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Abstract

Objective: To develop and validate a generalized prediction model that can classify epidermal growth factor receptor (EGFR)
mutation status in non–small cell lung cancer patients.

Methods: A total of 346 patients (296 in the training cohort and 50 in the validation cohort) from four centers were included in
this retrospective study. First, 1085 features were extracted using IBEX from the computed tomography images. The features
were screened using the intraclass correlation coefficient, hypothesis tests and least absolute shrinkage and selection operator.
Logistic regression (LR), decision tree (DT), random forest (RF), and support vector machine (SVM) were used to build a
radiomics model for classification. The models were evaluated using the following metrics: area under the curve (AUC),
calibration curve (CAL), decision curve analysis (DCA), concordance index (C-index), and Brier score.

Results: Sixteen features were selected, and models were built using LR, DT, RF, and SVM. In the training cohort, the AUCs was
.723, .842, .995, and .883; In the validation cohort, the AUCs were .658, 0567, .88, and .765. RF model with the best AUC, its
CAL, C-index (training cohort=.998; validation cohort=.883), and Brier score (training cohort=.007; validation cohort=0.137)
showed a satisfactory predictive accuracy; DCA indicated that the RF model has better clinical application value.

Conclusion: Machine learning models based on computed tomography images can be used to evaluate EGFR status in patients
with non–small cell lung cancer, and the RF model outperformed LR, DT, and SVM.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use,
reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and

Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

1School of Medicine, Anhui University of Science and Technology, Huainan,
P.R. China
2Anhui Province Engineering Laboratory of Occupational Health and Safety,
Anhui Univers i ty of Sc ience and Technology, Huainan, P .R .
China
3Key Laboratory of Industrial Dust Prevention and Control & Occupational
Safety and Health of the Ministry of Education, Anhui University of Science and
Technology, Huainan, P.R. China
4Cancer Hospital of Anhui University of Science and Technology, Huainan,
P.R. China
5School of Pharmacy, China Pharmaceutical University, Nanjing, China
6Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei,
P.R. China

†These authors contributed equally to this work.

Corresponding Authors:
*Wu Jing, PhD, Anhui University of Science and Technology, No. 168 Taifeng
Street, Huainan 232001, P.R. China.
Email: wujing8008l@126.com

**Xing Yingru, PhD, Anhui University of Science and Technology, No. 168
Taifeng Street, Huainan 232001, P.R. China.
Email: austxingyr@126.com

***Hu Dong, PhD, Anhui University of Science and Technology, No. 168
Taifeng Street, Huainan 232001, P.R. China.
Email: austhudong@126.com

https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/10732748221092926
https://journals.sagepub.com/home/ccx
https://orcid.org/0000-0003-3930-4872
https://orcid.org/0000-0002-8995-4729
https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
mailto:wujing8008l@126.com
mailto:austxingyr@126.com
mailto:austhudong@126.com


Keywords
non–small cell lung cancer, epidermal growth factor receptor, computed tomography, radiomics, machine learning

Received August 2, 2021. Received revised March 16, 2022. Accepted for publication March 22, 2022.

Introduction

Approximately 85% of lung cancers are non–small cell lung
cancers (NSCLC), which have high recurrence rates and poor
prognosis.1,2 In the treatment of NSCLC, first-line chemo-
therapy regimens are only 30% effective,3 whereas the ef-
fectiveness of epidermal growth factor receptor-tyrosine
kinase inhibitor (EGFR-TKI) therapy in patients with EGFR-
sensitive mutations reaches 70%.4 The presence of EGFR-
sensitive mutations is a major predictor of the effectiveness of
drugs with EGFR.5

Tissue biopsy to determine the EGFR gene status in
NSCLC patients is extremely accurate; however, it has some
limitations, such as difficulties in obtaining tissue samples and
high economic costs.6,7 With the rapid development of the
most advanced artificial intelligence technology and radio-
mics,8 high-throughput extraction of radiomics features from
medical images is required to quantify the shape, intensity, and
texture of tumors to comprehensively characterize the tumor
phenotype,9 and noninvasive radiomics models have shown
great potential in diagnosis, prognosis, and genetic
information.10-12

In recent years, the use of positron emission tomography/
computed tomography (PET/CT) or enhanced CT images to
forecast the status of EGFR mutations has promoted the
progress of relevant studies.13-17 However, due to differences
in population distribution, living area, economy, and medical
institution equipment capacity involved in separate studies,
the research results in economically developed regions may
not be suitable for the region where this research team is
located. Therefore, in this retrospective study, we collected
radiographic data from four centers involving populations
with different demographic factors. Applying machine
learning to radiomics constructs a strong generalization model
to predict EGFRmutations in patients with NSCLC, providing
a reference for clinical practice.

Data and Methods

Patient Imaging and Clinical Data. NSCLC radiogenomics
data18 were obtained from the Cancer Imaging Archive portal
and included 211 patients. Among these, 129 patients had
wild-type EGFR, 43 had EGFR mutations, and 39 had un-
known genes. We included all patients who underwent chest
CT scans and had known EGFR mutation status; 39 patients
with alien genes and two patients in whom IBEX generated
errors during feature extraction were excluded, leading to a
total of 168 patients to be included in the study.
Supplementary Data 1 (S1) contains information regarding the

scanning parameters. The personal information of patients in
medical materials has been anonymized. This study was
conducted in accordance with the STROBE guidelines.19

In addition, we collected clinical and imaging data of
patients with primary NSCLC between January 2016 and
December 2020 at the Cancer Hospital of Anhui University of
Science and Technology, the Eastern Hospital of Anhui
University of Science and Technology, and the Huainan
Chaoyang Hospital of Anhui University of Science and
Technology, using the following inclusion criteria: (1) patients
with pathologically proven NSCLC, (2) EGFR gene status
testing performed on biopsy tissues, and (3) CT scans per-
formed within 2 weeks before treatment. The exclusion cri-
teria were as follows: (1) patients who received radiotherapy,
chemotherapy, concurrent radiotherapy, or traditional Chinese
medicine treatment before CT imaging and (2) incomplete
image information of the patient. 86 patients from the Cancer
Hospital of Anhui University of Science and Technology, 50
from the Eastern Hospital of Anhui University of Science and
Technology, and 41 from Huainan Chaoyang Hospital of
Anhui University of Science and Technology were included in
compliance with the above conditions.

To improve the generalization ability of the model con-
structed from the heterogenous and complex dataset, 296
patients from the NSCLC radiogenomics data, Cancer Hos-
pital of Anhui University of Science and Technology, and
Huainan Chaoyang Hospital of Anhui University of Science
and Technology were used as the training cohort, and 50
patients from the Eastern Hospital of Anhui University of
Science and Technology were used as the validation cohort.

This retrospective study was conducted in accordance with
the principles of the Helsinki Declaration. The Ethics Com-
mittee of Anhui University of Science and Technology (ap-
proval no. L2022001) conducted an ethical review of the three
medical institutions involved (Cancer Hospital of Anhui
University of Science and Technology, Eastern Hospital of
Anhui University of Science and Technology, and Huainan
Chaoyang Hospital of Anhui University of Science and
Technology). Oral consent was obtained, and data were
processed anonymously before conducting the study. The
research flow is illustrated in Figure 1.

Image Segmentation, Image Pre-processing, and
Feature Extraction

The collected CT images were uploaded to IBEX in Digital
Imaging and Communication in Medicine (DICOM), and re-
gions of interest (ROIs) were manually outlined layer-by-layer
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by two highly qualified diagnostic cardiothoracic disease im-
aging physicians (one 8 years and one 10 years working ex-
perience) without knowledge of the EGFR test results (lung
window: 1500 HU, �500 HU; mediastinal window: 300 HU,
30 HU). After the sketch was completed, the images were
preprocessed using resample voxel size, bit depth rescale range,
and log filter in IBEX to achieve image-scale uniformity,
correction of grayscale inhomogeneity, and image denoting.

Five types of radiomics features were extracted from the
ROIs: (1) intensity histogram (n = 49), (2) shape (n = 18), (3)
texture-based features including grayscale co-occurrence
matrix (n = 840) features and gray level run length matrix
(n = 33); (4) grayscale intensity (n = 135); and (5) neighborhood
intensity difference (n = 10). Supplementary data 2 (S2) shows
the kinds of features extracted in the 3D image.

Radiomics Feature Selection

Feature selection is important to improve model generalization
and optimize the model.20 The two physicians performed
independent ROI delineation and feature extraction on all
data. The features extracted by the two physicians were
subjected to the ICC test to select features with stability and
repeatability (ICC < .5, poor reliability; .5 < ICC < .75,
medium reliability; .75 < ICC < .9, good reliability; and ICC >
.9, excellent reliability).21 Second, features with ICC > .75
were standardized using the Z-score method.

Third, the Shapiro–Wilk test (P > .05) and Bartlett’s test
(P > .05) were used to test the normality and homogeneity of
variance of the features with ICC > .75. An independent
sample T-test (P < .05) was used for the data in accordance
with the normal distribution and homogeneity of variance, and
the Mann–Whitney U test (P < .05) was used for the data.

Finally, to avoid overfitting or selection bias, LASSO re-
gression verified following 10-fold cross-validation was used
to screen out the radiomics features of the constructed model.

Machine Learning Model Construction and
External Validation

After screening the core radiomics features, the four most
popular machine learning classifiers (logistic regression (LR),
decision tree (DT), random forest (RF), and radius-based
function support vector machines (SVM)) were applied to
construct imaging histology models in the training and validation
cohorts. We applied an exhaustive grid search approach was
applied to identify the values of the hyperparameters that opti-
mize the model prediction performance. Supplementary data 3
(S3) shows the setting of hyperparameters of different machine
learning classifiers. The area under the curve (AUC), calibration
curve (CAL), decision curve analysis (DCA), concordance index
(C-index), and Brier score were used to estimate the discrimi-
nation, calibration, and clinical applicability of models con-
structed using different classifiers. The C-index ranges from .5 to
1, with a C-index <.5 reflecting complete inconsistency, and the
model has no predictive value and C-index = 1, reflecting
complete consistency. The Brier score was used to measure the
overall performance of the model; if the Brier score=0, the model
was considered to have perfect overall performance, and the
predicted and actual values were in perfect agreement. If the Brier
score is >.25, the model was considered to have no value.

Statistical Analysis

All statistical analyses were performed using Empower Stats
(version 2.2) and R software (version 4.0.5). Quantitative data

Figure 1. The overall framework of data analysis and model integration.
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are described as the mean ± standard deviation (SD), and
qualitative data are described as frequencies (percentages). The
“glmnet” package was used to implement the LASSO. CAL,
DCA, C-index, and Brier scores were used to evaluate the
performance of the machine learning classifier models. Dif-
ferences between the AUC values of the models were compared
using the Delong test. Statistical significance was set at P < .05.

Results

Clinical Data Analysis

The patients were divided into training and validation cohorts
(Table 1). The training cohort consisted of 296 patients (184
men and 112 women; mean age: 66.82 ± 11.49 years; range:
24–89 years) from three centers. Of these, 117 (39.53%) had
EGFRmutations, 179 (60.47%) had wild-type EGFR, and 253
(85.47%) had adenocarcinoma, 39 (13.18%) had squamous
cell carcinoma, and 4 (1.35%) had other types of cancer (3
Large cell carcinoma;1 pulmonary sarcomatoid carcinoma).
There were 202 (68.24%) smokers and 94 non-smokers
(31.76%). The validation cohort included 50 patients (21 men
and 29 women; mean age 66.56 ± 9.44 years; range, 43–85
years). Therewere 28 (56.00%) patients hadEGFRmutations, 22
(44.00%) had wild-type EGFR, 32 (64.00%) had adenocarci-
noma, and 18 (36.00%) had squamous cell carcinoma. There
were 23 (46.00%) smokers and 27 non-smokers (54.00%).

There were no significant differences in age between the
training and validation cohorts. However, there were

significant differences in EGFR mutation rates, sex, smoking
status, and tumor type (Table 1).

Feature Extraction and Selection

A total of 1085 radiomics features were successfully
extracted from each patient’s ROI. First, 376 features with an
ICC value < .75 were eliminated (Figure 2A). Second, 191
features were eliminated following hypothesis testing. Fi-
nally, the remaining 518 features were analyzed using 10-
fold cross-validated LASSO regression and a standard error
rule (Figures 2B and 2C). Sixteen core features were
screened based on optimal λ = .03202 and standard error =
.05841 (Table 2).

Radiomics Model Performance

According to the 16 screened radiomics features, the LR, DT,
RF, and SVM classifiers were used to construct the model in
the training cohort and validated in the validation cohort. The
specific performances of the four classifier prediction models
are shown in Figure 3 and Table 3.

In the training cohort, Figure 3A shows that the RF
classifier performed the best (AUC=.995; 95% confidence
interval [CI], .98–.996; sensitivity, 99.2%; specificity, 98.9%;
accuracy, 99%). The remaining three classifiers were applied
as follows (LR: AUC=.723, DT: AUC=.842, SVM:
AUC=.883). The calibration curve (Figure 3B) shows ex-
cellent agreement between the predicted and actual values for

Table 1. Patients in the Training and Validation Cohorts.

Training
Validation P-value

Characteristic n = 169a n = 86b n = 41c total = 296 n = 50d

Age (y, mean ± SD) 67.65 ± 10.33 64.65 ± 11.65 67.93 ± 14.89 66.82 ± 11.49 66.56 ± 9.44 .675
EGFR status .029
Wild type 126 (74.56%) 34 (39.53%) 19 (46.34%) 179 (60.47%) 22 (44.00%)
Mutant 43 (25.44%) 52 (60.47%) 22 (53.66%) 117 (39.53%) 28 (56.00%)
Sex .007
Female 62 (36.69%) 31 (36.05%) 19 (46.34%) 112 (37.84%) 29 (58.00%)
Male 107 (63.31%) 55 (63.95%) 22 (53.66%) 184 (62.16%) 21 (42.00%)
Smoking status .002
Never smoker 40 (23.67%) 33 (38.37%) 21 (51.22%) 94 (31.76%) 27 (54.00%)
Smoker 129 (76.33%) 53 (61.63%) 20 (48.78%) 202 (68.24%) 23 (46.00%)
TYPE <.001
Luad 149 (88.17%) 70 (81.40%) 34 (82.93%) 253 (85.47%) 32 (64.00%)
Lusc 17 (10.06%) 15 (17.44%) 7 (17.07%) 39 (13.18%) 18 (36.00%)
Other 3 (1.78%) 1 (1.16%) 0 (.00%) 4 (1.35%) 0 (.00%)

Note: Luad, Lung adenocarcinoma.
Lusc, lung squad cell carcinoma.
Other, 3 Large cell carcinoma and 1 pulmonary sarcomatoid carcinoma.
aThe Cancer Imaging Archive.
bCancer Hospital of Anhui University of Science and Technology.
cHuainan Chaoyang Hospital of Anhui University of Science and Technology.
dEastern Hospital of Anhui University of Science and Technology.
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the four machine learning classifiers. DCA (Figure 3C) in-
dicated that the four machine learning classifiers provided
more benefits than all treatments or no treatments.

In the validation cohort, Figure 3D shows that the RF
classifier performed better (AUC=.88, 95% CI: .75-.946;
sensitivity=96.5%; specificity=95.5%; accuracy=96%) than
the other three classifiers (LR: AUC=.658, DT: AUC=.567,
SVM: AUC=.765). The calibration curve (Figure 3E) shows a
trend in which the predicted values for the RF classifier are
closer to the 45°standard line, indicating that consistency of
the RF model is more desirable. DCA (Figure 3F) also in-
dicated that the RF classifier could achieve more clinical net
benefits at almost all threshold probabilities.

In this study, the C-index of the RF model (training:
RF=.998; validation: RF=.883) was higher than that of the
other models (training: LR=.725, DT=.855, SVM=.905;
validation: LR=.664, DT=.605, SVM=.773) in both the
training and validation cohorts (Table 3).

In this study, the Brier score of the RF model (training:
RF=.007; validation: RF=.137) was lower than that of the
other models (training: LR=.203, DT=.153, SVM=.119;
validation: LR=.235, DT=.244, SVM=.162) in both the
training and validation cohorts (Table 3).

In this study, the Delong test showed that the AUC of the
RF classifier in the training cohort was not significantly
different from that of the RF classifier in the validation cohort
(P > .05). However, there were significant differences (P <
.001) between the LR, DT and SVM classifiers in the vali-
dation cohort (Table 4).

Discussion

This study aims to construct a predictive model with strong
generalizability. We hope that this radiomics model can be
used to determine the EGFR status of patients with NSCLC
and provide a reference for guiding personalized targeted

Figure 2. Selection of radiomics features. (A): ICC histogram of radiomics features; (B/C): LASSO method for screening of radiomics
features.

Table 2. Texture Features Selection for Radiomics Models.

Parameters Parameter category Importance

Mean absolute deviation Intensity histogram �.065652535
60 Percentile area Intensity histogram �.027231004
Convex Shape .737731264
Correlation Gray level cooccurence matrix 3 �.364074713
Dissimilarity Gray level cooccurence matrix 3 .338776007
5-1 Homogeneity 2 Gray level cooccurence matrix 3 �.176750873
10-4 Homogeneity 2 Gray level cooccurence matrix 3 �.048826405
-333-7 Information measure corr 1 Gray level cooccurence matrix 3 �.053598886
8-1 Information measure corr 1 Gray level cooccurence matrix 3 �.217087549
9-7 Information measure corr 1 Gray level cooccurence matrix 3 .095533464
12-4 Inverse diff norm Gray level cooccurence matrix 3 �.013040947
6-4 Inverse variance Gray level cooccurence matrix 3 .322764285
8-4 Inverse variance Gray level cooccurence matrix 3 �.092512731
8-1 Max Probability Gray level cooccurence matrix 3 �.024734566
12-7 Max Probability Gray level cooccurence matrix 3 �.102971831
�333 Run length nonuniformity Gray level Run length matrix 25 �.002072575
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therapies. Finally, we obtained 16 radiomic features with
accurate prediction ability, including intensity histograms (n =
2), shape (n = 1), and GLCM (n = 13). These features en-
compass the description of intensity distribution, spatial re-
lationships between different intensity levels, shape of texture
patterns, and tumor heterogeneity. The intensity histogram is
related to the gray level frequency distribution within the ROI,
relies on single-voxel values rather than adjacent interacting
voxels, and may be obtained from the voxel intensity histo-
gram.22 Morphological features are used to describe tumor
characteristics by calculating the ROI, providing information
on the size of the lesion tissue.23 The correlation of some
features with EGFR mutations has been confirmed in other

studies related to the prediction of EGFR status using imaging
histology.24,25

Diverse machine learning algorithms have their own ad-
vantages and disadvantages. Currently, the most common
machine learning methods are LR, SVM, RF, and DT. In this
study, the performance of the radiomics models was evaluated
using the four different classifiers mentioned above, and the
RF classifier with the highest diagnostic performance and
good calibration and stability in the validation cohort was
selected. In similar studies, Yang et al26 applied an RF
classifier to construct a model for predicting EGFR mutation
status in patients with lung adenocarcinoma based on CT
radiomics features; the AUC of the training cohort was .826,

Figure 3. Building and performance of four machine learning classifier models. Receiver operating characteristic curves (3A), Calibration curves
(3B), and Decision curves (3C) of different classifiers and models generated from the development cohorts; Receiver operating characteristic
curves (3D), Calibration curves (3E), and Decision curves (3F) of different classifiers and models generated from the validation cohorts.

Table 3. Performance of the Radiomics Signature.

AUC Accuracy Sensitivity Specificity C-index Brier score

Training
LR .723 .69 .53 .794 .725 .203
DT .842 .794 .701 .855 .837 .153
RF .995 .99 .992 .989 .998 .007
SVM .883 .845 .838 .85 .905 .119

Validation
LR .658 .68 .75 .591 .664 .235
DT .567 .46 .358 .591 .605 .244
RF .88 .96 .965 .955 .883 .137
SVM .765 .84 .715 .99 .773 .162
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while that of the validation cohort was .779; however, this was
only a single-center study. Velazquez et al27 used CT radio-
mics features combined with clinical variables to predict
EGFRmutations, with an AUC of .75 and lacked external data
validation, the clinical applicability of which was limited.

Histological examination, the gold standard for EGFR
detection, may provide additional support in clinical practice.
However, if the puncture position is unavailable or the basic
conditions are poor, multiple aspiration biopsies are required.
Imaging examinations can provide a reference regarding
EGFR gene status while understanding tumorigenesis and
progression through imaging. Similarly, in patients with
multiple tumors, radiography is beneficial for selecting the
most suspicious tumor for biopsy. Thus, when histopatho-
logical examination is difficult, radiomics may play a useful
role in clinical practice.

In this study, data from three centers were mixed to con-
struct a training cohort, and core radiomics features that re-
flected EGFR status were screened. The model was verified in
a validation cohort and the results were stable, which could
reflect the generalizability of the model to a certain extent.
However, the limited dataset cannot include all information
reflecting EGFR status; therefore, the test results may not fully
reflect the generalizability of the model. Future research will
focus on verifying the generalizability of this model. In addition,
there are the following limitations. (1) Radiomics analysis of
histological features was mainly performed using a retrospective
study design, which is still different from the actual predictive
clinical need, leading to the need for further validation in pro-
spective studies. (2) Different CT imaging protocols in different
hospitals and radiomics features are influenced by CT scanner
parameters (e.g., reconstruction kernel or slice thickness). Al-
though resampling and pre-processing were performed to limit
the differences between them, undiscovered differences may still
exist. (3) For ROI outlining, manual and automatic outlinings
offer unique advantages. The difference between the two ap-
proaches in terms of image alignment and contour generation
may affect the calculation of radiomic features.

Conclusion

By comparing the four machine learning models, the RF
model had a satisfactory performance for predicting the EGFR
status of NSCLC. However, these results are preliminary and
need to be validated using prospective datasets to assess their
potential clinical applications.
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