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Abstract: Although dietary fiber treatment alters the gut microbiota and its metabolite production,
it is unclear whether or not exercise habits can have a supplemental effect on changes in gut microbiota
in dietary fiber-treated mice. To clarify the supplemental effect of voluntary exercise on gut microbiota
in partially hydrolyzed guar gum (PHGG), which is a soluble dietary fiber, treated mice under high-fat
diet (HFD) feeding, 4-week-old male C57BL/6J mice (n = 80) were randomly divided into two dietary
groups: the control-diet (CD) and HFD. Then, each dietary group was treated with or without PHGG,
and with or without wheel running. After the experimental period, measurement of maximal oxygen
consumption, a glucose tolerance test and fecal materials collection for analysis of gut microbiota were
carried out. Voluntary exercise load in PHGG treatment under HFD feeding showed the supplemental
effect of exercise on obesity (p < 0.01) and glucose tolerance (p < 0.01). Additionally, in both CD
and HFD groups, voluntary exercise accelerated the decrease in the Firmicutes/Bacteroidetes ratio in
mice fed with PHGG (p < 0.01). These findings suggest that voluntary exercise might activate the
prevention of obesity and insulin resistance more via change in gut microbiota in mice administrated
with PHGG.

Keywords: dietary fiber; wheel running; F/B ratio

1. Introduction

The ingestion of dietary fiber is a potential prebiotic, and may lead to numerous health benefits on
the host [1,2]. The main object of prebiotics is to stimulate the growth and activity of beneficial bacteria
in the gastrointestinal tract (GT) [1,2]. Guar gum is one of these dietary fibers, and is classified in soluble
and fermentable fibers. In an attempt to make guar gum more palatable, hydrolyzed guar gum (partially
hydrolyzed guar gum (PHGG)) was produced resulting in a low viscosity/nonviscous. Thus, PHGG
is classified as low viscous in fibers, but it is well fermented [1]. Unfortunately, the beneficial effect,
such as improved glycemic control, is abolished when the guar gum is hydrolyzed to a nonviscous
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form [3]. In fact, dietary PHGG did not significantly affect plasma glucose levels in a rodent model of
type 2 diabetes and patients with type 2 diabetes and metabolic syndrome [4,5]. However, PHGG could
elicit constipation relief and modulate gut microbiota, which shows the potential to act as a dietary
fiber for constipation treatment [6]. In addition, PHGG improves symptoms associated with irritable
bowel syndrome [7], demonstrated to be beneficial in the treatment of cholera [8], small intestinal
bacterial overgrowth [9], and pediatric functional gastrointestinal disorders [10]. PHGG treatment
has been shown to reduce colonic mucosal damage in an animal colitis model [11]. Although this
fermentable fiber is useful as a prebiotic, it was reported that in high-fat diet (HFD)-induced obese
mice, guar gum intake did not attenuate the body mass gain [12], and also the suppressive effect of
PHGG on body mass gain is slight [13].

On the other hand, it is well known that exercise contributes to attenuating hyperglycemia [14] and
has other numerous health benefits [15]. In addition, recent reviews suggest that exercise, which alters
gut microbiota composition and function, is supported by rodent studies, although the responses to
exercise vary with the novelty, frequency, intensity, and duration of activity [16,17].

Each PHGG intake and exercise alters the gut microbiota and its metabolite production, such as
short-chain fatty acids (SCFAs) [1,18]. Accordingly, it can be expected as a remedy for deterioration of
the gut microbiota which is decreased diversity of the gut microbiota and increased harmful bacteria
(dysbiosis) [19]. The 16S rRNA gene sequence data of gut microbiota in mice indicate that HFD induces
not only obesity, but also the increased Firmicutes and Bacteroidetes ratio (F/B ratio) [20–22]. Although
it was reported that the abundance of Firmicutes and Bacteroidetes in HFD-feeding mice did not
change with or without guar gum intake [12], the alteration of F/B ratio after PHGG intake has not been
investigated. In addition, it is unclear whether or not exercise has a supplemental effect on alterations
in the gut microbiota with PHGG intake.

Therefore, the purpose of this study was to clarify the supplemental effect of voluntary exercise
on gut microbiota in PHGG intake under the HFD feeding used as an animal model.

2. Materials and Methods

2.1. Animal and Experimental Design

Four-week-old male C57BL/6J mice (n = 80, CLEA Japan, Tokyo, Japan) were housed individually
in cages under a controlled environment (22 ± 1 ◦C, 12:12-h light-dark cycle) and were randomly
divided into 2 dietary groups: the Control Diet (CD) and HFD. Then, each dietary group was treated
with (GCDC, n = 12 and GHFDC, n = 12) or without (CDC, n = 8 and HFDC, n = 8) PHGG (G) intake,
with wheel running (W) (CDW, n = 8 and HFDW, n = 8), and with a combination of G and W (GCDW,
n= 12 and GHFDW, n = 12). The mice were given ad libitum access to food and drinking water
(Supplement Figure S1). The experiment involving the mice including the procedures performed,
was approved by the Institutional Animal Care and Use Committee of Kawasaki University of Medical
Welfare (No.18-010).

2.2. Diet and PHGG

The mice were fed a normal CD (D12450Jpx1, Research Diets, New Brunswick, NJ, USA) containing
10% fat, 20% protein, and 70% carbohydrates (of total calories), and HFD (D12492Gpx10, Research
Diets, New Brunswick, NJ, USA) containing 60% fat, 20% protein, and 20% carbohydrates for 10 weeks.
Both diets were cellulose free. Each diet also contained two conditions, are with 5.0% PHGG (Sun fiber®,
Taiyo Kagaku Co., Ltd., Yokkaichi, Japan) and are without 5.0% PHGG.

2.3. Voluntary Exercise

As for voluntary wheel running, each mouse (in CDW, GCDW, HFDW and GHFDW groups) ran
on a wheel (10 × 23 × 10 cm cage with wide 5.5 cm × 22 cm wheel, Natsume, Nagano, Japan) in its
cage freely for 10 weeks.
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2.4. Measurement of Maximum Oxygen Consumption (
·

VO2max)

To clarify the effect of voluntary exercise on aerobic capacity, a part of each mouse (n = 8 in each

group) was measured for
·

VO2max at 9–10 weeks during the experimental period by using a treadmill
in a metabolic chamber [23]. All mice were accustomed to treadmill running for 5 days prior to the
measurement. Each mouse spent 5 min running at 5 m/min followed by 5 min running at 10 m/min,

and then velocity was increased by 1 m/min every 30 s at inclinations of 20◦.
·

VO2max was defined as
the point when the oxygen consumption showed leveling off despite constant increases in velocity,
or when the mice maintained continuous contact with the shock grid for 5 s or were unable to or
refused to run further.

2.5. Glucose Tolerance Test (GTT)

To clarify the effect of voluntary exercise on glycemic control in PHGG-treated mice under HFD
feeding, after the mice fasted for 5 h, blood samples were collected from the tail vein, and then
blood glucose levels were measured using the glucose monitoring device Accu-Chek, (Roche, Basel,
Switzerland) immediately prior to glucose administration, and at 15, 30, 60 and 120 min after glucose
administration (2 g/kg, i.p.). Each mouse was lightly anesthetized with the inhalant Isoflurane prior to
the glucose administration [24].

2.6. Measurement Body Mass, Food Intake, Tissue Mass, and Secum Contents

Body mass and food intake were recorded every week. Two days after the 10 week experimental
period, the mice were sacrificed under isoflurane anesthesia. The heart, soleus, and cecum were
collected. Epididymal, subcutaneous, and visceral fats were collected and weighed individually,
and the results showed the total amount as total body fat.

2.7. Fecal pH Measurement and Analysis of Gut Microbiota

At the 6th week, fecal materials were collected from mice that were as fresh as possible.
The materials were diluted 2-3-fold (w/v) in distilled water and were homogenized by the homogenizer
pestle. After calibrating the pH meter (twin pH B-212, Horiba, Ltd., Kyoto, Japan), the pH of these
diluted samples was measured [25]. At the 10th week, feces from mice were collected for analysis of
fecal microbiota. After changing to a sterilized cage, feces from mice were pooled by the cage, and feces
were collected and were immediately snap-frozen in liquid nitrogen. Each fecal sample was carried
out using 16S rRNA metagenomics analysis by next-generation sequencing (NGS) methods. 16S rRNA
sequences from bacteria were analyzed by the Ribosomal Database Project (RDP Release 11 Update 4
May 26, 2015) [26], which was used for alignment and classification (97% similarity) of operational
taxonomic units (OTUs). The OTUs counts were normalized by subsampling to the lowest number
of OTUs found in the sample. The α- and β-diversities of the gut microbiota were analyzed using
Quantitative Insight into Microbial Ecology (QIIME ver. 1.8.0) [27].

2.8. Analysis of Short-Chain Fatty Acids (SCFAs)

Cecal contents were collected at the sacrifice and immediately frozen. SCFAs concentrations
were quantified by HPLC using a post column reaction with a Prominence CDD-10Avp conductivity
detector (Shimadzu, Kyoto, Japan), tandemly arranged two columns (Shim-pack SCR-102(H); 300 mm
× 8.0 mm ID), and a guard column a Shim-pack SCR-102(H) guard column (50 mm × 6.0 mm ID) as
mentioned previously [28].

2.9. Statistical Analysis

The statistical analyses were performed using the IBM SPSS Statistics 23.0 for Windows software
program. First, the effect of diet was analyzed between CDC vs. HFDC by nonparametric analysis
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using the Mann-Whitney U test. Second, in each dietary condition (control diet fed groups and high-fat
diet fed groups, respectively), the data were analyzed using the Kruskal-Wallis test, and then a post
hoc test was performed using the Mann-Whitney U test. p-values of <0.05 were considered to indicate
statistical significance.

3. Results

Body mass in HFDC mice was significantly higher than that in CDC mice (p < 0.01, Figure 1a
and Supplement Figure S2a). Accordingly, in this study, there was, at least, HFD-induced obesity in
mice. In both CD- and HFD-fed conditions, wheel running attenuated body mass gain. Although
the results for total body fat were also very similar to those for body mass, interestingly the body fat
in GHFDW mice was significantly lower than that in HFDW (p < 0.01, Figure 1b). Food intake in
HFDC was significantly lower than that in CDC (p < 0.01, Figure 1c). The food intake of the exercise
groups (CDW, GCDW, HFDW and GHFDW) had remained high throughout the experiment under all
conditions. Moreover, food intake in HFD mice had been similar to that in CD mice but HFD mice
became obese (Supplement Figure S2b). In CD mice, PHGG decreased food intake (p < 0.05), but not in
HFD mice. Moreover, wheel running accelerated food intake in both types of dietary mice treated
with or without PHGG treatment (p < 0.01). In both dietary conditions, soleus muscle (Figure 1d)
and heart (Figure 1e) mass in each wheel running group were significantly higher than that in each
sedentary group (p < 0.05 or p < 0.01), although PHGG intake did not affect them. A high level of

the
·

VO2max in the HFD fed condition was induced by wheel running (p < 0.01), but not by PHGG
treatment (Figure 1f).
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Figure 1. The supplemental effect of wheel running on body mass (a), total body fat (b), food intake

(c), soleus muscle mass (d), heart mass (e), and
·

VO2max (f) in PHGG intake mice under CD and HFD
feeding. The data in panels (a–e) were showed as percentage of body mass at the end of the experiment.

Food intake showed as energy intake (kcal) per body mass.
·

VO2max was measured by measuring
respiratory gas while running on a treadmill using a mass spectrometer (ALCO). CDC: control diet
(CD) and sedentary control (C) (n = 8), GCDC: PHGG intake (G) and CDC (n = 12), CDW: CD and
wheel running (W) (n = 8), GCDW (n = 12), HFDC: high-fat diet (HFD) and C (n = 8), GHFDC (n = 12),
HFDW (n = 8), and GHFDW (n = 12). The values were expressed as the mean ± S.E.M. * p < 0.05 and
** p < 0.01.
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Figure 2a shows the changes in blood glucose concentration in GTT. BGAUC in HFDC was
significantly higher than that in CDC mice (p < 0.01, Figure 2b). There was no difference between the
BGAUC in HFDC and GHFDC mice. The BGAUC, however, was significantly attenuated by wheel
running but had no effect on PHGG treatment (p < 0.05 and p < 0.01, respectively).
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To explore the effect of the level of wheel running on gut microbiota in PHGG fed mice, we first
analyzed the fecal pH in mice during the experimental period. Although the fecal pH showed no
difference between in the CDC and HFDC mice, in both dietary groups of mice, combined between
PHGG and wheel running was lower than that in each treated groups (GCDW vs. CDW and GCDC:
p < 0.01 and p < 0.05, GHFDW vs. HFDW and GHFDC: p < 0.01, respectively, Figure 3a).
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Cecum contents in HFDC were lower than that in CDC (p < 0.01). In both diet conditions (CD and
HFD), the cecum content was significantly increased by PHGG intake (p < 0.01). Moreover, in the
PHGG intake mice, the cecum content was significantly increased by wheel running (GCDC vs. GCDW:
p < 0.01, and GHFDC vs. GHFDW: p < 0.01, Figure 3b).

The analyses of α- and β-diversities were performed to estimate bacterial richness and diversity
(Figure 4). The scores of OTUs, Chao-1 and Shannon indexes other than Simpson index in the
GHFDW mice were significantly lower than that in the GHFDC groups (p < 0.01, p < 0.01 and p < 0.05,
Figure 4a–d). Furthermore, microbiota distribution (β-diversity) at phyla level of taxon contributing
to 97% of sample variations was shown as the heatmap (Figure 4e). The dendrogram shows the
clustering of phyla based on Ward’s hierarchical clustering method. Remarkably, all PHGG-intake
groups clustered separately from the non-PHGG-intake groups.
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Figure 4. The supplemental effect of wheel running on bacterial diversities in the gut microbiota in
PHGG intake mice under CD and HFD feeding. The OTUs (a), Chao-1 (b), Shannon (c), and inverse
Simpson (d) indexes are shown as the α-diversities. The heatmap showed gut microbiota distribution
at phyla level of taxon, and the dendrogram showed the clustering of phyla as the β-diversity (e).
The values of α-diversities were expressed as the mean ± S.E.M. * p < 0.05 and ** p < 0.01.

As a result of the relative abundance of bacterial taxonomy at phylum level, only two of the
major phyla bacterial communities were detected (i.e., Firmicutes and Bacteroidetes, Figure 5a). PHGG
intake in both dietary conditions induced a decrease in the abundance of phylum Firmicutes (CDC vs.



Nutrients 2020, 12, 2508 7 of 13

GCDC: p < 0.01, CDW vs. GCDW: p < 0.01, HFDC vs. GHFDC: p < 0.05, and HFDW vs. GHFDW:
p < 0.01). In addition, wheel running in PHGG treated mice under both dietary conditions (GCDW
and GHFDW) induced a decrease in the abundance of Firmicutes (p < 0.01 and p < 0.05, Figure 5b).
The phylum Bacteroidetes in HFDC mice was significantly higher than that in CDC mice (p < 0.05).
Although in HFD conditions, PHGG and wheel running did not affect the abundance of Bacteroidetes,
in CDC conditions, the Bacteroidetes was significantly increased by wheel running (p < 0.05), and its
level of abundance was accelerated by wheel running under the PHGG intake (p < 0.01, Figure 5c).
PHGG induced attenuation of the phylum Firmicutes and Bacteroidetes ratio (F/B ratio) in the control
diet (CDC vs. GCDC: p < 0.01). Moreover, the F/B ratio was attenuated by PHGG intake while wheel
running under both diet feedings. Interestingly, the F/B ratio was significantly decreased while wheel
running in PHGG treated mice under both diet feedings (GCDC vs. GCDW: p < 0.01, and GHFDC vs.
GHFDW: p < 0.01, Figure 5d).
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mice under CD and HFD feeding. Relative abundance at phylum level (a), Firmicutes (b), Bacteroidetes
(c), and F/B ratio (Firmicutes and Bacteroidetes ratio) (d) after 10 weeks. The values were expressed as
the mean ± S.E.M. * p < 0.05 and ** p < 0.01.

In Figure 6, the taxonomic composition of gut microbiota at genus level was shown (Figure 6a).
Especially, we observed the decreased Lactobacillus abundance of wheel running in PHGG and
non-PHGG intake mice under both diet feedings, but not PHGG intake only (Figure 6b). On the other
hand, the genus Bacteroides abundance in GCDW mice was significantly higher than that in both CDW
and GCDC groups (p < 0.01, respectively). Moreover, Bacteroides abundance in GHFDW mice was
significantly higher than that in HFDW mice (p < 0.05, Figure 6c).
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Figure 6. The supplemental effect of wheel running on gut microbiota at genus level in PHGG
intake mice under CD and HFD-feeding. Relative abundance at genus level (a), Lactobacillus (b),
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** p < 0.01.

The amount of SCFAs (acetate, propionate and butyrate) in cecum contents was determined by
HLPC analysis (Figure 7). The total SCFAs in HFDC mice was significantly lower than that in CDC
mice (p < 0.01, Figure 7a). Especially, acetate (p < 0.01) and butyrate (p < 0.01) were attenuated by
HFD (Figure 7b,d). In the control diet, exercise inhibited SCFAs (p < 0.01), especially acetate (p < 0.01),
in cecum contents (Figure 7a,b). Moreover, in HFD, exercise inhibited propionate (p < 0.05) and
butyrate (p < 0.05) in cecum contents (Figure 7c,d). In exercise groups, however, PHGG treatment
accelerated the SCFAs increase in cecum contents ((SCFAs and acetate: CDW vs. GCDW and HFDW
vs. GHFDW), and (propionate and butyrate: HFDW vs. GHFDW)).



Nutrients 2020, 12, 2508 9 of 13Nutrients 2020, 12, x FOR PEER REVIEW 9 of 13 

 

 
Figure 7. The supplemental effect of wheel running on cecum SCFAs in PHGG intake mice under CD 
and HFD feeding. The total SCFAs (a), acetate (b), propionate (c), and butyrate (d) contents in cecum 
were shown. The values were expressed as the mean ± S.E.M. * p < 0.05 and ** p < 0.01. 

4. Discussion 

In this study, we expected that PHGG intake might be supplemented by voluntary exercise 
because PHGG, which is noviscous in form, is losing its functionary glycemic control [3]. Indeed, 
voluntary exercise in PHGG treated mice induced the attenuation of body mass gain and fat 
accumulation. Moreover, the results of GTT showed that BGAUC in GHFDW was lower than that in 
GHFDC mice. These results suggest that voluntary exercise might have a supplemental effect on 
obesity and insulin resistance in PHGG intake in mice. In fact, den Besten et al. [29] reported that 
supplements of guar gum markedly increased peripheral glucose clearance in HFD mice. Dietary 
PHGG, however, did not significantly affect plasma glucose levels in a rodent model of type 2 
diabetes and patients with type 2 diabetes and the metabolic syndrome [4,5]. Therefore, exercise may 
be able to attenuate the abolished beneficial effect of glycemic control when the guar gum is 
hydrolyzed to a nonviscous form [3]. 

Here, we confirmed that cecum content weights were higher and the fecal pH was lower in 
mice fed with a HFD diet with PHGG than in those fed diets without PHGG. There was agreement 
with the results of a previous study, which suggested that the possible mediators of the effects of 
PHGG were the SCFAs produced by microbial fermentation of PHGG in the large intestine [13]. To 
date, the many findings of animal and human studies suggested that exercise may modulate the 
community and function of gut microbiota [16,17]. In the present study, there were almost no 
changes of α-diversities in CD mice. In contrast, HFD fed mice showed that almost all indexes were 

Figure 7. The supplemental effect of wheel running on cecum SCFAs in PHGG intake mice under CD
and HFD feeding. The total SCFAs (a), acetate (b), propionate (c), and butyrate (d) contents in cecum
were shown. The values were expressed as the mean ± S.E.M. * p < 0.05 and ** p < 0.01.

4. Discussion

In this study, we expected that PHGG intake might be supplemented by voluntary exercise because
PHGG, which is noviscous in form, is losing its functionary glycemic control [3]. Indeed, voluntary
exercise in PHGG treated mice induced the attenuation of body mass gain and fat accumulation.
Moreover, the results of GTT showed that BGAUC in GHFDW was lower than that in GHFDC mice.
These results suggest that voluntary exercise might have a supplemental effect on obesity and insulin
resistance in PHGG intake in mice. In fact, den Besten et al. [29] reported that supplements of guar
gum markedly increased peripheral glucose clearance in HFD mice. Dietary PHGG, however, did not
significantly affect plasma glucose levels in a rodent model of type 2 diabetes and patients with type 2
diabetes and the metabolic syndrome [4,5]. Therefore, exercise may be able to attenuate the abolished
beneficial effect of glycemic control when the guar gum is hydrolyzed to a nonviscous form [3].

Here, we confirmed that cecum content weights were higher and the fecal pH was lower in mice
fed with a HFD diet with PHGG than in those fed diets without PHGG. There was agreement with the
results of a previous study, which suggested that the possible mediators of the effects of PHGG were
the SCFAs produced by microbial fermentation of PHGG in the large intestine [13]. To date, the many
findings of animal and human studies suggested that exercise may modulate the community and
function of gut microbiota [16,17]. In the present study, there were almost no changes of α-diversities
in CD mice. In contrast, HFD fed mice showed that almost all indexes were greatly affected by PHGG
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and wheel running exercise (Figure 4). Therefore, it was suggested that α-diversity, which means
bacterial richness, evenness, and diversity, is firstly destabilized by HFD, and then is secondly affected
by dietary fiber and/or exercise. In fact, in a HFD condition, a significant increase in α-diversities of
gut microbiota was observed with voluntary exercise, but it was inversely decreased by exercise in
PHGG-treated mice. Moreover, the β-diversity of gut microbiota showed that between the conditions
of with and without PHGG treatment, but not exercise, was separated by cluster analysis. These results
suggest that at least a presence or absence of PHGG intake makes for a completely different effect of
exercise on the diversity of gut microbiota.

Obesity affects the diversity of the gut microbiota [30], and HFD feeding increases the abundance
of Firmicutes and decreases the abundance of Bacteroidetes, which also means an increase in F/B ratio
in gut microbiota [20–22,31,32]. Weitkunat et al. [12] reported that the abundances of Firmicutes and
Bacteroidetes in HFD feeding mice did not change with or without guar gum intake. Our results also
showed that the relative abundances of Bacteroidetes and F/B ratio showed no differences between
HFDC and GHFDC mice, although Firmicutes was decreased by PHGG. However, voluntary exercise
accelerated the decrease in the F/B ratio in PHGG intake mice. In fact, a human study showed the

relationship between
·

VO2max and F/B ratio [33], and an animal experiment showed that Juvenile
onset exercise increased Bacteroidetes and decreased Firmicutes [34]. In contrast, several studies also
have reported that wheel running did not affect [34–36] or increase the F/B ratio [37,38]. Therefore,
the suppression of weight gain by only recommended exercise habits might not necessarily lead to a
change through the improvement of gut microbiota, and simply as F/B ratio. Therefore, our results
suggest that combined with exercise, dietary fiber greatly induces decreases in the ratio of the F/B,
thus improving gut dysbiosis.

Moreover, we observed decreases in the Lactobacillus abundance by voluntary exercise. It was
reported that obesity was associated with a high level of the genus Lactobacillus [39]. It already
showed that specific enzymatic activities of obese individuals were found in the Lactobacillus spp.
in Firmicutes phylum rather than in Bacteroidetes [40]. Indeed, in a systematic review in humans
and animals, it was found that the manipulation of the gut microbiota by Lactobacillus acidophilus,
L. ingluviei or L. fermentum results in weight gain whereas specific strains of L. gasseri and L. plantarum
used as food supplements presented an anti-obesity effect [41]. These findings suggest that voluntary
exercise might have a protective effect on obesity via changes of gut microbiota in PHGG intake mice.

In contrast, PHGG intake mice increased the abundance of acetate-producing bacteria such as
the genus Bacteroides [42,43], under voluntary exercise habits, and was consistent with the changes
of total SCFAs and acetate in this study. Acetate constitutes the major part of the SCFAs which are
fermented by gut microbiota [26,44], might induce not only suppression of body fat accumulation
in obese or diabetic animals, but also promote anti-inflammation [45–47]. Moreover, it was already
known that PHGG could increase fecal moisture and small intestinal transit and shortened the time to
first black stool defecation after constipation. It also predominantly promotes the accumulation of
Bacteroidetes [6].

A problem at consumption of raw guar gum is that it rapidly forms a tight gel, rendering it
unpalatable when hydrated. In order to make guar gum more palatable, manufacturers have produced
PHGG, a low viscosity/nonviscous [3]. However, PHGG renders the guar gum ineffective for viscosity
dependent health benefits like an improved glycemic control. Therefore, it may be useful to consider
exercise habits combined with intake of PHGG.

In summary, our data showed that voluntary exercise in PHGG intake mice induced not only the
attenuation of body mass gain and fat accumulation, but also improvement of glucose metabolism.
In addition, the supplemental effect of voluntary exercise on gut microbiota, which decreased the ratio
of the F/B ratio, in PHGG intake under high-fat diet feeding was observed. Taken together, combined
with exercise, PHGG intake might improve obesity and gut microbiota composition in HFD-fed mice.
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