
ARTICLE ADDENDUM

Oral delivery of dsRNA by microbes: Beyond pest control
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ABSTRACT
RNA interference (RNAi) by oral delivery of dsRNA in insects has great potential as a tool for
integrated pest management (IPM), especially with respect to addressing the need to reduce off-
target effect and slow down resistance development to chemical insecticides. Employing the
natural association existing between insect and yeast, we developed a novel method to enable the
knock down of vital genes in the pest insect Drosophila suzukii through oral delivery of species-
specific dsRNA using genetically modified Saccharomyces cerevisae. D. suzukii that were fed with our
“yeast biopesticide” showed a significant decrease in fitness. In this perspective article, we postulate
that this approach could be adapted to a large number of species, given the great diversity of
symbiotic interactions involving microorganisms and host species. Furthermore, we speculate that
beyond its application as biopesticide, dsRNA delivery by genetically modified microbes can also
serve to facilitate reverse genetic applications, specifically in non-model organisms.
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Toward a diversification of dsRNA delivery
methods

Taking advantage of the widespread symbiotic interac-
tions pre-existing between yeast and Drosophila,1 we
have recently developed an oral delivery method to
induce RNA interference (RNAi) in a pest insect by
knocking down essential genes expressed in its digestive
tract2 (Fig. 1). By feeding D. suzukii with Saccharomyces
cerevisae transformed with a plasmid vector expressing
double-stranded RNA (dsRNA) targeting y-tubulin23C
(y-tub23C), which is known to be lethal when mutated in
the closely related D. melanogaster, we observed a signifi-
cant decrease of y-tub23C mRNA level in larvae and
adult midgut of D. suzukii.2 More importantly, we
observed that the reduced expression of y-tub23C
mRNA correlated with a significant reduction in both
larval survivorship and adult reproductive fitness in a
species-specific manner. Our results are exciting because
it showed that oral delivery of dsRNA expressed in yeast
can induce sufficient RNAi knock down of a target gene
to reduce fitness of an insect pest. The fact that the target
insect for our study, D. suzukii, is a species without sys-
temic RNAi mechanism suggests that our approach may
even be more effective in species with systemic RNAi, in
which the silencing signal can be more efficiently dissem-
inated beyond the intial target cells, i.e. cells in the

digestive tract. In addition, it remains to be tested in
future experiments whether the delivery of dsRNA by
microbes, rather than naked dsRNAs, could enhance the
propagation of the RNAi silencing signal.

Since the first report of gene silencing using antisense
single-stranded RNA (ssRNA) in plants at the end of the
1980s3 and a few years later in C. elegans,4 RNAi effi-
ciency have been notably improved with the discovery
made by Fire and Mello5 highlighting the role of dsRNA
in this phenomenon. The use of dsRNA molecules as a
tool mediating sequence specific suppression of gene of
interest (GOI) was then extensively developed and uti-
lized in many other organisms.6 Despite the fact that
RNAi pathways are well conserved among eukaryotes,
knockdown efficiency often varies depending on target
species, target genes, and delivery methods.7,8 One of the
major issue limiting the success of RNAi strategies
remains to be our incomplete understanding of mecha-
nisms leading to the transport and amplification of
dsRNA molecules from one cell to another. The
improvement of delivery methods also constitutes a criti-
cal step to effectively mediate knockdown phenotype.9 In
a large number of insect taxa, oral administration has
been reported to show similar efficiency on target gene
expression when compared to injection methods.10,11

The obvious advantages of oral delivery include reduced
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stress for organisms and ease of use for small insects.
Nonetheless oral delivery of dsRNA is still restricted to a
few number of administration mode and to date, most
RNAi experiments using oral delivery are based on

feeding dsRNA either synthesized in vitro or produced
in bacteria.12

Among emerging applications, our use of genetically
modified yeast as biopesticide presents a novel approach
to extend the toolbox of integrated pest management
(IPM).2 Studies on symbiotic interactions have indicated
that yeast are not only restricted to Drosophila but
broadly spread across different insect taxa.13-15 In the
mosquito Aedes aegypti, recent finding has shown that
live yeast cells are efficiently ingested and hydrolyzed by
larvae.16 With the recent advances in sequencing tech-
nology, the characterization of insect gut microbiota17

will lead to the identification of novel symbiotic microor-
ganisms amenable to be genetically modified and used as
dsRNA delivering vector. In the context of pest manage-
ment, the finding of new species-specific interactions
between insect and microbe will considerably increase
the specificity of the treatment against targeted insect.

Application of modified yeast expressing dsRNA
in reverse genetics

Beyond pest control strategies, the expansion of this
technique constitutes a promising strategy to address the
limits of RNAi treatment, specifically in organisms where
other delivery methods such as injection and classical
oral dsRNA administration remain unsuccessful or too
expensive. Recent advances in genetic and molecular
biology offer a broad range of powerful technologies to
manipulate expression and function of specific genes.
With the development of genome engineering methods
like ZNFs, TALENs and more recently CRISPR/Cas9
system, our ability to generate genomic changes is bring-
ing about a revolution in scientific discoveries.18-20 In
model organisms such as Drosophila, UAS/Gal4 system
and its extensions constitute one of the more widespread
techniques to targeted genetic manipulation.21 This tool
is particularly efficient to drive tissue specific and ectopic
gene or dsRNA expression, using promoter restricted to
certain cell populations or developmental stage.
Although the development of these tools constitutes
incontestable advances in terms of specificity and effi-
ciency, there is still some exception where the use of
exogenously delivered dsRNA constitutes valuable alter-
native. Indeed, genome engineering relies on the estab-
lishment of transgenic lines by injection of genetic
constructs into embryonic germline cells, which could
remain challenging in non-model insect systems. In
addition, functional studies of genes playing distinct
roles during development and adult life could be
challenging since the loss of function of these GOI gener-
ally leads to lethal phenotype.22 As shown in studies
addressing the characterization of hormonal pathways

Figure 1. Schematic summarizing the protocol for production
and oral delivery of genetically modified yeast expressing dsRNA
to insect targets. Inverted repeats of target sequence are cloned
into expression vector p406TEF1 and transformed into S. cerevi-
sae. Transformants are selected on minimal media without Uracil.
Previously expanded yeast culture is then pelleted and could be
use for further applications. For more details, see ref. 2.
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for example, the same set of genes could be involved in
both developmental processes and regulation of physio-
logical state in an age-dependent manner.23,24 In such
scenario, the temperature dependent UAS/Gal8025 or
other inducible systems21 can be used in model species.
Alternatively, the use of transient suppression of gene
expression using RNAi should also be considered. In
fact, in experiments that require temperature manipula-
tion in the experimental design, orally administrated or
injected dsRNA represent a helpful substitute to the
Gal80 temperature-dependent system.

As high-throughput sequencing for genome and tran-
scriptome acquisition is becoming more and more acces-
sible, the opportunities to explore beyond the sphere of
model organisms are now unlimited. As a consequence,
the number of genes with unknown function continues
to rise inexorably. In this context, the improvement of
dsRNA delivery has great potential in helping research-
ers tackle the genome to phenome challenge. We pro-
pose that microbial delivery of dsRNA for gene silencing
may be less time-consuming and labor-intensive than
genome engineering and could be potentially applied to
a broad range of organisms for reverse genetics study as
well as integrated pest management.
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