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SUMMARY

Chronic neuropathic pain is a major morbidity of neural injury, yet its mechanisms are 

incompletely understood. Hypersensitivity to previously non-noxious stimuli (allodynia) is a 

common symptom. Here, we demonstrate that the onset of cold hypersensitivity precedes tactile 

allodynia in a model of partial nerve injury, and this temporal divergence was associated with 

major differences in global gene expression in innervating dorsal root ganglia. Transcripts whose 

expression change correlates with the onset of cold allodynia were nociceptor related, whereas 

those correlating with tactile hypersensitivity were immune cell centric. Ablation of TrpV1 lineage 

nociceptors resulted in mice that did not acquire cold allodynia but developed normal tactile 

hypersensitivity, whereas depletion of macrophages or T cells reduced neuropathic tactile 

allodynia but not cold hypersensitivity. We conclude that neuropathic pain incorporates reactive 

processes of sensory neurons and immune cells, each leading to distinct forms of hypersensitivity, 

potentially allowing drug development targeted to each pain type.

In Brief

Cobos et al. correlated gene expression with behavior after nerve injury and found that two distinct 

processes contribute to neuropathic pain: one that occurs in neurons, leading to cold allodynia, and 

another that includes immune cells and neurons, leading to tactile allodynia.
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INTRODUCTION

Peripheral neuropathic pain in animal models is associated with hypersensitivity to noxious 

and non-noxious stimuli in areas of tissue that neighbor those normally innervated by the 

damaged nerves. Changes both in the peripheral nervous system (PNS) and central nervous 

system (CNS) contribute to the development of this pain hypersensitivity (Costigan et al., 

2009b). Global gene expression studies in the adult rodent dorsal root ganglia (DRG) in 

response to sciatic nerve injury have helped define the peripheral mechanisms likely to 

contribute to the changes in neuropathic pain-like hypersensitivity (Costigan et al., 2009b; 

LaCroix-Fralish et al., 2011), as well as novel targets for therapy (Dib-Hajj and Waxman, 

2014; Tegeder et al., 2006).

Following sciatic nerve injury, the ipsilateral L3-5 lumbar DRGs contain the cell bodies of 

injured and non-injured primary sensory neurons, satellite cells, fibroblasts, and blood 

vessels, as well as resident immune cells and those recruited from the blood (Hu et al., 

2007). Peripheral nerve injury induces transcriptional changes in each of these diverse cell 

types (Costigan et al., 2002, 2010; Watkins and Maier, 2002). Peripheral nerve injury 

induces pain-like hypersensitivity in rodents that develops over the first week or so 

following the axonal damage (Colleoni and Sacerdote, 2010; Jaggi et al., 2011). Here, we 

have determined the onset of two chronic pain-like sensory modalities (tactile and cold 

allodynia) in C57BL/6 mice at high temporal resolution (daily) over the first 10 days in the 

spared nerve injury (SNI) model (Decosterd and Woolf, 2000), and we found clear 

differences in their temporal evolution, with cold sensitivity developing quicker than tactile 

allodynia. The temporal separation of these two clinically important neuropathic pain 

modalities (Jensen and Finnerup, 2014) led us to design a global gene expression study in 

lumbar DRGs ipsilateral to the nerve injury to directly correlate the relative timing of 

transcript expression and sensory modality changes.

We demonstrate differences in the kinetics of early neuronal and late immune gene 

regulation events, changes which closely mirror the onset of cold and tactile allodynia 

respectively. These data indicate that different cellular and molecular mechanisms may be 

responsible for development of tactile and cold allodynia in the damaged PNS, which we 

confirmed by selectively targeting the immune and nervous systems. Understanding the 

differences in pain hypersensitivity features should allow us to develop new therapies 

tailored to their distinct underlying mechanisms.

RESULTS

Onset of Cold and Tactile Allodynia

Tactile and cold allodynia both develop subsequent to peripheral nerve injury and are major 

clinical concerns of neuropathic pain patients (Jensen and Finnerup, 2014). A high-density 

time-course analysis of neuropathic pain-related behavioral onset showed that cold and 

tactile hypersensitivity developed to maximal levels in the first week after nerve injury and 

persisted for at least 15 days. Cold allodynia developed relatively quickly, reaching a 

statistically significant increase at 3 days and achieving peak levels 4–5 days post-SNI 

(Figure 1A); however, tactile allodynia became established over a slower time frame, with a 
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statistically significant decrease of the mechanical threshold at 5 days and reaching maximal 

levels 7–8 days post-SNI (Figures 1B and 1C). These data agree with previous reports in 

which cold allodynia develops faster than mechanical hypersensitivity (Decosterd and 

Woolf, 2000; Pertin et al., 2007; Wijnvoord et al., 2010). Sham-operated controls did not 

show alterations in either cold or tactile hypersensitivity (Figures 1A and 1B, respectively).

Transcripts Regulated in the DRG Post-SNI

The differences in the onset time of cold and tactile allodynia led us to consider if these pain 

modalities may have different mechanisms. To investigate this, we performed an expression 

array profiling experiment over a similar high-resolution time course to the behavioral 

studies. We evaluated global gene expression in the ipsilateral DRG daily for the first 10 

days post-SNI and also at 8 and 16 hr post-SNI.

We initially assessed changes in gene expression in the DRG over 10 days post-SNI in all 

1,704 probes differentially regulated over time between naive and injured conditions 

(moderated F-statistic, p < 0.01; Table S1) by a weighted gene co-expression network 

analysis (WGCNA) (Parikshak et al., 2015). By employing a module merger step that used 

Euclidean distance to cluster the average module regulation patterns across time (not 

shown), we were able to reveal eight distinct expression clusters (clusters I–VIII) comprising 

1,699 of the regulated probes (Figure 2) and 5 additional probes that did not fit in any of the 

eight clusters (Table S1). Ingenuity Pathway Analysis (IPA) of content of each cluster 

annotated their general functional identity, which delineate the most overrepresented 

descriptors of gene function assigned to each transcript in each cluster (see “Function/Cell 

typ” and “Example Genes” in Figure 2).

A similarity plot of average gene expression across time for each cluster demonstrates that 

each has distinct expression patterns, although similarities are observed between clusters III 

and VI (two of the neuronal modules), and also between the clusters VII and VIII (mixed 

function and late immune) (Figure 3A). By plotting the relative expression of each gene 

cluster across time, we could identify four cluster groups with distinct kinetic patterns 

(Figures 3B–3E). Genes in cluster I (largely chemotaxis related) showed an immediate but 

short-lived expression change that peaked several hours post-SNI (Figure 3B). The next 

kinetic group contained the predominantly neuronal regulatory clusters II, III, and VI, which 

display a monophasic expression pattern (Figure 3C). Clusters II and III demonstrate a late 

decrease in relative expression, although average expression did not fall back to baseline by 

10 days post-SNI. In contrast, the expression level of cluster VI remained at or around 

maximal levels until 10 days after SNI. Next, genes in clusters IV and V initially showed a 

down-regulation in reaction to the injury and then displayed a relatively strong increase that 

peaked at ~3 days after nerve injury before settling to approximately naive levels at later 

time points (Figure 3D). The final kinetically distinct group contained two clusters that 

demonstrated sustained increases of expression, reaching maximal levels over 10 days, with 

the rise of cluster VII (mixed neuronal/support cell and immune) preceding that of cluster 

VIII (late immune) (Figure 3E). Each cluster contains not only genes regulated in the 

direction depicted in Figures 3B–3E but also genes regulated in a pattern mirroring that 
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shown (reciprocal regulation events). Figure 2 shows all gene regulation patterns both 

positive and negative.

We performed a transcription factor binding site (TFBS) enrichment analysis for each of the 

eight clusters to uncover the potential regulatory network contributing to the observed gene 

regulation patterns after nerve injury. To avoid confounders and identify only the most 

statistically robust sites, we used 3 different control datasets as background (1,000 bp 

sequences upstream of all mouse genes, mouse CpG islands, and the mouse chromosome 19 

sequence). We identified 210 TFs (Figure S1A) whose DNA binding motifs were over 

represented in the promoters of each gene cluster set (Table S2). Interestingly, hierarchical 

clustering of the TFBS enrichment score for each cluster revealed a separation of neuronal 

and immune-associated gene modules, suggesting distinct regulatory control by transcription 

of these gene sets after nerve injury (Figure S1A).

To identify potential protein signaling pathways operational after nerve injury, we 

determined the protein-protein interaction (PPI) network represented by all the differentially 

regulated genes (see Experimental Procedures). We screened for experimentally validated 

PPI among all possible combinations of gene pairs present in the DRG regulated gene set, 

obtaining a PPI network consisting of 310 nodes and 442 edges. This revealed certain key 

signaling molecules such as ATF3, JUN, BDNF, mitogen-activated protein kinase 1/3 

(MAPK1/3), transforming growth factor β1 (TGF-β1), STAT3, TCF3, CCR5, and 

interleukin-1β (IL-1β) (Figure S2) and certain transcription factors (TFs) as major hubs, 

potentially regulating many of the genes present in the global injury response; including 

SP1, ESR1, SMAD3, TP53, and STAT5A (Figure S2). Next, by screening for signaling 

pathways in the PPI network, we observed enrichment of several important signaling 

pathways that may contribute to nerve injury response, including the neurotrophin, MAPK, 

TGF-β, chemokine, and ErbB signaling pathways (Table S3). To identify signaling cascades 

activated over time after nerve injury, we also examined for the presence of signaling 

pathway genes in each cluster. These analyses show that there is a group of strongly 

represented neuronal signaling pathways, including NGF, EGFR, p38 MAPK, and TGF-β in 

clusters III, IV, and VII (Figure S3), suggesting co-activation of multiple signaling pathways 

in response to nerve injury (Abe and Cavalli, 2008).

Analysis of the full gene expression dataset suggested a generalized kinetic separation of 

groups of neuronal and immune-rich transcripts across time, such that overall neuronal gene 

changes preceded alterations in immune transcript expression in the DRG over the first 10 

days after nerve damage (Figures 3C and 3E, respectively). This led us to consider whether 

such expression differences could reveal information on the functional origins of the diverse 

behavioral manifestations of neuropathic pain.

Genes Correlated with Cold and Tactile Allodynia in the DRG

To define those transcripts with expression changes most correlated with cold and tactile 

allodynia, we chose transcripts with a Pearson correlation coefficient greater than 0.85 

(directly correlated) or less than −0.85 (inversely correlated) with each behavioral 

hypersensitivity onset curve (Figures 4A and 4B). The cold allodynia time course closely 

correlated with the temporal pattern of 145 probes, corresponding to 137 distinct transcripts, 
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of which 107 (78%) were upregulated and 30 (22%) were downregulated (Figure 4A). The 

list of the transcripts correlated with cold allodynia and their Pearson correlation values can 

be found in Table S4. For tactile allodynia, we identified 40 probes, corresponding to 36 

distinct transcripts whose expression closely correlated to the onset of mechanical 

sensitivity. Of these, 33 transcripts (92%) were upregulated and 3 (8%) were downregulated 

(Figure 4B). The list of the transcripts correlated with tactile allodynia and their Pearson 

correlation values can be found in Table S5.

We performed a biological validation of the gene lists that made up the cold- and tactile- 

correlated groups by comparing these lists with results from DRG transcriptome profiling 

obtained using RNA sequencing (RNA-seq) (naive and 1, 3, and 7 days after SNI) from 

biologically distinct tissue to that used in the array studies. We found 116 common genes in 

the acetone (neuronal) list and 36 common genes in the von Frey (immune) list in both 

platforms. The heatmaps of common genes from the arrays and RNA-seq for each sensory 

modality are shown in Figures S2A–S2D, and these data demonstrate that the overall 

expression patterns of the constituent genes were virtually identical regardless of the 

platform used to define gene regulation. This RNA-seq dataset also allows validation of the 

other regulated transcripts described in Figure 2.

When the group of genes correlated with cold allodynia was processed by IPA, 

“Neurological disease” was the top biological function defined for 33 genes (24%). 

“Seizures,” “Migraines,” and “Neuropathic pain” were also among functional subgroups 

identified as present (Figure 4C). (See Table S6 for the content of genes in each annotated 

function.) In contrast, for the group of genes significantly correlated with tactile allodynia, 

with IPA, “Immune disease” was identified as the top biological function, with 19 transcripts 

(53%). “Systemic autoimmune syndrome,” “Antigen presentation activation,” “Insulin-

dependent diabetes mellitus,” and “Rheumatoid arthritis” were other functional subgroups 

identified as present (Figure 4D). (See Table S7 for the content of genes in each annotated 

function.)

To further assay genes associated with the development of cold and tactile allodynia, we 

investigated a more inclusive group of transcripts including those genes directly and 

inversely correlated with a Pearson coefficient of correlation >0.75 (see Experimental 

Procedures). These gene sets were then subjected to Gene Ontology (GO) analysis to find 

the most related functional terms (Figures 4E and 4F). Transcripts in this set whose 

expression over time correlated with the onset of cold allodynia (375 probes) were almost 

entirely related to neuronal function (Figure 4E). (See Table S8 for the content of genes in 

each annotated function.) The genes most related to the development of tactile allodynia in 

the GO analysis were almost entirely related to immune function (130 probes). (See Table 

S9 for the content of genes in each annotated function.) Both GO analyses accord with the 

IPA-based data (shown in Figures 4E and 4F).

An enrichment of a particular IPA functional annotation or GO category signifies that 

multiple genes participating in the same process correlate with the phenotype in question. 

Using two thresholds of correlation allowed us to span the expression data more 

exhaustively than using one. The fact that each of these lists result in very complementary 
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functional descriptions using two different pathway search tools with different correlated 

transcript inclusion criteria represents an internal control for the validity of the associations.

We also compared the cold- and tactile-allodynia-correlated transcripts to previously 

published analyses of genes specifically expressed either in nociceptor DRG neurons (Chiu 

et al., 2014) or in activated macrophages and T cells (Brown et al., 2015; Rosas et al., 2014) 

(see Experimental Procedures). This analysis revealed that 37% of the genes identified as 

correlated with cold allodynia are expressed specifically in nociceptors, with 16% specific to 

leukocytes. Using the same approach to assay genes whose expression correlates with tactile 

allodynia, 51% are specifically expressed in leukocytes, with only 6% specific to 

nociceptors. Therefore, transcripts correlated with the onset of tactile allodynia have a 

stronger immune component than neuronal, with the reverse holding true for cold allodynia 

(Figure 4G).

TrpV1 Lineage Neurons and Neuropathic Allodynia

To determine if changes in a specific set of DRG sensory neurons are responsible for 

development of cold allodynia post-SNI, we examined TrpV1CreDTAflox-stop mice that lack 

TrpV1-lineage nociceptors but retain mechanoreceptors (Mishra et al., 2011). We first 

assessed cold sensitivity in naive (uninjured) TrpV1CreDTAflox-stop mice and their wild-type 

litter-mates in a dynamic thermal place cold aversion challenge. While the littermate control 

mice rapidly manifested a preference for moderate (11°C–25°C) rather than noxious cold 

(4°C–11°C) temperatures, TrpV1CreDTAflox-stop mice displayed no aversion to noxious cold. 

These data indicate that TrpV1 lineage nociceptors are essential for cold detection under 

baseline conditions (Figure 5A).

Next, we determined the temporal development of tactile and cold allodynia after SNI in the 

TrpV1 neuron ablated mice relative to their littermate controls. TrpV1 DTA mice showed a 

total loss of TrpV1 expression in the DRG (Figure S5A), indicating the efficiency of the 

ablation. The tactile behavioral hypersensitivity was fully apparent in these mice at 7 days 

post-SNI injury and continued at similar levels until at least 21 days post-SNI (Figure 5B). 

In contrast, TrpV1 DTA mice failed to develop cold allodynia 7 or 14 days after nerve injury 

(Figure 5C). The lack of normal cold- or injury-induced cold sensitivity in these animals 

may reflect the absence of TrpM8 expression in the DRG relative to wild-type controls 

(Figure S5B). At later time points (21 days), injured TrpV1 DTA mice developed a slight 

level of cold allodynia relative to naive TrpV1 DTA mice (Figure 5C). The mechanism for 

this late and muted response is unclear, although it likely represents compensatory changes 

in gene expression/function in the remaining (non TRPV1 lineage) intact sensory neurons 

that enable them to develop sufficient cold thermoception to drive the central circuits that 

produce cold allodynia. Some residual TrpA1 (but not TrpM8) expression is present in the 

DRGs of TrpV1 DTA mice (~20% of wild-type levels) (Figure S5C), and TrpA1 is 

implicated in neuropathic cold allodynia (del Camino et al., 2010), suggesting this channel 

maybe the source of this late-onset low-level activity. The early loss in cold allodynia in 

TrpV1 DTA mice is consistent with the primarily neuronal gene expression changes in the 

DRG that correlate with its onset. Based on these findings, we conclude that an alteration in 

TrpV1 lineage sensory neurons is required for early development of this phenotype.
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Peripheral Macrophages Are Crucial to the Development of Tactile, but Not Cold, Allodynia

Genes whose expression pattern matched the time course of tactile allodynia onset are 

primarily expressed in immune cells. Specifically, they appear to be enriched in 

macrophages and T cells (Figure 4G), two leukocyte populations present in DRGs after 

nerve injury (Hu and McLachlan, 2002; Moalem and Tracey, 2006) (see also Figures 7A and 

7B). To assess whether circulating macrophages have a role in mediating allodynia, we 

transiently depleted them in C57BL/6 mice using liposomal clodronate. Macrophages 

naturally phagocytose these liposomes within the blood; this releases clodronate 

intracellularly and results in their death. Following a single liposomal clodronate dose, 

animals regenerate a full macrophage blood count from bone marrow precursors over the 

next 2 weeks (Camilleri et al., 1995). Animals administered with liposomal clodronate 1 day 

before nerve injury (SNI) developed minimal tactile allodynia at 7 and 10 days post-SNI 

relative to control mice treated with empty liposomes (Figure 6A). However, clodronate-

treated and control animals developed cold allodynia to a similar extent post-SNI (Figure 

6B). By assaying the blood at 7 days post-SNI, we found markedly reduced myeloid cells in 

clodronate-treated mice relative to liposome controls (Figure 6C). These changes also 

translated to the DRG tissue (Figures 6D and 6E), which may explain the large differences 

in mechanical threshold in the same mice (Figure 6F). We confirmed the decrease in 

macrophages/monocytes by immunohistochemistry; liposome control mice showed a 

marked IBA1 immunoreactivity in the ipsilateral L3-5 DRGs 7 days post-SNI, and this was 

markedly decreased in clodronate-treated mice (Figures 6G and 6H, respectively). We 

further quantified the relative expression within the injured DRG by qPCR of the 

macrophage/monocyte markers CD68 and CD11b, which both showed significant decreases 

relative to liposome control mice (Figures 6I and 6J, respectively). In addition, we quantified 

the transcript of CD163 (a marker of tissue resident macrophages), which was strongly 

decreased following clodronate treatment (Figure 6K).

Consequence of Absence of T and B Cells on Nerve-Injury-Induced Tactile and Cold 
Hypersensitivity

To demonstrate whether in addition to macrophages, activated T cells were also present in 

the ipsilateral DRG 7 days post-SNI injury, we utilized a combination of a Lck-zsGreen 

mouse line, which expresses the fluorescent marker zsGreen in activated T cells (Zhang et 

al., 2005), and immunostaining for IBA1. In the uninjured Lck-zsGreen transgenic DRG, 

very few labeled T cells were present and there was little IBA1 staining (Figure 7A). In 

ipsilateral DRGs 7 days post-SNI, there were in contrast many labeled T cells and a strong 

IBA1 signal (red, Figure 7B). To test whether the absence of T cells had any effect on cold 

and tactile allodynia, we exploited Rag1−/− mice that lack T and B cells (Figure 7C, left and 

middle). In agreement with our previous observations (Costigan et al., 2009a), we found a 

marked reduction in tactile hypersensitivity in Rag1−/− animals relative to their littermate 

controls (Figure 7D). We extended this by showing that introducing CD4+/CD8+ T cells into 

Rag1−/−mice (Figure 7C) could rescue the tactile allodynia phenotype for at least 4 weeks 

post-SNI (Figure 7D). The full rescue of tactile allodynia by T cells in reconstituted Rag1−/− 

mice, which still lack B cells, argues against a role for this latter immune cell type in this 

phenotype (Figures 7C and 7D). In contrast, we witnessed little difference in the extent of 
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cold allodynia in Rag1−/−animals (Figure 7E), suggesting that both T and B cells are 

dispensable for that response.

Taken together, these data strongly support a role for of each of these two leukocyte cell 

types (macrophages and T cells) in the establishment of tactile allodynia after peripheral 

nerve damage but demonstrate that they are dispensable for the development of cold 

allodynia.

DISCUSSION

By assaying the development of two common clinical manifestations of stimulus-evoked 

neuropathic pain (cold and tactile allodynia) (Jensen and Finnerup, 2014) at high temporal 

resolution, we demonstrate that they develop over different time courses in the first week 

post-surgery in the SNI model. This difference led us to hypothesize that there may be 

mechanistic differences underlying these two pain modalities and that these could perhaps 

be revealed by correlating the changes in global transcript expression in the PNS in response 

to nerve injury with the temporal evolution of the behavior. To investigate this, we generated 

DRG expression array profiles beginning immediately after the nerve injury and at a higher 

temporal definition than in previous investigations (Costigan et al., 2010; Li et al., 2015).

To assay global transcript expression changes in the DRG following SNI, we separated all of 

the potentially regulated genes into co-regulated clusters using WGCNA, since groups of 

genes with similar expression patterns across large datasets are often functionally connected 

as part of the same tissue, cell type, or biological pathway (Parikshak et al., 2015). There 

were relatively few clustered groups of co-regulated transcripts in the injured DRG over the 

10 days following the injury (eight in total), with a temporal analysis suggesting an early 

pattern of neuronal gene regulation followed later by regulation of immune transcripts. 

Correlation of the distinct trajectories of cold and tactile hyper-sensitivity onset respectively 

with gene expression further suggested a link between the two. The patterns suggest 

predominant involvement of sensory neurons in the onset of cold allodynia and a 

contribution of activated peripheral immune cells in the generation of tactile allodynia. Next, 

we used a combination of genetically targeted and cell depletion protocols to test these 

predictions.

TrpV1-mediated Cre expression in the embryo occurs in all thermo-sensing progenitor 

neurons, which are consequently deleted by DTA expression. This removes all TrpM8 

expression and, therefore, all normo-cold sensation in the adult mouse, as shown here and in 

previous studies (McKemy, 2011; Mishra et al., 2011). We demonstrate that ablating TrpV1 

lineage nociceptors results in a lack of cold allodynia after nerve injury, consistent with this 

process occurring primarily through neuronal mechanisms. In addition, recent independent 

data are entirely consistent with cold allodynia occurring through neuronal signaling 

pathways (Lippoldt et al., 2016).

Cold allodynia, like tactile allodynia following SNI, must be the consequence of input to the 

CNS transmitted by uninjured sural nerve axons. This raises the question of whether 

something changes in these “uninjured” peripheral neurons due to the SNI procedure, such 
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that previously innocuous stimuli can now activate a set of nociceptors or if there is an 

abnormal reaction in the CNS, such that the ‘normal input’ generated by innocuous 

temperatures in spared fibers now elicits pain-like behavior? For the former, one might 

speculate that injured sensory neurons may produce paracrine signals in the DRG that 

somehow alter the sensitivity of neighboring non-injured thermo-nociceptors to cold. For the 

latter, as injured C-nociceptors become ectopically active early following peripheral nerve 

injury (4–13 hr) (Kirillova et al., 2011), this abnormal afferent drive could maintain central 

sensitization altering the central processing of low-threshold thermoceptor inputs in the 

dorsal horn, leading to them being perceived as painful (Latremoliere and Woolf, 2009).

In spite of the marked reduction in cold allodynia seen in the TrpV1 DTA line, we found 

relatively normal levels of tactile allodynia in these mice, which rules out the specific need 

for this nociceptor lineage in the production of this form of stimulus-evoked pain 

hypersensitivity after nerve injury. These findings are in agreement with previous reports 

showing that ablation of either TrpV1 or Nav1.8 lineage nociceptor neurons does not alter 

neuropathic tactile allodynia (Abrahamsen et al., 2008; Lager-ström et al., 2011; Mishra et 

al., 2011). Tactile allodynia must require other sensory neurons for its manifestation, and 

indeed many studies have indicated that it is carried by low-threshold mechanoreceptors 

(Campbell and Meyer, 2006; Xu et al., 2015).

The correlation of immune related transcripts with the development of tactile allodynia 

suggested that the immune system may play a role in the development of this 

hypersensitivity, but that these cells are largely dispensable for cold allodynia. To test this 

prediction, we targeted two leukocyte populations, macrophages/monocytes and T cells, as 

these cells represent a large portion of the immune reaction within the DRG following nerve 

injury (Hu and McLachlan, 2002; Moalem and Tracey, 2006), and found that both peripheral 

macrophages and T cells contribute to the development of neuropathic tactile sensitivity but 

minimally to cold allodynia.

T cells and macrophages play a major role in orchestrating the actions of one another during 

the early and late phases of the immune response (Biswas et al., 2012; Roberts et al., 2015). 

The complex interplay between innate and adaptive components of the immune system is a 

major component of the reaction of the PNS to damage, with functional roles in clearance of 

debris and promotion of regeneration (DeFrancesco-Lisowitz et al., 2015). However, 

recruitment of these leukocytes following nerve injury can lead to effects on sensory neurons 

that activate or sensitize them, leading to neuropathic pain (Costigan et al., 2009b).

Following nerve injury, macrophage-derived signaling molecules such as IL-1β, TNF-α, and 

CCL2 likely contribute to pain-like hypersensitivity (Andrade et al., 2014; Schuh et al., 

2014; Zhu et al., 2014) as well as the initiation of axonal regrowth (Dubový et al., 2013). In 

turn, Th1 T cell-derived interferon-γ (IFN-γ) can recruit macrophages to sites of 

inflammation and cause pain (Liou et al., 2011), whereas type 2 inflammatory cytokines, 

such as IL-4, IL-10, and TGF-β, can ameliorate neuropathic pain-like behavior (Chen et al., 

2015; Dengler et al., 2014; Kiguchi et al., 2015). The balance between these pro- and anti-

inflammatory subsets in different experimental settings may explain the differences seen 

between studies focused on the role of T cells on neuropathic pain (Austin et al., 2012; 
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Kiguchi et al., 2015); some studies did not find any impact on the pain phenotype of T cell 

actions (Sorge et al., 2015), whereas we and several others have (Cao and DeLeo, 2008; 

Costigan et al., 2009a; Kobayashi et al., 2015; Leger et al., 2011; Zhang et al., 2014).

While the mechanisms by which macrophages and T cells interact to co-produce a 

convergent set of changes in the DRG that lead to tactile allodynia now need to be explored, 

our data indicate that they must act on sensory fibers other than TrpV1 lineage nociceptors. 

Activated macrophages are seen preferentially around injured large-diameter A-fiber sensory 

neuron cell bodies in the DRG after sciatic nerve injury (Vega-Avelaira et al., 2009), but the 

functional consequence of this on these sensory neurons is still unknown. It is possible that 

activated immune cells in the DRG may stimulate injured A-fibers into initiating ectopic 

activity, which contributes to the maintenance of central sensitization in the dorsal horn, 

such that central pain neurons begin to be activated by low-threshold mechanoreceptors. In 

the naive state, only C-fibers can initiate central sensitization, but after nerve injury, A-fibers 

develop this capacity by a phenotypic switch (Decosterd et al., 2002), and this shift may be 

triggered by immune cell activation in the DRG. Consistent with this, ectopic firing of 

injured A-fiber neurons manifests later after nerve injury than in C-fibers (ectopic A-fiber 

activity is seen at 4–7 days) (Kirillova et al., 2011). Alternatively, spared high-threshold A-

fiber nociceptors may be sensitized by immune cell action following peripheral nerve 

damage. Either of these mechanisms, or possibly a combination of both, may lead to 

mechanical allodynia. What we now show conclusively, however, is that the mechanism 

responsible is dependent on peripheral immune cells.

Distinct mechanistic etiologies for these two neuropathic pain symptoms may in 

consequence require different treatment strategies, if our findings translate to humans, one 

targeted at a particular set of TRPV1 lineage nociceptors for patients whose primary 

symptoms are cold allodynia and another for patients with predominant tactile allodynia, 

which could incorporate either targeting the actions of the immune component of nerve 

injury (macrophages and/or T cells) or non-TRPV1-expressing afferents 

(mechanoreceptors). Identifying the key elements of immune-neural signaling that underlie 

the development of allodynia after nerve damage using cell-specific profiling technologies 

will be important for developing targeted therapies for peripheral neuropathic pain.

EXPERIMENTAL PROCEDURES

Experiments were performed in adult (9–10 weeks old) male C57BL/6J mice (Jackson 

Laboratory [Jax], ME). Heterozygous TrpV1-Cre (strain 017769) and heterozygous DTA 

stop animals (strain 010527) were bred together to produce TrpV1 DTA animals. Rag1 null 

(strain 2216) mice were also used. To reveal T cell infiltration in the injured DRG, we bred 

Lck-Cre (Jackson Laboratory [Jax] 3802) mice with zsGreen reporter mice (Rosa-CAG-

LSL-ZsGreen1-WPRE) (Jax 7906). All studies performed in USA were reviewed and 

approved by the IACUC at Boston Children’s Hospital under animal protocols 15-04-2928R 

and 16-01-3080R. All experimental procedures performed in Spain were conducted in strict 

accordance to European standards (European Communities Council Directive 2010/63) and 

after approval of the animal protocols by regional (Junta de Andalucía) and institutional 

(Research Ethics Committee of the University of Granada, Spain) authorities.
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Detailed description of the animal strains used and the experimental procedures for surgeries 

(SNI), behavioral tests (von Frey test, acetone test and dynamic thermal place aversion test), 

immune cell depletion or reconstitution, gene expression analysis by microarray, RNA-seq 

and real-time qPCR, bioinformatics (weighted gene co-expression network analysis, 

correlation between expression changes and the pain phenotype, functional enrichment 

analysis, transcription-factor-binding site enrichment, and PPI network analyses); 

fluorescence-activated cell sorting to determine myeloid cells or T and B cells, and 

immunohistochemistry are described in Supplemental Experimental Procedures.

Statistical Significance

Gene regulation in the expression microarrays was determined by a moderated F-statistics 

using Bioconductor packages. In the rest of the experiments, multiple comparisons were 

analyzed using repeated-measures ANOVA with Bonferroni post-test, and single 

comparisons were analyzed using an unpaired Student’s t test. Statistical analyses were 

performed with SigmaPlot 12.0 software (Systat Software, CA), with significance defined as 

p < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Peripheral processes leading to neuropathic cold and tactile allodynia differ

• TrpV1-lineage neurons participate in cold, but not tactile, allodynia

• Immune system activation contributes to tactile allodynia but minimally to 

cold allodynia
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Figure 1. Differences in the Onset of Cold and Tactile Allodynia
(A and B) Cold allodynia (A) develops relatively quickly post-injury, whereas tactile 

allodynia (B) develops at a slower pace.

(C) The onset time of cold hypersensitivity is illustrated by the blue line (cold) relative to the 

later onset of tactile hypersensitivity illustrated by the orange line (tactile).

Statistically significant differences between the values from mice after SNI and their basal 

measures in (A) and (B); *p < 0.01 (one-way repeated-measures ANOVA followed by 

Bonferroni post hoc test). There were no statistically significant differences between basal 

measures and values after sham surgery (gray lines, one-way repeated-measures ANOVA). 
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Error bars indicate SEM (n = 13 or 14 per group; see Supplemental Experimental 

Procedures).
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Figure 2. WGCNA Analysis of All Regulated Transcripts in DRG
Significantly regulated probes (moderated F-statistic, n = 1,704) were subject to WGCNA 

analysis to produce unbiased clusters of co-regulated transcripts representing the entire 

regulatory network of transcripts in the DRG following peripheral nerve injury (SNI) for 10 

days sampled at least once a day over this period. The first column defines the clusters 

present, and the second shows heatmaps of each gene in each cluster. Blue represents low-

level expression and red high-level expression. The third column gives a brief description of 

cluster function as defined by IPA software. Below this is the number of probes in each 
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cluster and the p value IPA ascribed the function given. The final column gives example 

transcripts from each functional subdivision. See also Table S1.
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Figure 3. Transcript Regulation in the DRG after SNI Follows Distinct Patterns
(A) Similarity plot of the module eigengenes of each cluster showing very little overlap in 

pattern regulation.

(B–E) Representations of the regulation of each cluster given as singles line plots with 

intensity of regulation on the y axis and time on the x axis. Cluster I (B), clusters II, III, and 

VI (C), clusters IV and V (D), and clusters VII and VIII (E). Each cluster contains not only 

genes regulated in the fashion drawn but also reciprocal regulation events.

See also Figures S1, S2, and S3 and Tables S1, S2, and S3.
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Figure 4. Transcript Expression in the DRG Correlating with the Temporal Profile of Cold 
Allodynia Was Nociceptor Related, whereas That with Tactile Hypersensitivity Was Immune 
Cell Centric
Gene expression was correlated with the time courses of cold and tactile allodynia 

development using the Pearson coefficient of similarity.

(A) Heatmap of the relative expression of the probes that most tightly correlate with cold 

allodynia onset.

(B) Relative expression of the probes that most tightly correlate with tactile allodynia.

(C and D) Representative functional characteristics using IPA of these cold- (C) and tactile-

related (D) transcripts.

(E and F) Strongest GO terms for transcripts correlated with cold (E) and tactile (F) 

allodynia.

Cobos et al. Page 22

Cell Rep. Author manuscript; available in PMC 2018 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(G) Cross-comparison of transcripts present in each cluster with transcript lists derived from 

isolated DRG nociceptors and isolated macrophages/T cells. Orange represents genes 

contained only in the immune gene list, blue represents genes contained only in the 

nociceptor list, gray represents genes present in both lists, and white represents genes not 

contained in either list.

See also Tables S4, S5, S6, S7, S8, and S9 and Figure S4.
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Figure 5. Trpv1 Lineage Neuronal Deletion Mice Develop Tactile, but Not Cold, Allodynia after 
SNI Injury
(A) When naive mice are given the choice between two opposing temperatures, wild-type 

control littermate (LM) mice move toward the more ambient temperature, whereas Trpv1 

DTA mice do not. Each point on the graph measures the amount of time spent on plate A in 

a 30-s window (y axis) when the plate was set to the temperature given on the lower x axis. 

The top x axis gives the temperature of the alternate plate for that time bin.

(B) TrpV1 lineage DTA mice and their LM control counterparts develop tactile allodynia 

post-SNI. Statistically significant differences between the values from mice after SNI and 
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their basal measures are shown (**p < 0.01). However, there was no significant difference 

between the two curves (two-way repeated-measures ANOVA).

(C) TrpV1 lineage DTA mice develop very weak levels of cold allodynia relative to their LM 

controls. Statistically significant differences between the values from mice after SNI and 

their basal measures (**p < 0.01) and between wild-type LM controls and TrpV1 DTA mice 

in cold sensitivity (##p < 0.01) are shown (two-way repeated-measures ANOVA, Bonferroni 

post hoc test).

For (A), n = 9 (TrpV1-DTA), n = 10 (LM controls); for (B) and (C), n = 8 (both groups). 

Error bars indicate SEM. See also Figure S5.
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Figure 6. Mice Depleted of Peripheral Macrophages/Monocytes Using Clodronate Develop 
Delayed Tactile Allodynia but Normal Neuropathic Cold Allodynia
(A) Clodronate-treated mice develop markedly less tactile allodynia post-peripheral nerve 

injury than empty-liposome-treated controls.

(B) Clodronate-treated mice develop significant levels of cold allodynia post-SNI. 

Statistically significant differences between the values from mice after SNI and their basal 

measure (**p < 0.01) and between mice treated with clodronate or vehicle in tactile 

allodynia (##p < 0.01) are shown (two-way repeated-measures ANOVA, Bonferroni post hoc 

test). Clodronate-treated C57BL/6 mice develop significant levels of cold allodynia post-SNI 

(*p< 0.05, **p<0.01), but there were no significant differences in cold allodynia between 

clodronate- and vehicle-treated mice (p = 0.323; two-way repeated-measures ANOVA).

For (A) and (B), n = 10 clodronate, n = 13 vehicle.

(C–E) Levels of myelocytes (CD45+CD11b+CD11c−SiglecF−CD3−) measured by FACS in 

blood (C) and DRG (D and E) 7 days after SNI in mice treated with clodronate or vehicle.

(F) Mechanical threshold in these mice.

For (C)–(F), p values are given (unpaired Student’s t test).

(G and H) Iba1 immunoreactivity in the DRG from SNI mice treated with vehicle liposomes 

(G) or clodronate liposomes (H). Scale Bar: 100 µm.
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(I–K) Real-time qPCR of the macrophage/monocyte markers CD68 (I), CD11b (J), and 

CD163 (K) in the DRG of SNI mice treated with liposomes or clodronate. p values are given 

(n = 5 per group; unpaired Student’s t test).

Error bars indicate SEM.
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Figure 7. T and B Cell-Deficient Rag1−/− Mice Develop Normal Neuropathic Cold Allodynia, but 
Not Complete Tactile Allodynia, following SNI Injury
T cell reintroduction into Rag1−/− mice abolishes tactile sensitivity differences present 

between Rag1−/− mice and wild-type control littermates (LM) but leaves cold allodynia 

unaltered.

(A and B) Immunohistochemistry for the monocyte/macrophage marker IBA1 (red) in 

noninjured (A) and 7-day SNI-injured DRG in Lck Cre-zsGreen mice, which express 

labeled T cells (green) (B). Scale Bar: 50 µm.

(C) Representative FACS plots of CD4 versus CD8 cell counts from splenic preparation 

showing cells positive for both markers in the wild-type and in Rag1−/− and T mice, but not 
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Rag1−/− mice (top). Representative FACS plots of CD4 versus B220 counts showing the 

presence of B cells in wild-type LMs, but not Rag1−/− or reconstituted Rag1−/− mice.

(D) Rag1−/− mice develop less tactile allodynia post-SNI than their LM controls (Rag versus 

WT, p = 0.003; Rag versus Rag and T, p = 0.002). Reconstituted Rag1−/− mice (Rag1−/− and 

T) showed full levels of tactile sensitivity (WT versus Rag and T, not significantly different). 

Significant differences between the values after SNI and their basal measures are shown 

(**p < 0.01, Rag1−/−mice versus WT littermates [blue #]; Rag1−/− mice versus Rag and T 

[red #]; #p < 0.05, ##p < 0.01, two-way repeated-measures ANOVA, Bonferroni post hoc 

test).

(E) Wild-type LMs, Rag1−/−, and T cell-reconstituted mice develop similar neuropathic cold 

allodynia (no significant differences among the three curves). For (D) and (E), error bars 

indicate SEM (wild-type LM, n = 15; Rag1−/−, n = 10; Rag1−/− and T, n = 15).
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