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Abstract

In geriatric research of non-fatal events, participants often die during the study follow-up

without having the non-fatal event of interest. Cause-specific (CS) hazard regression and

Fine-Gray (FG) subdistribution hazard regression are the two most common estimation

approaches addressing such competing risk. We explain how the conventional CS

approach and the FG approach differ and why many FG estimates of associations are

counter-intuitive. Additionally, we clarify the indirect link between models for hazard and

models for cumulative incidence. The methodologies are contrasted on data from the Car-

diovascular Health Study, a population-based study in adults aged 65 years and older.

Introduction

Many studies use the time to a non-fatal event as their primary outcome. In geriatric research,

mortality often precludes individuals from reaching the end of the study and thus possibly pre-

vents primary events from happening. A competing risk event is, by definition, an event that

either hinders the observation of the event of interest or modifies the chance that this event

occurs. Therefore, death is indeed a competing risk event.

FG subdistribution hazard regression is often the recommended methodology for compet-

ing risk scenarios. However, substantial confusion exists about the interpretation of the FG

estimates [1–3]. A systematic review of the use and interpretation of the FG methods, con-

ducted from medical literature in 2015 [2] and coauthored by one of the originators of the FG

methodology, found that 91% of papers using FG methodology interpreted its estimates

unclearly or incorrectly. This is an alarming state of practice, since incorrect interpretation of

estimates may trigger incorrect conclusions and clinical decisions. This review excluded

methodologically oriented publications, but even there the FG methodology is misrepresented.

For instance, the authors of a paper guiding the use of competing risk methods for death in a

gerontology journal incorrectly claim that the FG methodology “adjusts” for the associated

risk of competing events [4]. The misuse of the FG methodology may be further encouraged

by the fact that implementing FG estimators is extremely easy. There are many papers with

high citation counts serving as a guide for clinicians for obtaining the FG estimates using sta-

tistical software where functions were build-in for convenience [5–7]. Some of these guidelines
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mislead researchers with incorrect interpretations of the estimates, e.g, some authors call FG

subdistribution hazard ratios relative risk or incidence rate ratios [6].

The Cardiovascular Health Study (CHS) is ideal for studying the impact of the competing

risk of death because 87% of the 5265 participants from the baseline 1992/93 visit died prior to

the end of the clinical follow-up of 22 years. Furthermore, 87% of those deaths occurred in par-

ticipants prior to an incident hip fracture, the event of our interest. A pie chart of the status of

the CHS population at the end of the follow-up in Fig 1 shows that while only 13% experienced

the primary event of incident hip fracture, 76% suffered from the competing event of death

without a prior hip fracture.

Table 1, borrowed from a clinical paper [8], further summarized in Fig 2, lists the hazard

ratio estimates that were obtained applying the traditional cause-specific Cox regression that

censors individuals at death and the FG subdistribution hazard regression [9] in the CHS pop-

ulation. The methods sometimes yielded similar strengths of association, sometimes direction-

ally concordant but quantitatively different strengths of association, and at other times

estimates discordant in direction, with the FG subdistribution hazard regression suggesting

effects in the opposite direction of well-understood and widely accepted associations [8].

In this article we study in detail the difference between the cause specific and subdistribu-

tion hazard definitions. We explain why we can observe such striking differences between the

hazard ratio estimates, and discuss whether we can foresee how the estimates change when we

switch the methodologies. We then focus on incidence rates, which are often overlooked. Inci-

dence rates are simple to grasp, and the cause-specific and subdistribution approaches to these

statistics clearly demonstrate the conceptual difference between the methodologies. Because it

is sometimes suggested that the FG approach estimates cumulative incidence, we will clarify

the link between hazard and cumulative incidence. The CHS is uniquely suited for demon-

strating differences in these approaches owing to the long follow-up of several decades and the

large proportion of now deceased participants.

Hazard

In time to event data, the outcome of interest is not only whether or not an event occurred, but

also the time during which an individual was at risk for the event. Hazard is based on fully uti-

lizing time-to-event data. It is defined as the limit of the probability rate of having an event at

time t conditional on being at risk at that time. Denote T the time to event, also called failure

time, and D the event type. Let us denote the primary event k.

The cause specific hazard at time t for event k is defined as

l
CS
k ðtÞ ¼ lim

Dt!0

Pðt � T < t þ Dt;D ¼ kjT � tÞ
Dt

:

Those who have not yet experienced the event of interest or the competing event are at risk

at time t. This approach is often called conditional since it conditions on not having had any

type of event; (|T� t). If an individual has a competing event, they are censored at that time

and removed from the risk set from then on. In our scenario, cause specific hazard for incident

hip fracture at time t is defined in the population of alive and hip fracture-free individuals at

time t.
The subdistribution (SD) hazard at time t for event k, on the other hand, is defined as

l
SD
k ðtÞ ¼ lim

Dt!0

Pðt � T < t þ Dt;D ¼ kjT � t [ ðT < t;D 6¼ kÞ
Dt

:
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Fig 1. Events status. The 1992/93 CHS population status at the end of follow-up for incident hip fracture on June 30, 2014. 76% of the study participants

suffered from the competing event of death.

https://doi.org/10.1371/journal.pone.0255313.g001

Table 1. Hazard ratio estimates for incident hip fracture, with mortality a competing risk.

Cause-specific hazard FG subdistribution hazard

HR 95%CI p-val HR 95%CI p-val

M1:

5 years of age 1.74 (1.61, 1.87) <0.01 1.16 (1.09, 1.24) <0.01

male 0.62 (0.53, 0.74) <0.01 0.49 (0.41, 0.58) <0.01

black 0.39 (0.29, 0.52) <0.01 0.38 (0.29, 0.51) <0.01

M2s = M1+:

current smoking 1.66 (1.28, 2.14) <0.01 1.17 (0.90, 1.51) 0.24

diabetes 1.19 (0.94, 1.52) 0.15 0.79 (0.62, 1.01) 0.06

cystatin C eGFR� 0.95 (0.89, 1.02) 0.19 1.09 (1.02, 1.17) <0.01

Model M1 is adjusting for demographic factors of age, gender and race. Models M2 are adjusting for the demographic factors and an additional risk factor of smoking,

diabetes, and cystatin C-based estimated glomerular filtration rate (eGFR), in separate models.

� per15 ml/min/1.73 m2

https://doi.org/10.1371/journal.pone.0255313.t001
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The two definitions differ in the risk sets, that is, in what the probabilities of having an

event k at time t condition on. In the subdistribution approach the risk set consists of those

who have not yet had any type of event (T� t), and ([), additionally, of those who had a com-

peting event that preceded time t (T< t, D 6¼ k) [10]. This risk set is unnatural, consisting of

these two very distinct groups of individuals [9]. In our scenario those groups are a population

of alive hip fracture-free individuals and hip fracture-free individuals previously deceased.

Thus, at risk are all individuals who have not experienced the event of interest, without regard

to the competing event. This approach is called marginal, in contrast to the conditional cause-

Fig 2. Hazard ratios estimates. Contrasting the magnitudes of the hazard ratio estimates for incident hip fracture between the cause-specific and FG

subdistribution approaches.

https://doi.org/10.1371/journal.pone.0255313.g002
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specific approach. The term “subdistribution”, defining the FG methodology, refers to the dis-

tribution of an improper random time variable whose density has an augmented mass at infin-

ity due to competing events [9]. Having a competing event protects an individual indefinitely

from experiencing the primary event, in spite of the fact that such an individual is retained in

the risk set as if at risk for the primary event.

Both cause-specific and subdistribution hazard approaches typically model their hazard

function λ(t) using the same semiparametric Cox model [11]

lðtÞ ¼ l0ðtÞ expfb
TZg;

where Z is a vector of risk factors and λ0 is an unspecified baseline hazard function under

Z = 0. The parameters of interest are the βs, the log-hazard ratios.

The partial likelihood function for estimating the cause-specific hazard is

LðbÞ ¼
Yn

i¼1

exp fbTZig
P

j2Ri
expfbTZjg

 !IðDi¼kÞ

; ð1Þ

where we contrast an individual i with an event k to those in the risk set Ri, that is those who

are alive and without the primary event at the time of primary event of individual i.
When data are complete, that is, for each individual we observe the primary event or the

competing event or the individual reaches the end of the study, the partial likelihood function

for estimating the subdistribution hazard is identical to Eq (1) [9], section 3.1. The risk set Ri is

however augmented with individuals with competing event prior to the time of primary event

of individual i. Indeed, in the complete CHS data, the subdistribution hazard ratio estimates

are identical when fitted with traditional Cox regression with an augmentation of the time at

risk for individuals with competing event. We note that in the absence of competing events

there is no need to augment the risk set and the cause-specific and subdistribution hazards are

identical.

With incomplete data, that is when right censoring is present, weights wij are incorporated

into the partial likelihood function for subdistribution hazard estimation

LðbÞ ¼
Yn

i¼1

expfbTZigP
j2Ri

wij expfb
TZjg

 !IðDi¼kÞ

:

The weights are inverse probability of censoring weights, based on a Kaplan-Meier estimate

for censoring evaluated at two different time points. Specifically, wij ¼
GðTiÞ

GðTi^TjÞ
where ^ denotes

minimum. The weight is one for all those who are competing event and primary event free at

the time of primary event of individual i and wij ¼
GðTiÞ
GðTjÞ

for those with competing event before

the time of primary event of individual i. These weights are often mistaken for competing

event weights, but they do not address the probability of having a primary event for those with

competing events. Rather, these weights only re-scale the part of population included in the

risk set for competing events to mirror the censoring due to loss of follow-up. Primary events

are not added among those with competing events, and time at risk is not shortened in those

with competing events.

In the subdistribution risk set, those who have not experienced any type of event are being

combined with those who experienced the competing event first. The latter subset is rather dif-

ferent from the former, and often so are their risk factors. We can explain the differences in

the methodologies’ estimates we saw with the CHS data by exploring the risk factors of the

group of participants who experienced death as a competing risk. In Fig 3, we have added the
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cause-specific mortality estimates. Competing mortality is positively associated with age, as is

incident hip fracture, and thus by augmenting the risk set for hip fracture in the FG approach

with competing mortality population, we artificially lower the hazard. With gender the situa-

tion is reversed. The competing mortality association with male gender has opposite direction

to the hip fracture association, and thus the FG approach suggests a stronger association with

hip fracture. Lastly, when there is a lack of association of the competing mortality with black

race, the FG and cause-specific approaches provide a similar hazard ratio. The authors of the

clinical article further discuss the implausible associations for diabetes and cystatin C-based

Fig 3. Hazard ratios estimates. Contrasting the hazard ratio estimates for incident hip fracture between the cause-specific approach and the FG

subdistribution approach. Mortality cause-specific hazard ratio estimate foretells the mutual position of the hazard ratios for incident hip fracture.

https://doi.org/10.1371/journal.pone.0255313.g003
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eGFR observed with FG approach, in contrast to the associations observed in situations when

competing death is rare [8].

To summarize, when the associations between the primary event and a risk factor and the

competing event and a risk factor are concordant, then the primary event FG HR will be closer

to null than the cause specific HR, and in some situations can even become discordant with

the cause specific HR. In the rare situations when the associations between the primary event

and a risk factor and the competing event and a risk factor are discordant, then the primary

event FG HR will be further from null than the cause specific HR. We note that the ground

work for a quantitative link between the FG hazard and cause-specific hazard has been recently

laid out [12] and reduction factor has been introduced, representing the proportion of subjects

in the FG risk set that has not yet experienced a competing event.

Incidence rate

While hazard takes into account the relative times at which events occurred by considering the

different risk sets for each person at their event time, incidence rate only measures the ratio

between the number of events and the total time at risk. Because of this, incidence rate is an

optimal statistic to show the conceptual difference between the cause-specific and subdistribu-

tion FG approaches.

In Table 2 we list the number of events, person-years at risk, and incidence rates along with

their confidence intervals calculated using a quasi-Poisson model with offset to account for the

time at risk. Competing risks are considered multi-component endpoints and it is often

emphasized that all of them need to be analyzed simultaneously [13, 14]. Thus, we add the

analysis of mortality in the hypothetical scenario where hip fracture is its competing event. For

completeness, we also consider the composite outcome [13, 15] of hip fracture and mortality

as well as that of mortality alone.

In the analysis of incident hip fracture, the CS approach and the SD approach have the

same number of events (688). However, the SD approach claims almost twice as many person-

years at risk than the CS approach because it keeps the 3979 individuals who die before having

hip fracture in the risk set until the end of the study. Therefore, the incidence rate, reflecting

both the number of events and the person-years at risk, is about half in the SD estimate as

compared to the CS estimate.

Similarly, for mortality, the CS and SD approaches use the same number of deaths (3979),

but the number of person years at risk is larger in the SD approach owing to those who had a

hip fracture, resulting in a smaller incidence rate. In this case, SD adds fewer years to the time

at risk compared to the analysis of hip fracture, leading to more similar incidence rate esti-

mates between the SD and CS approaches. Fig 4 further shows the boxplots of years at risk

across the approaches. The FG approach for hip fracture inflates the time at risk, with about

Table 2. Summary of CS and SD approaches.

Outcome, approach n = 5265 Event count Person-years at risk Incidence rate (IR) 95% CI of IR

Hip fracture, CS 688 59776 11.5 (10.2, 13.0)

Hip fracture, SD 688 107238 6.4 (5.4, 7.6)

Mortality, CS 3979 59776 66.6 (63.4, 69.8)

Mortality, SD 3979 68369 58.2 (55.2, 61.3)

Composite event 4667 59776 78.1 (74.8, 81.5)

Mortality 4580 62207 73.6 (70.6, 76.8)

Incidence rate is per 1000 person-years of follow-up, computed with Poisson model with offset for time at risk.

https://doi.org/10.1371/journal.pone.0255313.t002
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87% of individuals reaching the end of the study under this model (alive or dead), while only

10% of study participants were hip fracture free and alive at the end of the study.

Note that the model of composite outcome has the most events, counting both hip fractures

and deaths in those without a hip fracture. The actual mortality model has a larger number of

deaths than both the CS and the SD mortality approach because it includes deaths after inci-

dent hip fractures.

We can see that in incidence rate, similarly to hazard, the SD approach artificially increases

the time at risk by keeping individuals who have already had a competing event as “at risk”

until the end of the study. While CS estimates the risks of having hip fracture among living

Fig 4. Boxplots of years at risk for incident hip fracture and mortality. Various approaches.

https://doi.org/10.1371/journal.pone.0255313.g004
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populations, the SD approach estimates the risks of having a hip fracture among both those

alive and those who have already died.

From now on, we consider only model M1 with the three demographic risk factors of age,

gender, and race. The incidence rate ratios are in the upper part of (Table 3), with hazard ratios

for comparison in the lower part.

We can see similar relationships between incidence rate ratios calculated using the SD and

CS approaches as have been discussed for hazard ratios.

Cumulative incidence

It is often claimed that the FG hazard approach estimates hazard ratios that are directly linked

to the effect of a risk factor on the cumulative incidence of events. Fig 5 shows the cumulative

incidence function (CIF) estimates for the six scenarios.

The dark red curve representing the hip fracture CIF estimate in the CS approach computes

the CIF among individuals alive at the time. We see that this curve is higher than the red

dashed curve, the hip fracture CIF estimate using the SD approach, where individuals after

death are maintained in the sample as hip fracture-free. Thus, while the CIF under the SD

approach may be a useful statistic for public health decisions, or prediction, its use for estimat-

ing the associations between an individual’s outcome and a risk factor is limited.

Similar observations apply to the blue curves when we estimate the CIF of mortality with

incident hip fracture as competing event. The black line is the true mortality CIF estimate. We

note that its upper boundary is the composite event CIF (green curve) and its lower boundary

is the mortality CIF of the SD approach. The same can be said for hip fracture.

The incident hip fracture and mortality CIF in the subdistribution approach sum up to the

composite event CIF. For heterogeneous events such as any non-fatal event and mortality, we

find this to be of no actual advantage.

When there is no loss of follow-up, we can directly model the CI under the subdistribution

approach. Cumulative hazard is naturally related to the cumulative incidence function through

the complimentary −log link [9]. Thus, we model CI at the end of the study with −log(1 − CI)

= exp{βT Z}. Table 4 shows these estimates, often called cumulative hazard ratio (CHR) esti-

mates, for model M1 with the demographic risk factors for age, gender, and race. These

Table 3. Incidence rate ratios and hazard ratios estimates for incident hip fracture, mortality and composite event in model M1.

Outcome, approach 5 years of age Male Black

IRR 95% CI IRR 95% CI IRR 95% CI

Hip fracture, CS 1.49 (1.35, 1.64) 0.59 (0.46, 0.75) 0.4 (0.26, 0.6)

Hip fracture, SD 1.16 (1.01, 1.33) 0.48 (0.34, 0.69) 0.38 (0.21, 0.69)

Mortality, CS 1.41 (1.35, 1.47) 1.36 (1.23, 1.49) 1.11 (0.98, 1.26)

Mortality, SD 1.3 (1.24, 1.36) 1.45 (1.31, 1.61) 1.21 (1.06, 1.39)

Composite Event 1.42 (1.37, 1.48) 1.21 (1.11, 1.32) 0.99 (0.88, 1.11)

Mortality 1.43 (1.37, 1.48) 1.28 (1.17, 1.4) 1.04 (0.92, 1.16)

HR 95%CI HR 95%CI HR 95%CI

Hip fracture, CS 1.74 (1.61, 1.87) 0.62 (0.53, 0.74) 0.39 (0.29, 0.52)

Hip fracture, SD 1.16 (1.09, 1.24) 0.49 (0.41, 0.58) 0.38 (0.29, 0.51)

Mortality, CS 1.7 (1.65, 1.75) 1.47 (1.38, 1.56) 1.12 (1.03, 1.21)

Mortality, SD 1.36 (1.33, 1.4) 1.54 (1.44, 1.63) 1.25 (1.15, 1.36)

Composite Event 1.7 (1.66, 1.75) 1.31 (1.23, 1.38) 0.99 (0.92, 1.07)

Mortality 1.72 (1.67, 1.77) 1.41 (1.33, 1.49) 1.05 (0.97, 1.14)

https://doi.org/10.1371/journal.pone.0255313.t003
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estimates are indeed similar to the FG hazard ratios, showed at the top part of the table. How-

ever, there is not a direct link between the FG hazard ratios and relative changes in CI when

modeled directly [2]. To demonstrate that we model the cumulative incidence relative risk

(RR) with quasi-Poisson approach, CI = exp{βT Z}. Additionally, we model the cumulative

incidence odds ratios (OR), CI
1� CI ¼ expfbTZg; both at the lower part of Table 4. We see large

differences between the hazard ratios and the relative risks and odds ratios, especially in the

associations of risk factors with mortality. This is not surprising as one is a hazard and the

other two are cumulative risks.

We note that similarly to the link between cumulative incidence and hazard under the sub-

distribution approach, there is an identical link between the cumulative incidence and hazard

under the cause-specific approach in the absence of competing events. In both situations, the

Fig 5. Estimates of cumulative incidence. Cumulative incidence functions estimates for incident hip fracture, mortality and composite event.

https://doi.org/10.1371/journal.pone.0255313.g005
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link is however indirect; a hazard ratio estimate is only linked to the complimentary −log link

of cumulative incidence, and cannot be interpreted as effects of risk factors on the cumulative

incidence.

Discussion

The FG subdistribution methodology keeps individuals with competing events in the study,

while forever curing them of the primary event. It is thus not suitable when estimating the

association between a new biomarker, or drug, and a non-fatal event [3, 8, 13, 16]. In such sce-

narios, the population of interest is those without the competing event, which is modeled by

the cause specific approach. Indeed, application of FG methods to these scenarios can often

lead to results that conflict with well-established associations. FG approach doesn’t address

missing data problems related to informative censoring due to competing risk, but simply

changes the population studied. According to its creators, the approach is “better suited for

estimating a patient’s clinical prognoses” [3], a scientific question asked less often. A complica-

tion for prognostic applications of the FG methodology is that prognostic models are often

developed from data collected decades ago, and as such the effects of death being protective of

the primary outcome are overestimated because of increasing life expectancy. Individuals who

died in the study and were thus cured of the primary event may currently stay alive and be at

risk.

We note that Lunn McNeil approach [17] to competing risk in modeling hazard is some-

times used as an alternative the CS and FG approaches. It is based on the cause-specific

approach, and estimates hazard ratios simultaneously for all types of events by augmenting the

data, treating other types of events as censoring. It allows for comparison of magnitude of haz-

ard ratios across the types of the events. A drawback is that it assumes independent risk, that

is, non-informative censoring due to the other competing events. This assumption of indepen-

dent risk often limits the use of this methodology. For example, in the CHS study, mortality

hazard is likely not independent of incident hip fracture hazard, so any estimates obtained

from this approach may be biased and the comparisons between hazard ratios for different

types of events may be invalid. Further research is needed into bias of this approach under

competing risks and how to modify this approach to provide a valid estimate comparison.

Table 4. The comparison of hazard ratios estimates, cumulative hazard ratios estimates, relative risk estimates, and odds ratios estimates for cumulative incidence

for incident hip fracture and mortality in the competing risk setting under the subdistribution approach.

Statistic 5 years of age Male Black

Outcome

log Hazard HR 95% CI HR 95% CI HR 95% CI

Hip fracture 1.16 (1.09, 1.24) 0.49 (0.41, 0.58) 0.38 (0.29, 0.51)

Mortality 1.36 (1.33, 1.4) 1.54 (1.44, 1.63) 1.25 (1.15, 1.36)

log(−log(1 − CI)) CHR 95% CI CHR 95% CI CHR 95% CI

Hip fracture 1.15 (1.07, 1.23) 0.49 (0.41, 0.58) 0.38 (0.29, 0.51)

Mortality 1.3 (1.26, 1.34) 1.45 (1.35, 1.55) 1.26 (1.14, 1.38)

logCI RR 95% CI RR 95% CI RR 95% CI

Hip fracture 1.13 (1.06, 1.2) 0.51 (0.44, 0.6) 0.4 (0.31, 0.52)

Mortality 1.08 (1.07, 1.09) 1.17 (1.14, 1.21) 1.1 (1.06, 1.14)

logit CI OR 95% CI OR 95% CI OR 95% CI

Hip fracture 1.14 (1.07, 1.22) 0.46 (0.39, 0.56) 0.36 (0.27, 0.48)

Mortality 1.47 (1.37, 1.57) 2.04 (1.78, 2.34) 1.55 (1.29, 1.86)

https://doi.org/10.1371/journal.pone.0255313.t004
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Sometimes, FG methodologies are used because researchers believe that the proportional

hazard assumption of Cox regression prevents the CS approach from being valid. However,

both FG subdistribution hazard and the cause specific approaches are modeled using Cox

regression. If the proportional hazard assumption is violated, the estimator is still well defined:

it is the “average hazard” over time [18, 19]. If an average hazard is not of interest, there are

two simple ways to address the problem. One approach is to accommodate non-proportional

hazards by including interactions between the risk factor and time in the Cox regression

model as time-dependent predictors. A second approach is to divide the data into strata based

on the value of the risk factor, with each stratum permitted to have a different baseline hazard

function.

We now give the correct interpretations for the two methodologies. Cause-specific Cox

regression can be fitted in R by using package survival, with coxph function. It estimates the haz-

ard of the primary event in the population free of the primary event and the competing event.

To estimate hazard ratios, we contrast a person with a primary event with those without a pri-

mary or competing event by the time. In the context of the CHS data, we contrast an alive indi-

vidual who sustained hip fracture to those alive who have not sustained hip fracture by that time.

FG subdistribution hazard can be estimated in R by using package cmprsk with crr func-

tion. It estimates the hazard of the primary events in the population free of the primary event.

This population includes those that sustained the competing event. To estimate hazard ratios,

we contrast a person with a primary event with those without primary event by that time. We

contrast an alive individual who sustained hip fracture to those alive who have not sustained

hip fracture by that time augmented with individuals why had died by that time without hav-

ing a hip fracture. The estimated hazard ratios cannot be interpreted as estimates of the effect

of a risk factor on the cumulative incidence of events.

In conclusion, we find that considering the population of interest is critical to choosing the

correct methodology. If the population of interest is individuals free of a competing event at a

given time, the cause-specific approach should be used. This is commonly the case when death

is a competing event, as the clinical interest lies with alive individuals. In such a population,

death does not occur by definition, and therefore should not be considered a competing event.

If the population of interest is the entire starting population, but the competing events are

non-informative about the risk of primary events, the cause-specific approach should likewise

be used. If the population of interest is the entire population, the competing events are infor-

mative, and one is interested in what would have happened had the competing event not

occurred, simulations should be used with a list of scenarios of the dependence structure

between the primary and competing events.

Author Contributions

Conceptualization: Petra Buzkova.

Formal analysis: Petra Buzkova.

Methodology: Petra Buzkova.

Writing – original draft: Petra Buzkova.

Writing – review & editing: Petra Buzkova.

References
1. Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JP. A competing risks analysis should report

results on all cause-specific hazards and cumulative incidence functions. Journal of Clinical Epidemiol-

ogy. 2013; 66(6):648–653. https://doi.org/10.1016/j.jclinepi.2012.09.017

PLOS ONE Competing risk of mortality in association studies of non-fatal events

PLOS ONE | https://doi.org/10.1371/journal.pone.0255313 August 13, 2021 12 / 13

https://doi.org/10.1016/j.jclinepi.2012.09.017
https://doi.org/10.1371/journal.pone.0255313


2. Austin PC, Fine JP. Practical Recommendations for reporting Fine-Gray Model Analyses for Competing

Risk Data. Statistics in Medicine. 2017; 36:4391–4400. https://doi.org/10.1002/sim.7501

3. Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in the Presence of Competing

Risks. Circulation. 2016; 83:311–321.

4. Berry SD, Ngo L, Samelson EJ, Kiel DP. Competing Risk of Death: An Important Consideration in Stud-

ies of Older Adults. J Am Geriatr Soc. 2010; 58(4):783–787. https://doi.org/10.1111/j.1532-5415.2010.

02767.x

5. Zhang Z. Survival analysis in the presence of competing risks. Annals of Translational Medicine. 2017;

5(3):47. https://doi.org/10.21037/atm.2016.08.62

6. Scrucca L, Santucci A, Aversa F. Regression modeling of competing risk using R: an in depth guide for

clinicians. Bone Marrow Transplant. 2010; 45:1388–1395. https://doi.org/10.1038/bmt.2009.359

7. Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone

Marrow Transplant. 2007; 40:381–387. https://doi.org/10.1038/sj.bmt.1705727

8. Buzkova P, Barzilay JI, Mukamal KJ. Assessing Risk Factors of Non-Fatal Outcomes Amid a Compet-

ing Risk of Mortality: The Example of Hip Fracture. Osteoporosis International. 2019; 30:2073–2078.

https://doi.org/10.1007/s00198-019-05048-w

9. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am Sta-

tistical Association. 1999; 94(446):496–509. https://doi.org/10.1080/01621459.1999.10474144

10. Gray RJ. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk.

Annals of Statistics. 1988; 16(3):1141–1154. https://doi.org/10.1214/aos/1176350951

11. Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B (Method-

ological). 1972; 34(2):187–220. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

12. Putter H, Schumacher M, van Houwelingen HC. On the relation between the cause-specific hazard and

the subdistribution rate for competing risks data: The Fine–Gray model revisited. Biometrical Journal.

2020; 62(3):790–807. https://doi.org/10.1002/bimj.201800274

13. Wolbers M, Koller MT, Stel VS, Jager K, Leffondre K, Heinze G. Competing Risks Analyses: Objectives

and Approaches. European Heart Journal. 2014; 35:2936–2941. https://doi.org/10.1093/eurheartj/

ehu131

14. Allignol A, Schumacher M, Wanner C, Drechsler C, Beyersmann J. Understanding competing risks: a

simulation point of view. BMC Medical Research Methodology. 2011; 11(86). https://doi.org/10.1186/

1471-2288-11-86 PMID: 21639902

15. Ferreira-Gonzalez I, Permanyer-Miralda G, Busse JW, Bryant DM, Montori VM, Alonso-Coello P, et al.

Methodologic discussions for using and interpreting composite endpoints are limited, but still identify

major concerns. Journal of Clinical Epidemiology. 2007; 60(7):651–657. https://doi.org/10.1016/j.

jclinepi.2006.10.020 PMID: 17573977

16. Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. Am J Epidemiol-

ogy. 2009; 170(2):244–256. https://doi.org/10.1093/aje/kwp107

17. Lunn M, McNeil D. Applying Cox regression to competing risks. Biometrics. 1995; 51(2):524–532.

https://doi.org/10.2307/2532940

18. Allison P. Survival Analysis Using Sas®: A Practical Guide. 1st ed. SAS Publishing; 1995.

19. Grambauer N, Schumacher M, Beyersmann J. Proportional subdistribution hazards modeling offers a

summary analysis, even if misspecified. Statistics in Medicine. 2010; 29(7):875–884. https://doi.org/10.

1002/sim.3786

PLOS ONE Competing risk of mortality in association studies of non-fatal events

PLOS ONE | https://doi.org/10.1371/journal.pone.0255313 August 13, 2021 13 / 13

https://doi.org/10.1002/sim.7501
https://doi.org/10.1111/j.1532-5415.2010.02767.x
https://doi.org/10.1111/j.1532-5415.2010.02767.x
https://doi.org/10.21037/atm.2016.08.62
https://doi.org/10.1038/bmt.2009.359
https://doi.org/10.1038/sj.bmt.1705727
https://doi.org/10.1007/s00198-019-05048-w
https://doi.org/10.1080/01621459.1999.10474144
https://doi.org/10.1214/aos/1176350951
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1002/bimj.201800274
https://doi.org/10.1093/eurheartj/ehu131
https://doi.org/10.1093/eurheartj/ehu131
https://doi.org/10.1186/1471-2288-11-86
https://doi.org/10.1186/1471-2288-11-86
http://www.ncbi.nlm.nih.gov/pubmed/21639902
https://doi.org/10.1016/j.jclinepi.2006.10.020
https://doi.org/10.1016/j.jclinepi.2006.10.020
http://www.ncbi.nlm.nih.gov/pubmed/17573977
https://doi.org/10.1093/aje/kwp107
https://doi.org/10.2307/2532940
https://doi.org/10.1002/sim.3786
https://doi.org/10.1002/sim.3786
https://doi.org/10.1371/journal.pone.0255313

