin for 30 min at 4◦C. Then,
uptake of proteins was allowed at 37◦C for 0 or 30 min
before non-internalized proteins were reduced by glutathione.
Cells were washed with PBS++, collected in lysis buffer by
mechanical detachment and incubated at 4◦C for 30 min on
a rotating platform. After centrifugation (17,000g for 15 min),
cleared lysates were incubated with neutravidin-agarose beads
(NeutrAvidin, Thermo Fisher Scientific) for 2 h at 4◦C. Finally,
beads were rinsed three times with washing buffer, once with PBS
and boiled in SDS/PAGE loading buffer for western blot analysis.

Proximity Ligation Assay
In situ Proximity Ligation Assay (PLA) was performed to analyze
the spatial proximity between vinculin and detyrosinated tubulin.
Cells were washed twice with PBS++, fixed and permeabilized
with ice-cold methanol for 5 min. The cells were blocked by
adding blocking solution (Duolink) for 1 h at room temperature.
Primary antibodies were incubated overnight at 4◦C. PLA probes
anti-mouse PLUS and anti-rabbit MINUS (Duolink) were added
and incubated for 1 h at 37◦C. Ligation-reaction and ligase were
added, followed by incubation for 30 min at 37◦C. Amplification
with fluorescent oligonucleotides was carried out for 100 min at
37◦C (Duolink, In Situ Detection Reagents Orange). Fluorescent
emission was investigated by confocal microscopy followed by
quantification with the Volocity software package (PerkinElmer).

Quantifications and Statistical Analysis
Band densities of western blots were measured using LabImage
1D software. Band density values were normalized to GAPDH.
The level of detyr-, tyr-, or acetyl-tubulin expression was set
to 1. For fluorescence microscopy image analysis intensities of
detyr- tubulin-, tyr- tubulin-, TTL-, or SI-positive fluorescence
was measured from a minimum of nine images in three
experiments using ImageJ. PLA spots were counted from a
minimum of 10 pictures in three experiments using Volocity. The
Volocity software package was also used to determine number
and size of focal adhesions. Cell area, height and fluorescence
intensities along predefined lines (line scans) were measured with
ImageJ routines.
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FIGURE 2 | Altered morphogenesis of small intestinal organoids following TTL-knockdown. (A) TTL mRNA expression levels were measured by RTqPCR in control
organoids expressing a scrambled (shscr) shRNA and TTL-knockdown organoids expressing shRNA targeting TTL (shTTL) after 96 h of culture in the presence
(+dox) or absence (–dox) of doxycycline. Values were calculated relative to scr –dox control and plotted as mean ± SD, n = 3. Statistical significance was tested
using one-way ANOVA with Dunnet’s comparison. (B,C) Cellular levels of detyr-tubulin, tyr-tubulin, acetyl-tubulin, and TTL were assessed by immunoblot analysis of

(Continued)
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FIGURE 2 | Continued
cell lysates from knockdown and control organoids. Relative protein expression was quantified and normalized to GAPDH levels. Quantities from scr –dox control
organoids were set as 1. Mean ± SD, n = 3. Statistical significance was tested using one-way ANOVA with Dunnet’s comparison (n.s., not significant; *P < 0.05;
***P < 0.001). (D–F) Representative images of TTL-depleted organoids after 168 h of culture in the presence of doxycycline. Images were taken with a 5× objective.
Scale bars overview: 100 µm, scale bars inset: 25 µm. Quantification of TTL and scr control organoid size and perimeter (E,F). Mean ± SD, n = 3, 15–20 organoids
per experiment. Statistical significance was tested with two-way ANOVA and Bonferroni’s post-test (**P < 0.01; ***P < 0.001).

RESULTS

Knockout or Overexpression of TTL
Changes Cell Shape and Epithelium
Formation
At first, expression of TTL was modulated in MDCK cell
lines by stable overexpression of a TTL-GFP fusion protein as
previously published (MDCKTTL−GFP) (Zink et al., 2012) or
by gene-knockout (MDCK1TTL). Under constantly enhanced
TTL-GFP levels the amount of detyr-tubulin was decreased in
MDCKTTL−GFP cells (Figures 1A,B). Opposing effects were
revealed in MDCK1TTL cells. These cells were depleted in
tyr-tubulin and enhanced in detyr-tubulin levels. In parallel,
acetylated microtubule quantities were also enhanced in
MDCK1TTL cells and declined in these cells if TTL-GFP
was expressed. This suggests that a complete removal of
TTL intracellularly accumulates detyrosinated and acetylated
microtubules. Expression of TTL-GFP in MDCK1TTL cells
consistently reduced acetylated and detyr-tubulin and restored
tyr-tubulin quantities to almost standard levels in MDCK cells.
Alterations in microtubule-disposition and the morphogenesis
of MDCK, MDCK1TTL, MDCKTTL−GFP, and MDCK1

TTL+TTL−GFP cells were assessed by immunofluorescence
analysis following up to 5 days of epithelial differentiation.
One day after plating, line scan analysis of α-tubulin intensities
revealed that a central, perinuclear packaging of microtubules,
which was very prominent in MDCK1TTL cells, was shifted to
a peripheral accumulation in MDCKTTL−GFP cells (Figure 1C
and Supplementary Figure 1A). Furthermore, early after
seeding MDCKTTL−GFP cells showed a much higher tendency
to join into islands of 6–12 columnar cells than MDCK or
MDCK1TTL cells (Figure 1C). MDCK1TTL cells had an
outspread and flat morphology and slowly reached a height of
only about 4 µm after 5 days in culture, which was rescued by
TTL-GFP-expression (Figure 1D). The apparent differences
in cell morphology have also been quantified by cross section
measurements of the four cell lines showing that MDCK1TTL
cells had the largest and MDCKTTL−GFP cells the smallest
diameter early after seeding (Figure 1E). Nevertheless,
all cell lines ended up with similar cell areas following
epithelial differentiation. Interestingly, the proliferation rate
of MDCK1TTL cells was significantly slower than that of
MDCK cells expressing the TTL enzyme (Supplementary
Figures 1B,C). Major alterations between the cell lines during
morphogenesis were further detected by measurement of
the TER, which provides an indication of epithelial barrier
integrity. Figure 1F shows for MDCK1TTL cells an instant
TER-increase to a maximum after 2 days following seeding
onto filter inlets indicating that they early assembled into flat

tight monolayers. On the other hand, the TER of MDCK,
MDCKTTL−GFP, and MDCK1 TTL+TTL−GFP cells gradually
ascended to reach a maximum after 4–6 days. Thus, the
flat morphology of MDCK1TTL cells seemed to facilitate
instantaneous monolayer formation even if the proliferation
rate was low. However, they had not reached full height and
were therefore not completely differentiated at that stage. In
contrast, MDCKTTL−GFP cells had a prematurely differentiated
morphology (Zink et al., 2012), which suggests that the
differentiated epithelial architecture was stabilized if cellular
quantities of detyr-tubulin were reduced.

To estimate if tubulin-tyrosination in general modulates
the differentiation of epithelial cells we extended our analysis
to cells from a different organ. Therefore, TTL-GFP was
stably overexpressed in epithelial colorectal Caco-2 cells.
Posttranslational tubulin modifications in Caco-2 cells following
TTL-GFP-overexpression were similar to the pattern observed
in MDCK cells with a significant decrease in detyr-tubulin
(Supplementary Figures 1D,E). In analogy to MDCK cells
TTL-overexpressing Caco-2TTL−GFP cells were taller and had
a smaller diameter than Caco-2 cells early after seeding
(Supplementary Figures 1F,G), thus indicating that the detyr-
/tyr-tubulin equilibrium determined the architecture of intestinal
as well as kidney epithelial cells.

We now switched from a 2D cell culture model to 3D culture
and monitored the organogenesis of small intestinal organoids
that were TTL-depleted by inducible gene-knockdown.
Therefore, crypts were isolated from mouse intestine and
infected with lentiviral vectors for non-specific scrambled or
specific TTL-shRNA production. TTL-knockdown efficiency
after doxycycline-induction was verified by RT-PCR and
immunoblot analysis (Figures 2A–C). Immunoblot analysis also
revealed that detyr-tubulin as well as acetylated tubulin were
significantly increased in TTL-depleted organoids. Following
7 days of incubation, Matrigel-embedded organoids in the
control group formed typical finger-like structures budding
outward, while TTL-depleted crypts made non-branched
spheroids of obviously reduced size (Figures 2D,E). The decrease
in organoid-branching following TTL-knockdown was further
reflected by perimeter-reduction as quantified in Figure 2F.
Especially the budding structures of control organoids showed
intense tyr-tubulin signals by whole mount immunofluorescence
staining (Figure 3A). The tyr-tubulin distribution from apical
to basal shifted toward the basal cell pole if TTL was depleted
(Figures 3B,C). On the other hand, a detyr-tubulin rise
following TTL-knockdown goes along with a reduction in cell
height and resulted in a cuboidal cell shape with an average
height:width aspect ratio of 1.32 in contrast to the average
aspect ratio of 2.41 from columnar cells in control organoids
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FIGURE 3 | Cell flattening in TTL-KD small intestinal organoids. (A,B) Control
organoids expressing sh scrambled (shscr ±dox, shTTL –dox) and
TTL-knockdown organoids expressing shRNA targeting TTL (shTTL +dox)
were fixed after 96 h of culture in the presence (+dox) or absence (–dox) of
doxycycline. GFP staining positively correlates with shTTL expression. The
samples were stained with antibodies against detyr- (Alexa Fluor 555) and
tyr-tubulin (Alexa Fluor 647). Inset boxes in (A) show budding areas with
elevated quantities of tyr-tubulin. Scale bars: 60 µm. (C) Tyr-tubulin intensities
were measured by line scan analysis from the basal to the apical cell pole. Ten
cells were analyzed from each experiment. Mean ± SD, n = 3. Statistical
significance was tested with two-way ANOVA and Bonferroni’s post-test
(*P < 0.05; **P < 0.01; ***P < 0.001). (D) Aspect ratios of control organoids
and TTL-knockdown organoids. Mean ± SD, n = 3. Statistical significance
was tested with Student’s t-test (n.s., not significant; ***P < 0.001).

(Figures 3B,D). These morphological changes are reminiscent
of consequences following knockout or overexpression of TTL
in Caco-2 and MDCK cells. Thus, a decrease in TTL-expression

seems to redistribute the polar distribution of tyr-tubulin, to
flatten epithelial cells in 2D and 3D with a broadened basal
membrane and to affect organoid formation as evidenced by
the lack of crypt-like budding structures formed in growing
TTL-knockdown mini-guts.

We then analyzed the TTL-distribution along the crypt-
villus axis in paraffin embedded human small intestinal samples
by immunofluorescence. Figures 4A,B shows a continuous
expression of TTL along intestinal villi and an abrupt decline
in the villus tip areas. Concurrently, enterocytes along the
villus have a columnar shape with an average aspect ratio
of 2.4 in contrast to enterocytes at the villus tip with an
aspect ratio of 1.54 (Figure 4C). This aspect ratio pattern
is reminiscent of crypts and villi in developing mouse
intestine (Sumigray et al., 2018). The detyr- and tyr-tubulin
distribution was also determined by immunofluorescence in
human small intestine using corresponding antibodies. Along
the crypt-villus axis detyr-tubulin quantities rose from the
villus area up to the villus tip. On the contrary, the amount
of tyr-tubulin and the brush border enzyme SI, a hydrolase
expressed in differentiated enterocytes, declined along this axis
(Figures 4D–H). A decline of tyr-tubulin and SI was most
dramatic at the extreme tip in the so-called extrusion zone
(Williams et al., 2015). Here, cells showed only faint TTL-
staining. In conclusion, data from epithelial cell lines, small
intestinal organoids and the small intestine altogether indicate
that epithelial morphogenesis is determined by TTL-expression
and that a loss of TTL is accompanied by cell flattening and a
broader basal cell membrane.

MDCK1TTL Cells Adhere Strongly and
Migrate Fast
Based on the observed cell flattening and expansion of the
basal part of the cells we assumed that cell adhesion to the
extracellular matrix was affected. Hence, we examined the
adhesion efficiency of our MDCK cell lines. Trypsin-induced
de-adhesion dynamics of MDCK, MDCK1TTL, MDCKTTL−GFP,
and MDCK1 TTL+TTL−GFP cells was determined on non-coated
(Figures 5A,B) or collagen-coated petri dishes (Supplementary
Figures 2A,B). MDCKTTL−GFP cells rapidly detached from the
underlying surface in the presence of trypsin. On the contrary,
MDCK1TTL cells strongly adhered to remain about 50%
confluent following 45 min of trypsin treatment. Overexpression
of TTL-GFP normalized the adhesion efficiency in MDCK1

TTL+TTL−GFP cells. Opposing effects following TTL-knockdown
or -overexpression were further reflected in the migration
characteristics of the two cell lines. Here, we performed scratch
wound healing assays, where a wound gap is created by scratching
in the cell monolayer. Healing of this gap by cell migration
and growth toward the center of the gap was then monitored
and quantified (Figures 5C,D). MDCK1TTL cells migrated
significantly faster than MDCK, MDCKTTL−GFP, and MDCK1

TTL+TTL−GFP cells, with MDCKTTL−GFP cells showing the slowest
migration pattern. In accordance with MDCK cells, TTL-
overexpressing Caco-2TTL−GFP cells adhered less and migrated
slower than Caco-2 cells (Supplementary Figures 2C–E).
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FIGURE 4 | Distribution of detyr-tubulin, tyr-tubulin, and TTL along intestinal villi. (A) Cross-sections of human small intestinal villi stained with antibodies against TTL
(Alexa Fluor 555) and sucrase isomaltase (SI; Alexa Fluor 647). Images were taken with a 20× objective. Nuclear counterstaining with Hoechst 33342 is indicated in
blue. Scale bars: 300 µm. Quantification of TTL staining (B), aspect ratios (C), and SI-intensity (D) of villus tip and mid-villus areas. Mean ± SD, n = 3 (nine pictures).
Statistical significance was tested with Student’s t-test (*P < 0.05, **P < 0.01). (E) Cross-sections of human small intestinal villi stained with antibodies against detyr-
(Alexa Fluor 555) and tyr-tubulin (Alexa Fluor 647). Images were taken as indicated above. Scale bar: 300 µm. (F) Magnified mid-villus areas or villus tips from detyr-
and tyr-tubulin-stained cross sections. Scale bar: 50 µm. (G,H) Quantification of detyr- and tyr-tubulin staining of villus tip and mid-villus regions. Mean ± SD, n = 3
(10 pictures). Statistical significance was tested with Student’s t-test (n.s., not significant; *P < 0.05, **P < 0.01; ***P < 0.001).
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FIGURE 5 | Influence of tubulin detyrosination on cell adhesion and migration.
(A,B) A trypsin-sensitive cell detachment assay was performed to measure
the strength of cell attachment. Confluent cell layers of MDCK, MDCK1TTL,
MDCKTTL−GFP, and MDCK1TTL+TTL−GFP cells were washed with PBS and
then incubated with warm trypsin/EDTA (0.05/0.02%) for indicated time
intervals. Scale bars: 100 µm. Quantitative results of the detachment assay
are depicted as percentage of detached cells (B). Mean ± SD, n = 4.
Statistical significance was tested with two-way ANOVA and Bonferroni’s
post-test (n.s., not significant; *P < 0.05; **P < 0.01; ***P < 0.001). (C,D)
Confluent monolayers of MDCK cells were scratch wounded to analyze
migration. Cells were recorded at 0, 3, 6 (3 and 6 not shown) and 9 h
post-scratching. (C) Mean cell migration velocity was calculated. Mean ± SD,
n = 5. Statistical significance was tested with Student’s t-test (n.s., not
significant; ***P < 0.0001). (D) Images recorded immediately after (0 h) or 9 h
post scratching are depicted. White dotted lines indicate the wound borders
at the beginning of the assay. Scale bars: 100 µm.

Cell migration essentially depends on the assembly and
disassembly of focal adhesions, which build up physical
connections between the extracellular matrix and the actin

cytoskeleton through transmembrane receptor integrins (Ridley
et al., 2003). Number and size of focal adhesions were quantified
in subconfluent MDCK, MDCK1TTL, MDCKTTL−GFP,
and MDCK1 TTL+TTL−GFP cells using the vinculin marker
(Figures 6A–C). In agreement with observations from fibroblasts
(Gundersen and Bulinski, 1988; Palazzo et al., 2004) the detyr-
tubulin-enriched tubules were oriented toward the leading edge
and their ends were in close proximity to vinculin-positive focal
adhesions. We counted significantly more focal adhesions in
MDCK1TTL than in MDCK or MDCK1 TTL+TTL−GFP cells
(Figure 6B). The lowest number of focal adhesions was found
in MDCKTTL−GFP cells. These observations were confirmed if
paxillin was immunostained as focal adhesion marker protein
(Supplementary Figures 3A–C). In addition, focal adhesions
were the smallest in MDCKTTL−GFP cells and the largest in
MDCK1TTL cells, which migrate faster (Figure 6C). This nicely
corresponds to the idea that the mean size of focal adhesions
predicts migration velocity (Kim and Wirtz, 2013).

In search for the reason for these size differences of focal
adhesions, we first analyzed the expression patterns of the
focal adhesion components vinculin, β1-integrin (CD29), focal
adhesion kinase (FAK) and paxillin in subconfluent or confluent
MDCK, MDCK1TTL, and MDCKTTL−GFP cells by immunoblot
(Figures 6D,E). However, quantification of the corresponding
bands did not reveal gross changes in their expression pattern
following modulation of TTL. This suggests that an increase
in focal adhesion size and quantity is not based on a general
increase in these focal adhesion components in MDCK1TTL cells.
It rather seems that following TTL-knockout the organization
and assembly of focal adhesions is altered.

Dynamics of Focal Adhesion
Compounds in MDCK1TTL Cells
We focused on two aspects in focal adhesion turnover to
address this point. At first, we checked a putative role of
posttranslationally modified microtubules in the endocytic
uptake of integrins. Therefore, β1-integrin was labeled with a
reducible biotin conjugate in MDCK and MDCK1TTL cells.
Internalization of biotin-labeled membrane proteins was allowed
for 30 min at 37◦C. Subsequently, biotin was removed from non-
internalized biotinylated proteins by glutathione. Precipitation
of internalized biotinylated proteins with neutravidin-beads and
immunoblot analysis revealed a significant decrease in β1-
integrin internalization in MDCK1TTL cells(Figures 7A,B and
Supplementary Figures 3D,E). This suggests that recycling of
integrin adhesion receptors is diminished if the detyr-tubulin-
concentration is elevated, which would prolong their residence
time at the plasma membrane.

Secondly, recent evidence indicates that microtubules are
coupled to focal adhesions via links formed by scaffolding
polypeptides (Rafiq et al., 2019). It thus seems plausible that
detyrosinated microtubules directly or indirectly interact with
vital focal adhesion components. We therefore determined
pulldown of acetylated, detyr-, or tyr-tubulin by vinculin-
mCherry from MDCK cell lysates. Vinculin-mCherry as
well as endogenously expressed vinculin was co-precipitated
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FIGURE 6 | Correlation between tubulin detyrosination and the number/size of vinculin-positive focal adhesions. (A–C) Subconfluent MDCK, MDCK1TTL,
MDCKTTL−GFP, and MDCK1TTL+TTL−GFP cells were immunostained with pAb anti-detyr-tubulin (Alexa Fluor 647) and mAb anti-vinculin (Alexa Fluor 546). Arrows

(Continued)
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FIGURE 6 | Continued
indicate colocalization of detyrosinated microtubule and vinculin. These focal adhesions are orientated in the direction of migration. Arrowheads indicate
vinculin-positive focal adhesions arranged at the edge of the isolated islands typically formed by MDCKTTL−GFP cells. Scale bar: 25 µm. (B) Quantification of
vinculin-positive focal adhesions per cell. Mean ± SD, 8–10 cells per experiment, n = 3 independent experiments. Statistical significance was tested using one-way
ANOVA with Dunnet’s comparison (n.s., not significant; **P < 0.01). (C) Schematic diagram showing the average size and shape from vinculin-positive focal
adhesions in MDCK, MDCK1TTL, MDCKTTL−GFP, and MDCK1TTL+TTL−GFP cells. Shape of focal adhesions is shown as ovals with best fit around length and width.
Average sizes are indicated by red lines, SD is depicted in orange. A total of 15–20 focal adhesions were measured per experiment. Scale bar: 1 µm. (D,E) Lysates
of subconfluent and confluent MDCK, MDCK1TTL, MDCKTTL−GFP, and MDCK1TTL+TTL−GFP cells were analyzed by immunoblot with antibodies directed against
vinculin, β1-integrin (CD29), focal adhesion kinase (FAK), and paxillin. Equal amounts (20 µg) of lysates were loaded. GAPDH served as a loading control. (E) Relative
quantities were normalized to GAPDH levels in cell lysates. Mean ± SD, n = 3 for subconfluent, and n = 4 for confluent cell lysates independent experiments.
Statistical significance was tested using one-way ANOVA with Dunnet’s comparison (n.s., not significant).

together with detyr- and acetylated tubulin (Figures 7C–E).
Moreover, the focal adhesion adapter kidney ankyrin repeat-
containing protein 1 (KANK1) and β1-integrin were pulled
down by vinculin (Figure 7E and Supplementary Figures 3F–I).
Interestingly, pulldown of these two focal adhesion components
was significantly increased in MDCK1TTL cells, which can
be explained by an increased number and size of focal
adhesion plaques under elevated detyr-tubulin concentrations.
Biochemical interaction between detyr-tubulin and focal
adhesion components was confirmed by spatial proximity
between detyr-tubulin and vinculin in proximity ligation
assays (PLA). Here, we found that vinculin and detyr-tubulin
frequently accrued to a maximum distance of 40 nm within
the cytosol (Figure 7F and Supplementary Figure 4). This
suggests that detyrosinated microtubules are closely connected
to the large protein complex of focal adhesions by direct
or indirect interaction. The next step was to find out if
enhanced detyr-tubulin levels in MDCK1TTL cells affect the
residence time of vital polypeptides at focal adhesions. Here,
we traced a photoactivatable vinculin-mEOS2 fusion protein,
which was photoconverted at individual focal adhesions using
405 nm laser excitation. When transfected into MDCK1TTL
cells the signal intensity of photoconverted vinculin-mEOS2
declined significantly slower than in MDCK cells (Figure 7G
and Supplementary Figure 5), thus indicating that high
concentrations of detyr-tubulin in MDCK1TTL cells positively
affect vinculin-residence at focal adhesions.

Considered together, the prolonged residence time of β1-
integrin at the plasma membrane and a longer persistence of
vinculin at cell adhesion foci following TTL-knockout strongly
argues in favor of a central role of TTL in focal adhesion
disintegration and in epithelial cell morphology.

DISCUSSION

In this study we show, that in the absence of TTL epithelial
cells alter their morphology as characterized by a loss of cell
elongation and stretching of the cell basis, which is facilitated by
elevated persistence of focal adhesions for cell attachment to the
extracellular matrix.

Focal adhesions often appear associated with microtubules. In
migrating cells detyrosinated or so called “pioneer microtubules”
with a characteristic decrease in catastrophe frequency are
oriented toward the leading edge (Wittmann et al., 2003). This

orientation is mediated by the formin mDia in NIH 3T3 cells
(Palazzo et al., 2001). Others found evidence for direct spatial
interaction between microtubules and adhesion sites (Kaverina
et al., 1998). These microtubules were stabilized at vinculin-
contact sites and destabilized in cells lacking these focal contacts.
Moreover, Palazzo et al. (2004) reported that cell adhesion
is required to form and maintain stable microtubules. Their
observations suggest that microtubules are stabilized at the
leading edge of migrating cells by an integrin-FAK-mediated
signaling cascade. Microtubules may also facilitate the targeting
of clathrin to focal adhesions for integrin-uptake and focal
adhesion disassembly in migrating cells (Ezratty et al., 2009).
In addition, they serve as tracks for secretory vesicles and
protein secretion in the vicinity of focal adhesions (Fourriere
et al., 2019). Recently, Bance et al. (2019) published that
microtubule acetylation promotes Rab6-positive vesicle fusion
at focal adhesions. They found that depletion of the major
tubulin acetyltransferase αTAT1 in primary astrocytes strongly
decreased microtubule acetylation and cell migration speed. This
positive correlation between the acetylation rate of microtubules
and cell migration is analogous to our observations of detyr-
tubulin enriched microtubules in epithelial cells. Acetylated
tubulin concentrations are additionally elevated following TTL-
knockdown in organoids or -knockout in MDCK cells, which
argues for the promotion of cell migration by acetylated
microtubules. The question if acetylated or detyrosinated
microtubules or even a combination of both are leading to the
observed effects in cell migration and morphology can thus
not definitively be assigned. It is interesting that transient TTL-
GFP-overexpression to reduce detyr-tubulin did not significantly
affect astrocyte migration (Bance et al., 2019). This is different
in epithelial Caco-2 or MDCK cells stably expressing TTL-
GFP, which migrate slightly but significantly slower. Here,
we found that especially the loss of TTL in MDCK1TTL
cells dramatically increases cell adhesion, number and size of
focal adhesions and migration speed. These modifications are
accompanied by alterations in cell morphology and monolayer
formation, which likely reflects cellular immaturity. On the
other hand, enhanced TTL levels prematurely elongate epithelial
cells into a columnar shape and thus stabilize the polarized
epithelial architecture (Quinones et al., 2011; Zink et al.,
2012). Consequently, after an initial boost the number of
detyrosinated microtubules drops down in polarized epithelial
cells that have passed through the differentiation process.
In agreement with this TTL-KO fibroblasts with increased
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FIGURE 7 | Integrin-internalization and vinculin-interaction following modulation of TTL. (A,B) Membrane proteins of MDCK and MDCK 1 TTL cells were biotinylated
with NHS-SS-biotin. Endocytosis of biotin-labeled membrane proteins was allowed for 0 or 30 min. Biotin label of non-internalized proteins was removed by reduced
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FIGURE 7 | Continued
glutathione. Cells were lysed, biotinylated proteins were precipitated with neutravidin-beads, and precipitates were analyzed by immunoblot against β1-integrin and
GAPDH. Corresponding lysate fractions are indicated as input. GAPDH was used as internal control. (B) The amount of internalized β1-integrin was normalized by
the total integrin quantities in the input. Mean ± SD, n = 3. Statistical significance was tested with Student’s t-test (**P < 0.01). (C) MDCK cells transfected with
vinculin-mCherry were lysed 36 h post-transfection. Cell lysates were incubated with RFP-Trap beads or blocked agarose beads (negative control). Western blots
were incubated with anti- vinculin-, anti- acetyl-, anti- detyr-, anti-tyr-tubulin, or anti GAPDH antibodies. (D) Quantification of the co-precipitation efficiencies of
posttranslationally modified α-tubulin from three independent experiments. The efficiency was normalized by the total quantities of each polypeptide in the input.
Statistical significance was tested with Student’s unpaired t-test (*P < 0.05). (E) MDCK1TTL cell lysates were incubated with anti-vinculin antibodies followed by
precipitation with agarose beads. Precipitates were analyzed by immunoblot using antibodies directed against acetyl, detyr-tubulin, KANK1, GAPDH, and vinculin.
Representative results, n = 3 independent experiments. PC, pre-clearing; IP+, immunoprecipitation using vinculin antibodies and agarose beads; IP–,
immunoprecipitation using agarose beads without antibodies. (F) Proximity ligation assays (PLA) were performed to analyze proximal association of detyr-tubulin and
vinculin in MDCK, MDCK1TTL, and MDCKTTL−GFP cells. Quantification of proximity ligation events as shown in Supplementary Figure 4. PLA signals were
significantly increased compared to the negative control of the nuclear speckles-marker Sc35 and β-catenin. Proximity between α-tubulin and the microtubule motor
protein Kif5 was used as positive control. Statistical significance was tested using one-way ANOVA with Tukey’s multi comparison (n.s., not significant; *P < 0.05;
**P < 0.01), n = 3 independent experiments. (G) Halftime of photoactivated vinculin mEOS at focal adhesions as recorded in Supplementary Figure 5. n = 3.
Statistical significance was tested with two-way ANOVA and Bonferroni’s post-test (**P < 0.01).
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FIGURE 8 | Schematic illustration of cell adhesion and flattening following TTL depletion in epithelial cells during monolayer formation. Cultured columnar epithelia
have vertical microtubules of uniform polarity with the minus-ends facing the apical surface. Interaction of microtubules enriched in detyr-tubulin and focal adhesions
(FA) extend the basal membrane surface area. CB, contractile belt; TJ, tight junction; AJ, adherens junction; ↑, upregulation; ↓, downregulation.

detyrosinated tubules lose their polarization (Peris et al., 2006)
and TTL-KO neurons show abnormal axonal differentiation
(Erck et al., 2005). These observations are in line with the
in vivo expression pattern of TTL along the small intestinal
villus, which indicates that enterocytes wearing off their polarized
architecture at the villus tip decrease TTL-expression and tyr-
tubulin quantities. A diminished enterocyte height has been
described for the particular pathologic conditions in coeliac
disease patients (Tabbaa et al., 1994) and in patients receiving
cancer chemotherapy (Keefe et al., 2000), both of which impair
intestinal absorption. Cell height is also decreased in the last
nephron sections of mouse or rat kidneys as assessed by
ultrastructural analysis of cells lining proximal tubules, which
is relevant to the renal transport physiology (Dorup and
Maunsbach, 1997; Zhai et al., 2006). This suggests that the
morphological changes induced in intestinal or renal epithelial

cells by removal or overexpression of TTL affect the functionality
of the whole organ.

Variations in the expression level of TTL have been previously
described. Low levels of this enzyme and an increase in detyr-
tubulin is a common feature of several types of cancer cells
(Mialhe et al., 2001; Kato et al., 2004; Soucek et al., 2006;
Rong et al., 2017). The expression pattern in tumor tissues
is thereby linked to tumor aggressiveness with a favorable
prognosis if TTL expression is high. Conversely, down-regulated
TTL expression in fibroblasts promotes tubulin detyrosination
and tumor growth in mice (Rong et al., 2017). Low levels of
TTL are furthermore critical for a process of cell-cell fusion
called trophoblast syncytialization since knockdown of TTL
restores the fusion capacity of cytotrophoblast cells derived from
preeclamptic placentae (Wang et al., 2019). In addition, tubulin
detyrosination is promoted in cells overexpressing VASH2, the
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enzyme that removes the C-terminal tyrosine of α-tubulin (Iida-
Norita et al., 2019). VASH2 overexpression results in strongly
increased migration of human pancreatic cancer cells. This
indicates that either downregulation of TTL and/or upregulation
of VASH2 enhance the cellular detyr-tubulin concentration,
which is critical for cell adhesion.

The question is how the formation of detyr-tubulin-enriched
tubules is related to highly spatially controlled focal adhesion
dynamics. Microtubule disruption in general modulates the size
of paxillin- or vinculin-containing focal adhesions (Bershadsky
et al., 1996; Zhang et al., 2010). The failure to form discrete
focal adhesions goes along with a marked decrease of detyr-
tubulin and ambiguous anterior–posterior polarity in migrating
fibroblasts (Morioka et al., 2009). A polarity-loss can be
explained by abnormal high microtubule turnover in these
cells, which would affect directional persistence in migration.
Another aspect would be that detyr-tubulin-enriched tubules
facilitate the assembly kinetics of focal adhesions or prevent their
disassembly. This scenario is favored by diminished recycling
of integrin adhesion receptors or a positive correlation between
focal adhesion augmentation and the quantity of detyr-tubulin-
enriched tubules in our experiments. Recent work indicates
that KANK proteins are required for targeting microtubules
to focal adhesions (Bouchet et al., 2016; Rafiq et al., 2019).
KANK-mediated microtubule coupling suppresses the ability of
the Rho nucleotide exchange factor GEF-H1 to be activated
by release from microtubules, a condition that limits the
growth of focal adhesions. Increased quantities of detyrosinated
microtubules would uncouple this regulatory interplay since
GEF-H1 does not seem to bind to detyrosinated microtubules
(Nagae et al., 2013). It is thus tempting to speculate that in
MDCK1TTL cells the loss of tyrosinated microtubules at focal
adhesions releases and thereby activates GEF-H1 to initiate a
RhoA/Rho kinase/myosin light chain signaling pathway that
finally promotes focal adhesion augmentation.

The nanoscale architecture and the relative disposition of a
multiplicity of focal adhesion components likewise defines the
dynamics of these complex structures (Horton et al., 2015). Our
study suggests preferential interaction of detyrosinated above
tyrosinated microtubules with an intricate network of KANK1,
integrin, vinculin, and most likely additional focal adhesions
components. As assessed by super resolution microscopy,
KANK1 is localized predominantly at the focal adhesion rim
(Stubb et al., 2019), where it interacts with the mechanosensitive
integrin-associated adaptor talin. This controls focal adhesion
dynamics and also serves as a binding hub for vinculin.
Accordingly, knockdown of KANK1 expression using siRNA
led to smaller cornerstone focal adhesions at the edge of cell
colonies (Stubb et al., 2019). The question if this reduction in
focal adhesion size is linked to a reduced microtubule coupling
remains to be elucidated.

CONCLUSION

To conclude, we summarize changes in cell morphology and
adhesion following alterations in the TTL-expression profile in

Figure 8. A reduction in TTL-expression in the initial phase
of epithelial monolayer formation goes along with an increase
in detyr-tubulin enriched microtubules, integrin-integration into
the basal membrane and stability of cell adhesion foci. The
basal membrane is enlarged and cell attachment is elevated.
On the other hand, enhanced TTL-expression diminishes the
amount of detyr-tubulin enriched microtubules, focal adhesion
foci, and adhesion capacity of the epithelial cell. Consequently,
the basal membrane has a smaller diameter and the cell’s height
increases to form a columnar cell shape. Altogether, these findings
shed new light on the roles that tubulin-detyrosination plays
in epithelial cell architecture and also in epithelial organization
per se.
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