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Introduction

A widespread trait amongst fungi is their ability to alter their morphology in response to envi-

ronmental stimuli. The type and degree of alteration, which commonly includes changes in

cell size and shape, can vary between strains and even between individual cells within geneti-

cally uniform populations, providing many levels of variation within species. As well as

enhancing their ability to survive in different environmental niches, this variation plays an

important role in the ability of human fungal pathogens to survive and cause disease in the

host. Some well-known examples are the thermally dimorphic fungi, which grow as moulds at

22 ˚C–25 ˚C in the soil and covert into yeasts at 37 ˚C when in a mammalian host [1]. Some

fungi, rather than switching between 2 distinct forms in different niches, produce a variety of

forms in the host that appear to have roles in the infection process. This phenomenon has not

been as extensively studied as thermal dimorphism but may be important for understanding

disease progression and outcome. Here, we review selected examples of pathogenic fungi that

produce distinct morphological forms when living in and on host tissues that may be linked to

infection and virulence. Two genera, Candida and Malassezia, are highly adapted to the com-

mensal lifestyle and can also become pathogenic, and 2 others, Coccidioides and Cryptococcus,
have environmental components to their life cycle but show evidence of adaptation to life

inside a host.

White-to-opaque and yeast-to-hyphae transitions in Candida

albicans

C. albicans is a commensal of humans that colonises the mucosal surfaces of most healthy indi-

viduals but can cause life-threatening infections in immunocompromised hosts [2]. The ability

to thrive in different niches within the host is crucial for survival, and C. albicans possesses an

array of morphological forms that are thought to aid it in this process (Table 1; Fig 1A). During

commensal growth, C. albicans exhibits a range of morphologies that appear to be suited to

various host niches [3]. White, opaque, grey, and gastrointestinal-induced transition (GUT)

yeast cell types have been described, and C. albicans can switch between these, enabling it to

adapt rapidly to changes in its environment. White cells are smooth and round, whereas

opaque cells are elongated, with more vacuoles and cell surface protuberances, and grey cells

are the smallest cell type and are elongated with no protuberances [4, 5]. Opaque cells have

been found to mate more efficiently than white cells and, along with grey cells, are more viru-

lent and capable of faster proliferation on epithelial surfaces, whilst white cells are more viru-

lent in systemic bloodstream infection models [6–8]. Opaque cells also possess increased

resistance to macrophages and neutrophils because, unlike white cells, they do not secrete a
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chemoattractant, and it has been suggested that the switch to opaque cells may be a mechanism

to escape the immune system [9]. GUT cells are morphologically similar to opaque cells but do

not possess cell surface protuberances, are unable to mate, and seem to be specialised for com-

mensalism in the mammalian gastrointestinal tract, displaying superior fitness to other cell

types in models of this niche [10].

With host immunosuppression, C. albicans can become an opportunistic pathogen, and this is

accompanied by transitions from the unicellular yeast form to hyphal and pseudohyphal cell

types [3]. Candida hyphae are long, filamentous, and multicellular [11], whilst pseudohyphae are

elongated ovals that have features of both yeasts and hyphae. Depending on environmental fac-

tors, these 3 cell types can either stably proliferate to maintain their cell type or transition to the

other cell types, and the ability to do so is a crucial determinant of virulence in C. albicans. Hyphal

and pseudohyphal forms are invasive and are thought to have an increased ability to penetrate

into host tissues and internal organs and cause damage, whilst yeast cells may aid dissemination

through the bloodstream because of their small size [15, 16]. Mutants that cannot interchange

between these cell types are typically defective in infection models, and isolates taken from

patients with disseminated candidiasis generally contain both yeast and hyphal forms [12, 13].

Biofilms, which are complex and densely packed communities of cells with increased resistance

to host defences and antifungal drugs, also typically contain all 3 cell types [14].

Yeast-to-hyphae transition and pleomorphism in Malassezia spp.

Malassezia spp. are lipid-dependent yeasts that are a major component of the normal skin

mycobiome of humans and other animals, although metagenomic sequencing studies have

Table 1. The variety of morphological forms produced by pathogenic fungi that may play a role during the infection process.

Fungus Phylum Morphological Form Description

C. albicans Ascomycota hyphae long, tube-shaped filaments, multicellular

pseudohyphae elongated ellipsoids, multicellular

white cells small, round-to-oval

grey cells small, elongated ovals

opaque cells larger elongated ovals, more vacuoles, surface protuberances

GUT cells larger elongated ovals

Malassezia spp. Basidiomycota hyphae elongated, 10–25 μm in length

regular yeasts round, 8 μm in diameter

ovoid cells� ovoid, 2.5–6 μm in length

cylindrical cells� short variants 1.5–3 μm in length, long variants 6 μm in length

Coccidioides immitis and C. posadasii Ascomycota spherules spherical, 30–80 μm in diameter, containing 100–300 endospores

endospores spherical, 2–7 μm in diameter

arthroconidia� can be highly variable, including spherical, triangular, and barrel-shaped

fungal ball� spheroid mass of highly branched hyphae

Cryptococcus neoformans/gattii complex Basidiomycota regular yeasts spherical, 4–7 μm in diameter

capsule enlargement cells with large polysaccharide capsules

titan cells greater than 15 μm in diameter, thickened cell walls, larger vacuoles

micro cells smaller than 1 μm in diameter

irregular cells� elongated ellipsoids or tapered and egg-shaped

pseudohyphae� elongated ellipsoids, multicellular

�Less well-characterised morphological forms with currently unknown implications for virulence.

Abbreviations: GUT, gastrointestinal-induced transition.

https://doi.org/10.1371/journal.ppat.1008571.t001
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found Malassezia DNA in various terrestrial and marine habitats, suggesting some species

may inhabit a wider ecological niche than was previously assumed [17–19]. Under certain

Fig 1. Morphological switches and transitions during the fungal infection process. (A) Yeast-to-hyphae-to-pseudohyphae transformations and

switching between white, grey, opaque, and GUT yeast forms in C. albicans. (B) Reversible yeast-hyphae switching in Malassezia. (C) The spherule-

endospore cycle, unique to Coccidioides infections. (D) Differentiation of regular yeast cells to produce various morphologically different forms in

Cryptococcus. GUT, gastrointestional-induced transition.

https://doi.org/10.1371/journal.ppat.1008571.g001
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conditions that induce fungal overgrowth or through host immunocompromisation, commen-

sal Malassezia species can become opportunistic pathogens, and cause a variety of dermatolog-

ical conditions. In host tissues, Malassezia can reversibly switch between yeasts of around

8 μm in diameter and hyphae or pseudohyphae of 10–25 μm in length (Table 1; Fig 1B), result-

ing in a characteristic “spaghetti and meatballs” appearance in scrapings from infected skin or

lesions [20]. The yeast form of Malassezia has many known virulence attributes, including the

ability to either up-regulate or suppress the immune response [21]. Hyphal forms are difficult

to produce in vivo and are therefore less well understood, but it is thought that they can pene-

trate keratinised skin cells, gaining access to deeper nutrient-rich layers where they can revert

to the yeast form and proliferate to replace cells being shed at the epidermal surface [15].

Beyond these commonly known forms, considerable other variations in the morphology of

Malassezia have been observed, including ovoid and cylindrical cells and hyphae of varying

size [22] (Table 1). To date, these morphologies have received little attention, and they may

play distinct and potentially important roles in infection.

Spherule formation and hyphal polymorphism in Coccidioides

immitis and C. posadasii

C. immitis and C. posadasii are soil-dwelling pathogenic fungi that cause pulmonary infection

via airborne arthroconidia, which can develop into life-threatening disseminated disease in at-

risk individuals [23]. Although originally thought to be an accidental pathogen and opportun-

ist, recent studies indicate that the infection of small animals such as bats and armadillos may

form part of the life cycle of Coccidioides and that it has evolved specific adaptations for host

interaction [24]. Central to its pathogenicity during human infection is the production of

spherules and endospores. Spherules are formed from a gradual enlargement and transforma-

tion of inhaled arthroconidia into a structure that is typically 30–80 μm in diameter and con-

tains around 100–300 endospores [25] (Table 1; Fig 1C). Upon rupture of the spherule, the

endospores are released into host tissues, where each can produce hyphal growth or develop

into a new spherule, repeating the growth cycle [26]. In addition to temperature and CO2 lev-

els, there is evidence that the transition to spherules can be stimulated by contact with neutro-

phils, and reversion of arthroconidia to hyphal forms has occasionally been observed in

infected lung cavities with no neutrophils [23]. Other, less well-characterised morphotypes

have also been observed clinically, but their role in infection is not well understood (Table 1)

[27, 28].

Variation in capsule and cell size in Cryptococcus

Cryptococcus neoformans and members of the C. gattii species complex are encapsulated yeasts

that cause severe respiratory and cerebral disease, primarily amongst immunocompromised

individuals [29]. Although the pathogenic Cryptococcus species are considered to be environ-

mental fungi, adaptations for survival during interactions with environmental predators such

as amoebae, insects, and other short-lived organisms are thought to explain their broad host

range and possession of various pathogenic traits [30]. Cryptococcus cells are typically spherical

and 4–7 μm in diameter, but during human infection, the appearance of forms of varying size

is common (Table 1; Fig 1D). The polysaccharide capsule possessed by Cryptococcus cells is

highly dynamic and undergoes substantial enlargement during human infection [31]. Cells

with enlarged capsules have been shown to be more resistant to oxidative stress, antimicrobial

peptides, and phagocytosis and are generally associated with more severe pathology [32]. Both

C. neoformans and members of the C. gattii complex can produce highly enlarged “titan” cells,

which are greater than 15 μm in diameter and have been seen to reach up to 100 μm. Titan
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cells have unique characteristics, including thickened cell walls, dense capsules, large vacuoles,

and polyploidy [33]. These traits appear to contribute to survival in the host, with their capsu-

lar properties increasing resistance to oxidative, nitrosative, and other stresses and their mas-

sive size preventing phagocytosis and elimination by macrophages [34]. When replicating,

titan cells produce regular-sized progeny; hence, they are always part of a heterogenous mix-

ture of cell types [35].

At the other end of the spectrum, C. neoformans can produce “micro” cells, a subpopulation

of cells that are smaller than 1 μm in diameter [36]. Whilst much less research has been done

on micro cells, they are a cell type that has been seen during human infection, and it is thought

that they may cross biological barriers more readily because of their small size, aiding dissemi-

nation of the pathogen to other body sites [37, 38]. Micro cells are seen in different C. neofor-
mans varieties and genotypes but have not been observed in species of the C. gattii complex

[39]. Recent studies have further identified cells with unusual, irregular morphologies in some

Cryptococcus strains. These can be tapered and egg-shaped or elongated and of a more pseudo-

hyphal form. Their presence in clinical populations has been associated with increased anti-

fungal tolerance but decreased virulence, which suggests they may promote persistence in the

host [38, 39]. Like titan cells, micro and irregular cell types always appear as part of a mix of

different cell types.

Conclusions

Diverse fungal morphologies are increasingly being recognised as key traits associated with

virulence, aiding pathogens in various ways, including adhesion to physiological barriers, dis-

semination through the body, and manipulation of host immune responses [40]. Whilst some

morphological forms have well-characterised implications for virulence and pathogenesis,

there is still much to learn about the capacity of fungi for morphogenesis during disease pro-

gression. This knowledge may ultimately help inform disease diagnosis and prognosis, with

implications for treatment strategies.
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