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Abstract

Relapse of Ewing sarcoma (ES) can occur months or years after initial remission, and salvage therapy for
relapsed disease is usually ineffective. Thus, there is great need to develop biomarkers that can predict
which patients are at risk for relapse so that therapy and post-therapy evaluation can be adjusted accord-
ingly. For this study, we performed whole genome expression profiling on two independent cohorts of clini-
cally annotated ES tumours in an effort to identify and validate prognostic gene signatures. ES specimens
were obtained from the Children’s Oncology Group and whole genome expression profiling performed using
Affymetrix Human Exon 1.0 ST arrays. Lists of differentially expressed genes between survivors and non-
survivors were used to identify prognostic gene signatures. An independent cohort of tumours from the
Euro-Ewing cooperative group was similarly analysed as a validation cohort. Unsupervised clustering of
gene expression data failed to segregate tumours based on outcome. Supervised analysis of survivors versus
non-survivors revealed a small number of differentially expressed genes and several statistically significant
gene signatures. Gene-specific enrichment analysis demonstrated that integrin and chemokine genes were
associated with survival in tumours where stromal contamination was present. Tumours that did not harbour
stromal contamination showed no association of any genes or pathways with clinical outcome. Our results
reflect the challenges of performing RNA-based assays on archived bone tumour specimens. In addition,
they reveal a key role for tumour stroma in determining ES prognosis. Future biological and clinical investi-
gations should focus on elucidating the contribution of tumour:micro-environment interactions on ES
progression and response to therapy.
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Introduction

Ewing sarcomas (ES) are highly malignant neoplasms
of bone and soft tissue often affecting children, adoles-
cents and young adults. Although metastatic ES is still

usually fatal, intensification of multimodality therapy
has improved outcomes for patients with localized dis-
ease [1]. Patients with localized tumours treated on the
experimental arm of the most recent Children’s Oncol-
ogy Group (COG) study (AEWS0031) experienced
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5-year event-free survival (EFS) rates near 75%
[2]. Similar results were obtained for the Euro-
Ewing99-R1 study within the European cooperative
groups [3]. Such intensive therapy results in signif-
icant and often life-threatening short- and long-
term morbidities [4,5]. Moreover, despite dose
intensification and aggressive local control, relapses
can occur months or years after initial clinical
remission, and salvage therapy is usually ineffective
[1]. Therefore, cure of ES is largely dependent on
eradication of the disease during initial therapy, and
biomarkers are needed that can predict relapse at
the time of diagnosis. Although several copy
number alteration and TP53 mutational studies
have shown promise as prognostic biomarkers,
none have yet been successfully validated prospec-
tively [6].

There has been abundant research to evaluate
whether gene expression profiling can be used to
risk-stratify cancer patients at diagnosis. First demon-
strated to be feasible in breast cancer [7], this prog-
nostic approach has been evaluated and validated in
other human cancers [8,9], including paediatric
malignancies such as neuroblastoma [10–12], rhabdo-
myosarcoma [13–15], and leukaemia [16,17]. Several
small ES genome-wide profiling studies have been
reported, and non-overlapping candidate prognostic
biomarkers were identified [18–21]. However, none
of the candidate prognostic gene signatures has been
prospectively validated in independent cohorts of
equivalently treated patients.

For this study, we profiled gene expression in ES
biopsies collected from patients on COG therapeutic
studies. These gene profiles were used to identify
differentially expressed genes and gene signatures
that associated with clinical outcome. We also
tested whether identified biomarkers could be vali-
dated in an independent set of tumours from patients
treated on parallel European Cooperative group tri-
als. Our findings reveal a key role for tumour–stro-
mal interactions in determining prognosis-associated
genes in ES.

Materials and Methods

Sample accrual

Tumour specimens obtained from COG Biorepository
in Columbus, OH (Cooperative Human Tissue Net-
work—CHTN) were prospectively acquired from
patients on clinical trials INT-0154 (CCG-7942,
POG-9354) and AEWS0031, the two most recent
protocols for localized ES. An independent set of

tumours was obtained from the EuroEWING tumour
biorepository in M€unster, Germany. These were pro-
spectively acquired from patients registered on Euro-
pean Intergroup Cooperative Ewing’s Sarcoma Study
(EICESS) 92 and Euro-Ewing 99 [3,22]. Criteria for
inclusion of tumours in this molecular profiling study
included confirmation of localized disease at presen-
tation, registration on a clinical trial (as above), and
availability of outcome data and frozen tumour tis-
sue. Diagnosis of ES was reaffirmed by pathological
review, and an estimate of viable tumour cells rela-
tive to non-tumour cells as well as an estimate of
tumour necrosis was made for all samples using hae-
matoxylin and eosin stained sections. Molecular anal-
ysis of COG and EuroEWING tumours was
performed using RT-PCR for EWS-FLI1 and EWS-
ERG fusions, as previously reported [23,24]. All
tumours were assigned an anonymous identifier and
deidentified specimens and clinical data were pro-
vided to the investigators. All samples and clinical
correlative data were obtained in compliance with the
health insurance portability and accountability act.
Review and approval by participating institutions was
obtained in accordance with an assurance filed with
and approved by the Department of Health and
Human Services (US institutions) or European
authorities. Informed consent for use of tumour sam-
ples for research was obtained from each subject or
subject’s guardian prior to collection and banking of
the tissue.

RNA isolation and exon array pre-processing

Total RNA was isolated using miRNAeasy kits (Qia-
gen, Valencia, CA). RNA concentrations were calcu-
lated using a Nanodrop ND-1000 spectrophotometer
(Nanodrop Technologies, Rockland, DE) and RNA
integrity (RIN) was evaluated using the RNA 6000
PicoAssay (Agilent Technologies, Santa Clara, CA).
RNA samples with RIN values of <4.0 were sub-
jected to an RNA cleanup step using the mRNAeasy
kit (Qiagen, Valencia, CA). RNA samples with a
RIN value of >4.0 were analysed using Affymetrix
GeneChip Human Exon 1.0 ST arrays. Samples were
processed in the Genomics Core at Children’s Hospi-
tal Los Angeles according to Affymetrix protocols
(Affymetrix, Santa Clara, CA). Affymetrix power
tools (APT) was used to generate normalized gene-
level signal intensity estimates [25]. Affymetrix
library files and annotation files were downloaded
from the company’s website (www.affymetrix.com).
Processing included background correction, normal-
ization, log2 transformation and probeset summariza-
tion. Only core probesets uniquely mapped to the
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genome were used. Various quality control measures
were assessed, including density plots and the mean
absolute deviation of the residuals. Multi-dimensional
scaling was used to detect any sample outliers. Filter-
ing genes under-detected in samples of interest was
accomplished by requiring the detection of more than
half the probesets in a gene (DABG value< 0.05)
and only retaining genes appearing in at least 60% of
the samples in each group. The empirical Bayes
ComBat algorithm was applied to remove any batch
effects [26].

Consensus clustering and determination of
differentially expressed genes

We used consensus clustering to determine if groups
could be segregated based on gene expression pat-
terns. Briefly, the top 5,000 most variable genes, as
determined by median absolute deviation, were
selected. Then 80% of the samples were re-sampled
1,000 times. Each time, an agglomerative hierarchical
clustering algorithm was applied on a 1-Pearson cor-
relation distance matrix using the R package Consen-
susClusterPlus [27]. Differentially expressed genes
were identified by applying the moderated t-test
implemented in Bioconductor applying the Limma
package [28]. The p-values were corrected for multi-
ple hypothesis testing using the Benjamini-Hochberg
procedure [29]. Genes with a corrected p-value< 0.2
and absolute fold-change> 1.3 were considered as
differentially expressed between survivors and non-
survivors. The Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.7 [30] was
used for the functional enrichment analysis of the dif-
ferentially expressed genes. The false-discovery rate
(FDR) of enriched gene ontology terms was set
to 0.25.

Generation of putative prognostic gene expression
signatures

To assess the potential for identifying prognostic
gene signatures by chance, we randomly selected 5,
10 and 20 candidate signature differentially expressed
genes, and the area under the receiver–operator curve
(AUC) was calculated for each [31]. A similar proce-
dure was repeated 10,000 times for the same-sized
random gene sets from the 10,824 genes used in the
study. The number of times the AUC from the ran-
dom gene sets exceeded that from the differentially
expressed gene sets was used to calculate the permu-
tation p-value. Gene sets with a permutation p-val-
ue< 0.05 were considered as the putative prognostic
gene signatures.

To rank the genes according to their contribution
in discriminating the samples with different survival
status, the variable importance measure (VIM) of
each was calculated using an AUC-based permutation
measure derived from a random forest classification
(Bioconductor package ctree, [32]). The top 5, 10
and 20 genes with highest VIM values were selected,
and their prognostic signature scores and the AUCs
were computed and compared with those from ran-
domly selected gene signatures of the same size.

Survival status prediction

To build a classification model, random forest, sup-
port vector machines and logistic regression were
used [33–35]. Random forest outperformed the other
methods and was chosen for classification modelling.
Briefly, for each candidate signature, the genes with
absolute correlations above 0.75 were excluded to
reduce the level of correlation. Next, samples were
randomly split into training (2/3) and testing sets (1/
3). The ntree (number of trees) parameter was set to
500, and leave-one-out cross-validation was used to
evaluate the effect on performance with different
mtry (mtry 5 number of genes samples 5 2, 3, 4, 5,
6). Using the R package caret [36],the training set
was ‘re-trained’ using the optimal values to obtain a
final prediction model for each gene signature.

Demographics and outcomes analyses

To determine if the analytic cohort was representa-
tive of patients registered on the therapeutic studies,
each characteristic was checked separately by the
exact conditional test of proportions [37]. Age at
enrollment was checked as a categorical variable
(<10, 10–17, �18 years) and also as a continuous
variable using the t-test. EFS and overall survival
(OS) were compared between each analytic group
and corresponding study population. EFS was
defined as time from enrollment until disease pro-
gression, diagnosis of a second malignant neoplasm,
death or last patient contact, whichever occurred
first. OS was taken to be the time from enrollment
to death or last patient contact (at which time they
were censored), whichever occurred first. EFS and
OS were estimated by the method of Kaplan and
Meier, and the relative risks for event and death
were compared across the groups using the log-rank
test [38]. Data from INT-0154 (1995–1998) and
AEWS0031 (2001–2008) current to July 2007 and
March 2009, respectively, were used for analysis.
The analyses were done in SAS 9.2 using PROC
LIFETEST and PROC FREQ.
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Results

Banked ES tumour specimens yield limited
samples with quality RNA

The COG has collected ES specimens to its central
biorepository for 20 years and since 2002 this has
been achieved through two sequential banking proto-
cols [39]. Microarray profiling is optimally per-
formed on RNA that is extracted from fresh or
freshly frozen tumour samples and at the time of
study initiation, protocols for RNA profiling of
formalin-fixed, paraffin-embedded samples had not
yet been sufficiently developed. Therefore, we
restricted our study to include only tumours for
which frozen tissue was available. As shown (Figure
1A), 287 frozen tumour specimens were identified
and subjected to RNA extraction. Fewer than 25% of
these samples yielded RNA of sufficient quality
(RIN� 4.0) to proceed with array-based analysis
(Figure 1A, B). In sum, 69 Affymetrix CEL files
were generated from 67 patients. Clinical and patho-

logical data review of the 67 cases resulted in the
exclusion of 11 tumours: eight patients with meta-
static disease, two from patients not registered on a
therapeutic study and one with less than 10% viable
tumour cell content. Thus, despite the relative abun-
dance of banked material, only limited RNA of suffi-
cient quality and quantity was available for array
profiling.

The analytic cohort is representative of the
general ES patient population

Affymetrix CEL files were generated from 56
unique, clinically annotated tumours. All were
obtained from patients who were registered on either
AEWS0031 (N 5 48) or INT-0541 (N 5 8). There
were no statistically significant differences in demo-
graphics between patients in the analytic population
and the remainder of patients enrolled on the two
studies from which the analytic population was
drawn. However, there was a relative dearth of
extremity primary tumour sites (18.8 vs. 35.6%) and

Figure 1. (A) Flowchart detailing sample selection and RNA isolation for COG tumour specimens. (B) Frequency distribution of RNA
integrity (RIN) values across the 142 samples. Only samples with a RIN �4.0 are used for HuEx array analysis. (C) Kaplan–Meier curve
demonstrating that event-free survival for the 48 analysed patients treated on COG AEWS0031 (dotted line) is similar to the study
population as a whole (solid line). (D) Kaplan–Meier curves demonstrating that the EFS for the eight analysed patients treated on
INT-0154 is similar to the study population as a whole.
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an excess of non-extremity, non-pelvis primary
tumour sites (62.5 vs. 48.8%) in the AEWS0031
tumours (p 5 0.053). Pelvic tumours are difficult to
biopsy and primary extremity ES in paediatric
patients are mainly in bone. In contrast, soft tissue
tumours are more readily accessible for biopsy sam-
pling and are more likely to be submitted for correla-
tive biology studies [39]. Also, the requirement for
decalcification would have further diminished the
availability of fresh bone tumour material for this

study. Thus, both surgical and pathological issues
contributed to the relative over-representation of non-
pelvic tumours in the analytic cohort.

Next, clinical outcomes were compared. EFS and
OS for the 48 analytic cases from AEWS0031 were
61.8 and 72.1%, respectively, compared to 70 and
81.3% for the study as a whole (EFS p 5 0.2, OS
p 5 0.1) (Figure 1C). EFS for the eight patients regis-
tered on INT-0514 was 75% (compared to study
EFS 5 71%, p 5 0.8; Figure 1D), and OS was 72.9%

Figure 2. (A) Multi-dimensional scaling is applied to 5000 genes with the greatest variance in expression. The dimensionality reduc-
tion is displayed in three dimensions, illustrating two outliers and a batch of eight samples that were scanned and processed on a
different instrument. (B) Unsupervised hierarchical clustering of the 2,201 most differentially expressed gene transcripts does not
demonstrate any grouping of samples based on any clinical metric. (C) Flowchart describing the identification of differentially
expressed genes and (D) candidate prognostic gene sets.
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(compared to study OS 5 78.7%, p 5 0.8). The ana-
lytic population was thus deemed to be representative
of the general ES population with respect to both
demographics and outcome.

Unsupervised analysis fails to discriminate
tumours on the basis of clinical or pathological
parameters

Quality control assessment of the 56 tumour data
files resulted in the identification of two outliers and
eight cases that clustered together yet deviated signif-
icantly from the remainder of samples (Figure 2A).
The eight samples that clustered together were proc-
essed on a different slide scanner, and the discrep-
ancy in chip signal intensity between these eight
chips and the remaining samples was determined to
be a technical artefact that could not be corrected
using the batch effect correction algorithm (see Mate-
rials and Methods section). The two outliers showed
expression profiles that deviated significantly from
the remaining tumours. Having failed rigorous quality
control, these ten cases were excluded from further
analysis.

The remaining 46 tumours that were subjected to
outcomes analysis are summarized in Table 1. Raw
data CEL files and normalized data for these and the
validation set (see below) are available at GEO
(GSE63157). Unsupervised analyses of the 46 tumour
profiles were first performed to determine if ES natu-
rally segregate into different clinical or pathological
groups on the basis of differential gene expression.
To achieve this, we performed hierarchical clustering
using the most highly variable transcripts (N 5 2,201
transcripts with coefficient of variance (CV)> 0.15
across all tumours). As shown, Figure 2B, no segregation

of tumours into distinct groups was evident. In fact,
tumours from survivors and non-survivors, bone and
soft tissue origins and pelvic and non-pelvic sites did
not cluster together but were widely dispersed with
respect to gene expression. Similarly, there was no
clustering of tumour samples based on timing of the
biopsy, before or after induction chemotherapy, or on
molecular translocation type. In two cases, no fusion
was detected and in a third molecular diagnostics
were unavailable. The recent discovery of alternative
fusions in rare Ewing-like sarcomas raises the possi-
bility that these three cases might have been Ewing-
like tumours rather than ES [40,41]. However, given
their clinical and histological diagnosis of ES and
their inclusion in ES therapeutic studies, these
patients were retained for analysis of prognostic gene
signatures. Thus, genome-wide expression profiling
of this small but representative cohort of tumours
suggests that distinct clinical sub-groups, as defined
by differential expression of protein encoding genes,
do not exist in ES.

Differentially expressed genes and gene signatures
associate with clinical outcome

Next, we performed supervised analyses to compare
gene expression between tumours derived from sur-
vivors and non-survivors (Figure 2C, D). This anal-
ysis identified only 33 differentially expressed
genes, and all but five were up regulated in non-
survivors (Table 2). Gene ontology analysis of these
differentially expressed genes revealed a significant
enrichment for biological processes involved in cell
motility, cell migration and cell adhesion,

Table 1. Patient demographics and tumour pathology: 46 COG
patients

Clinical Features Pathological Features

Age Source of specimen
Average (range) 11.8 yr (3 mo-19yr) Pre-chemo biopsy 38

Median 13 yr Post-chemo resection 8

Gender Histology
Male 27 >70% viable tumour 33

Female 19 50–70% viable tumour 6

Tissue of origin <50% viable tumour 4

Bone 26 No info 3

Extra-osseous 19 Fusion (RT-PCR)
Not specified 1 Positive 43

Therapeutic study Neg 2

AEWS0031 38(24 standard, 14 IC*) Unknown 1

INT-0154 8

*IC, interval compression

Table 2. Differentially expressed genes—non-survivors vs. survi-
vors gene list (FDR < 0.2 and FC > 1.3)

Gene
symbol

Fold
change p

Gene
symbol

Fold
change p

ANPEP 1.65 0.0004 PLXNA2 1.50 0.0006

C10orf10 1.51 0.0003 PODXL 1.51 0.0004

CCL18 3.38 0.0001 PTPRB 1.70 0.0001

CDH5 1.52 0.0003 RAPGEF5 1.56 0.0001

CFI 1.47 0.0004 RGS16 1.36 0.0004

CTSC 1.82 0.0007 RPS6KA2 1.59 0.0005

DCBLD1 1.55 0.0001 SLC29A1 1.60 0.0000

DDIT3 1.52 0.0003 TP53I11 1.32 0.0005

EMR2 1.31 0.0005 TSPAN15 1.40 0.0003

ENG 1.42 0.0002 VEGFC 1.38 0.0002

HEY2 1.59 0.0005 VWF 1.64 0.0001

ICAM1 1.44 0.0005 FBXO15 0.68 0.0005

IL6 1.41 0.0004 GSTM2 0.63 0.0002

ITGA9 1.58 0.0001 LOC100132167 0.60 0.0004

LYN 1.59 0.0003 NBPF3 0.47 0.0000

NKAIN1 1.45 0.0005 TET1 0.63 0.0005

PLEK 1.64 0.0006
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implicating differential expression of metastasis-
associated programmes in disease relapse and pro-
gression (Table 3). Interestingly, low levels of
GSTM2, a gene that encodes for a key enzyme in
glutathione metabolism, were associated with worse
outcome (Table 2). This finding corroborates earlier
studies that demonstrated an association between
expression of other glutathione metabolism genes
and ES outcome [21,42]. In addition, lower level
expression of TET1 in poor prognosis tumours
(Table 2) is of interest given the key role that TET1
plays in DNA demethylation and the recent discov-
ery of loss of function mutations in TET genes in
human cancer [43,44].

Individual genes are rarely useful as prognostic
biomarkers, whereas gene signatures can more often
be successful predictors of outcome. Therefore, we
next generated candidate gene signatures that incor-
porated three or more of the differentially expressed
genes and calculated their potential as prognostic sig-
natures. As expected, given that these signatures
were derived from this same group of tumours, the
ability of the signatures to classify survivors and
non-survivors was excellent (Table 4).

Gene Set Enrichment Analysis identifies stromal
interactions and chemokine signalling as
prognostic variables

To investigate the potential existence of multi-gene
programmes that were associated with outcome, we
next performed gene set enrichment analysis
(GSEA). Interestingly, this analysis identified both
integrin pathway (Figure 3A) and chemokine receptor
signalling (Figure 3B) gene programmes as being up
regulated in tumours from non-survivors. The discov-
ery of upregulated chemokine signalling genes in
poor prognosis tumours is consistent with a prior
microarray-based study of ES that identified
increased expression of CXCR4 and CXCR7 as bio-
markers of aggressive disease [18]. In the COG
cohort, high CXCR7 was associated with diminished
survival (Figure 3C, D), whereas CXCR4 expression
did not correlate with outcome (not shown).

Prognostic gene signatures were not validated in
an independent cohort of patient tumours

For validation, we profiled a completely independent
set of 39 tumour biopsy samples obtained from
patients registered on the European collaborative
group clinical trials (30 from EuroEwing 99 and 9
from EICESS 92). These studies were run in parallel
to the COG trials and outcomes were comparable
between the groups. Of the 39 patients evaluated, 28
were long-term survivors. Unexpectedly, no differen-
tially expressed genes were identified between survi-
vors and non-survivors in the European cohort
(FDR< 0.2 and fold-change> 1.3). In addition,
GSEA analysis of the European tumours also failed
to identify significantly enriched gene sets
(FDR< 0.25). Moreover, consistent with the absence
of an intrinsic prognostic signature, the COG-derived
genes failed to classify the European tumours. Thus,
despite their identification as potential prognostic

Table 3. Differentially expressed genes—non-survivors vs. survi-
vors: Enriched gene ontologies in non-survivors (biological pro-
cess p < 0.01 and >4 genes/category)

Term # of Genes p

GO:0016477�cell migration 6 0.0002

GO:0048870�cell motility 6 0.0003

GO:0051674�localization of cell 6 0.0003

GO:0009611�response to wounding 7 0.0004

GO:0001568�blood vessel development 5 0.0011

GO:0001944�vasculature development 5 0.0013

GO:0007155�cell adhesion 7 0.0018

GO:0022610�biological adhesion 7 0.0018

GO:0006928�cell motion 6 0.0019

GO:0001775�cell activation 5 0.0021

GO:0042127�regulation of cell proliferation 7 0.0032

GO:0006955�immune response 6 0.0092

Table 4. Differentially expressed genes—non-survivors vs. survivors, prognostic gene signatures from differentially expressed genes

Signature AUC Accuracy Sens Spec

CFI, RGS16, CDH5, SLC29A1 0.925 0.929 1.000 0.900

CTSC, ANPEP, ITGA9, DCBLD1 0.913 0.857 1.000 0.800

SLC29A1, CFI, TSPAN15, DDIT3, EMR2 0.925 0.857 1.000 0.800

DCBLD1, GSTM2, LYN, RAPGEF5 0.925 0.857 0.750 0.900

ANPEP, C10orf10, LOC100132167, NBPF3, PLEK 1.000 1.000 1.000 1.000

CTSC, DCBLD1, RGS16, TET1, CCL18, SLC29A1 1.000 0.929 1.000 0.900

LOC100132167, HEY2, TP53I11, SLC29A1, RGS16, VWF 0.950 0.929 1.000 0.900

IL6, EMR2, CCL18, GSTM2, TP53I11, CTSC, DDIT3, RGS16,
SLC29A1, ITGA9, TET1, HEY2, ICAM1, RPS6KA2

1.000 1.000 1.000 1.000

EMR2, NBPF3, CCL18, SLC29A1, ICAM1, LOC100132167,
PODXL, NKAIN1, FBXO15, IL6, ANPEP, GSTM2, TET1

0.975 0.857 0.750 0.900

AUC, area under the curve; Sens, sensitivity; Spec, specificity
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biomarkers in the COG cohort, none of the genes or
gene signatures that were identified in the test set
could be validated in an independent group of clini-
cally similar patients.

Stromal cell content impacts on gene expression
and prognostic classification of ES tumours

The absence of independent prognostic genes or gene
sets and the failure to validate the candidate prognos-
tic biomarkers in the European tumour cohort led us
to hypothesize that there may have been unappreci-
ated differences between the groups. To address this,
we reviewed their pathological features (Table 1) and
noted that, while ten of the COG samples contained
substantial stromal contamination, all of the tumours

in the European cohort were composed of more than
70% viable tumour. The nature of non-tumour stroma
in the COG tumours varied but included both normal
and reactive fibrovascular tissue as well as normal
connective tissue into which the tumour cells had
infiltrated (see representative H&E images in supple-
mentary material, Figure 1). Given these histological
distinctions, we reasoned that the ability to uniquely
identify prognostic genes in the COG cohort might
have been due to differences in non-tumour stroma
content. To address this, we repeated supervised anal-
ysis of the 43 COG tumours for which detailed infor-
mation on stromal content was available. GSEA was
independently performed on tumours that showed sig-
nificant stromal content (N 5 10; stromal content
>30% of sample) and tumours that were primarily

Figure 3. Gene set enrichment demonstrating that integrin (A) and chemokine receptor signalling (B) pathways are more highly
expressed in tumours from subjects who succumbed to their disease. Kaplan–Meier curves demonstrating that event-free survival (C)
and overall survival (D) for patients with high levels of CXCR7 expression (above median) are worse than for patients with low level
CXCR7 expression (below median).
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composed of viable tumour cells only (N 5 33; stro-
mal content <30% of sample). Interestingly, this
analysis failed to identify any prognostic gene sets in
the tumour-rich samples (Table 5). In contrast, the
prognosis-associated gene sets that were identified in
the cohort as a whole were mostly attributed to the
stroma-rich tumours (Table 6). These findings
together demonstrate the appreciable contribution of
tumour heterogeneity to prognostic biomarkers in ES
and provide evidence that tumour–stromal interac-
tions are critical determinants of tumour behaviour
and response to therapy.

Discussion

ES is a highly aggressive bone and soft tissue
tumour, which is associated with a high rate of recur-
rence and no clinically validated prognostic bio-
markers. In this study, we report the findings of a
multi-centre, international effort designed to deter-
mine if gene expression profiling could be used to
classify patients with localized ES into low- and
high-risk categories.

The quality of RNA isolated from the >250 patient
samples in the COG biorepository was largely insuf-

ficient for Affymetrix HuEx-based profiling, and we
were able to generate data for only 59 patients with
localized disease. Three tumours were excluded from
analysis due to inadequate tumour content or a lack
of available outcome data. An additional ten patients
required exclusion for reasons of divergent chip sig-
nal intensity. Thus, we were able to generate quality
gene expression profiles for only 46 patients, illus-
trating the challenges encountered when RNA-based
assays are used for analysis of banked sarcoma speci-
mens, especially bone sarcomas. Moreover, they
show that, even with rigorous batch-correcting algo-
rithms, it is sometimes impossible to correct for tech-
nical differences that contribute significantly to
variations in signal intensities, skewing results and
adversely impacting interpretation of microarray data.

The strengths of this study include prospective
tumour collection, cooperative group therapeutic tri-
als and independent analysis of two distinct patient
cohorts. In addition, we made use of rigorous statisti-
cal algorithms to ensure quality control, resulting in
an 18% reduction in our sample size, essential to
ascertain that the final clinical correlates analyses
were not skewed by non-biologic factors. Failure to
appreciate technical variability and use of less rigor-
ous bioinformatic analytic tools can lead to invalid
conclusions from microarray data [45].

Unsupervised analysis of the 46 COG tumours
revealed no separation into sub-groups based on dif-
ferences in overall gene expression. It should be
noted, however, that this unsupervised approach
would not necessarily be able to classify tumour sub-
groups that might exist due to differences in biologic
pathways. Supervised analyses of the data using strat-
egies designed to test specific pre-determined hypoth-
eses may uncover differences that would not be
evident with unsupervised clustering methods. As
examples, supervised comparison of gene expression
profiles between BMI-1 over-expressing and BMI-1
negative ES revealed differences in pathway activa-
tion not evident from unsupervised analyses agnostic
to BMI-1 status [46]. Likewise, subtle differences in
gene expression are detectable between tumours with
different EWS-ETS fusions, but these differences are
only apparent when supervised analysis of the data is
performed [23]. Thus, going forward these microar-
ray data from well-annotated patient tumours will
provide a rich resource for directed investigations
into the role of specific biological pathways in ES
pathogenesis.

The most striking finding in our study was that
prognostic genes and gene signatures were not vali-
dated in an independent cohort. Indeed, we were
unable to identify any genes or gene sets that were

Table 5. Prognostic gene sets are determined by stromal con-
tent: Comparison of gene set enrichment results in COG
tumours with and without significant stromal contamination

Outcome

<30% Stroma >30% Stroma

# of
cases

# of Enriched
genesets

# of
cases

# of Enriched
genesets

Survival

Dead 7 0 4 9

Alive 26 0 6 0

EFS

Event

(Relapse/SMN*)

11 0 4 9

No event 22 0 6 0

*SMN, secondary malignant neoplasm (1 case); relapse (10 cases)

Table 6. Prognostic gene sets are determined by stromal con-
tent: Enriched pathways found in COG samples with stromal
content

Name p-Val FDR q-val

KEGG_ALLOGRAFT_REJECTION 0.037 0.203

PID_HES_HEYPATHWAY 0.000 0.209

PID_INTEGRIN_CS_PATHWAY 0.000 0.211

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS 0.000 0.223

REACTOME_INTEGRIN_ALPHAIIB_BETA3_SIGNALING 0.000 0.228

BIOCARTA_VEGF_PATHWAY 0.000 0.234

PID_INTEGRIN2_PATHWAY 0.144 0.235

PID_SYNDECAN_1_PATHWAY 0.025 0.241

BIOCARTA_FCER1_PATHWAY 0.011 0.250
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significantly associated with outcome in the Euro-
pean cohort. Interestingly, detailed analysis of the
pathological profiles of the two cohorts revealed a
potential explanation for these observations. The
most enriched prognostic gene sets in the COG
tumour group were largely associated with pathways
involved in tumour–stroma or other tumour–host
interactions. In particular, integrin and chemokine
signalling were identified as contributing to progno-
sis. However, these gene sets were only enriched in
COG tumours that contained an abundance of non-
tumour cell elements including reactive fibrovascular
tissue, normal connective tissue or both. Tumours
that were composed of relatively pure populations of
viable tumour cells with little stroma showed no
association of any genes or pathways with clinical
outcome. What remains unclear from these studies is
the precise source of the differential gene expression
between survivors and non-survivors in the stroma-
rich samples. While it is possible that altered gene
expression in the tumour cells themselves accounted
for the observed differences, it is equally possible
that non-malignant cells in the stroma-rich samples
contributed to the prognostic gene expression signa-
tures. Future studies will need to address both of
these possibilities. Specifically, immunohistochemical
staining of candidate prognostic proteins will need to
be performed to define the contribution of tumour
and non-tumour cells to chemokine- and integrin-
associated pathway activation in ES tumours.

Despite these caveats, it is interesting that recent
studies support a key role for both integrin-dependent
and chemokine signalling in mediating ES progres-
sion. Specifically, high levels of activation of focal
adhesion kinase (FAK), a central regulator of integrin
signalling that promotes cell adhesion and migration,
are evident in ES and inhibition of FAK attenuates
tumour growth [47]. In addition, the metastatic
capacity of ES cells that is conferred by activation of
the ERBB4 tyrosine kinase receptor is, in part, medi-
ated by FAK [48]. Several other studies have identi-
fied key roles for chemokines and their receptors in
tumour growth and metastasis, in particular chemo-
kine receptors CXCR4 and CXCR7 [18,49–52]. Both
receptors use CXCL12 as their activating ligand, and
CXCL12/CXCR4 interactions promote ES cell prolif-
eration and invasion. Thus, it is revealing that che-
mokine signalling was among the prognostic gene
sets, and that high levels of CXCR7 were associated
with worse outcomes in the COG patient cohort.

These findings indicate that the relationship
between ES cells and their host micro-environment is
critical to tumour pathogenesis, and that full under-
standing of the complex biology of ES progression

will not be achieved by studying the tumour cells in
isolation. In addition, the repeated observation that
integrin and chemokine signalling contribute to the
aggressive nature of ES supports further investigation
of these pathways as novel therapeutic targets.
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Figure S1. Representative H&E images (320) of four ES tumours from the COG tumour cohort that showed evidence of stromal contamina-

tion. Note that stroma consisted of reactive fibrosis, normal connective tissue, or both, with regions of infiltrating nests of ES tumour cells

either in clusters or individually.
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