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ABSTRACT

Clustered regularly interspaced short palindromic
repeats (CRISPR) constitute a bacterial and
archaeal adaptive immune system that protect
against bacteriophage (phage). Analysis of CRISPR
loci reveals the history of phage infections and
provides a direct link between phage and their
hosts. All current tools for CRISPR identification
have been developed to analyse completed
genomes and are not well suited to the analysis
of metagenomic data sets, where CRISPR loci are
difficult to assemble owing to their repetitive struc-
ture and population heterogeneity. Here, we intro-
duce a new algorithm, Crass, which is designed to
identify and reconstruct CRISPR loci from raw
metagenomic data without the need for assembly
or prior knowledge of CRISPR in the data set.
CRISPR in assembled data are often fragmented
across many contigs/scaffolds and do not fully
represent the population heterogeneity of CRISPR
loci. Crass identified substantially more CRISPR
in metagenomes previously analysed using
assembly-based approaches. Using Crass, we
were able to detect CRISPR that contained
spacers with sequence homology to phage in the
system, which would not have been identified
using other approaches. The increased sensitivity,
specificity and speed of Crass will facilitate compre-
hensive analysis of CRISPRs in metagenomic data
sets, increasing our understanding of phage-host
interactions and co-evolution within microbial
communities.

INTRODUCTION

Clustered regularly interspaced short palindromic repeats
(CRISPR) are an adaptive immune system found in half

of the sequenced bacterial and almost all archaeal
genomes (1). CRISPR are composed of an array of
conserved direct repeats (DRs) separated by unique
spacer sequences and are typically located adjacent to a
leader sequence and CRISPR-associated (cas) genes (2).
Previous research has shown that spacers often corres-
pond to plasmid or phage DNA and act as a targeting
mechanism for degradative enzymes encoded by the cas
genes (1,3,4). Newly acquired spacers are inserted into a
CRISPR locus at the end of the array closest to the leader
sequence. This directionality preserves the history of
phage infections and can be used to study evolution
and epidemiology of bacterial strains with higher reso-
lution than other phylogenetic markers (5, 6). Genome
sequencing has revealed substantial diversity in the
complement of the cas genes in different organisms
and a wide variety of DR sequence types (1,7,8). As a
result, the most common way of defining CRISPR loci
and characterizing the spacer sequences has been to
search for regularly spaced repeats in sequenced
genomes (9–11).
During the past decade, there has been an exponential

growth in the amount of metagenomic sequence data
generated for natural microbial communities. Analysis
of CRISPR in model organisms and metagenomic data
sets has revealed remarkable diversity in spacer comple-
ment reflecting the rapid co-evolution of phage and their
hosts (6,12–17). Recent studies have determined CRISPR
content in metagenomic data sets based on analysis of the
assembled fraction (14,16,17). However, this approach is
limited as modern genome assembly algorithms filter out
or collapse repetitive regions, and therefore CRISPR may
not be properly assembled into contigs. Furthermore,
populations of microorganisms can have highly diverse
spacer arrangements between individuals, thus CRISPR
loci found in metagenomic assemblies may only represent
the most dominant strain in the community, and not be
indicative of the true spacer diversity.
Here, we present a new algorithm called Crass, which

has been designed specifically to identify and reconstruct
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CRISPR loci from unassembled metagenomic data sets.
Crass is able to locate individual reads that contain
DRs and cluster them together based on DR type.
Entire CRISPR arrays are reconstructed using a novel
graph approach to accurately describe the spacer arrange-
ment and strain diversity for each locus. As a final step,
Crass can output assembled contigs of individual strains
using external assembly software such as Velvet (18).
Investigation of CRISPR diversity using Crass will
enable a deeper understanding of phage-host co-evolution
in microbial communities.

MATERIALS AND METHODS

Algorithm details

The algorithm used in Crass can be broken into four parts:
(i) initial search and refinement, (ii) exhaustive search,
(iii) identification of the correct DR sequence and
(iv) graph construction and refinement.

Initial search and refinement
The initial repeat detection is segregated into two separate
algorithms based on the length of the read, henceforth
referred to as the short-read and long-read algorithms.
The short-read algorithm is optimized for scanning reads
that can only contain a maximum of two copies of a DR
(<176 bp; Illumina and Ion Torrent PGM based on
current read lengths). The search algorithm scans a read
for two copies of a kmer, equal to the minimum DR
length (23 bp in the default settings), which are separated
by a distance of at least the size of a spacer (S; 26 bp by
default). The algorithm compares a subsequence begin-
ning at position P to the subsequence of the read begin-
ning at P+S. If no match is found, P is incremented one
nucleotide, and the search is repeated until such point as
the sub-sequence of the read beginning at position P+S is
less than the minimum allowed size for a DR. However,
if a match is found, the matching kmers are extended to
the right for as long as the nucleotides at the extending
positions continue to be identical.
The long-read algorithm (reads 177–2000 bp) uses a

modification of the technique developed in CRT (10).
This algorithm searches for two identical copies of a rela-
tively short kmer (8 by default) that are separated by S.
When a repeating kmer is found, it is used as a seed
sequence for subsequent searches for the same kmer at
the same interval across the remainder of the read. If the
seed sequence is found in the read at least three times, then
all of the matching regions are extended in both directions.
Reads that are identified during the initial search stage are
subject to quality control measures based on currently
known CRISPR loci.
All currently known DRs and spacers fall within defined

length ranges (Supplementary Figure S1A) and have no
internal repeating motifs (Supplementary Figure S1B).
These two parameters are used to filter out other repeat
types, such as microsatellites that are composed of
short (2–5 bp) repeating sequences. Finally, the
identified repeating subsequence and the spacer re-
gion are compared with each other to distinguish

CRISPR DRs from other repeating motifs. A compari-
son of all known CRISPR loci showed that the DR
should not contain sequence homology to the spacer
regions, and the individual spacers should not contain
any sequence homology to each other (Supplementary
Figure S1C).

Exhaustive search
The initial search identifies many potential DR types;
however, many DR-containing reads will be missed
owing to the small chance of there being two copies of a
DR in short-read data (Supplementary Figure S2). To
recruit reads that contain only one DR, Crass uses the
Wu–Manber multipattern search algorithm (19). To
improve the speed of this exhaustive search, Crass
creates a non-redundant set of DR types by using single-
linkage clustering and removing DR types that are perfect
substrings of others. A DR type is added to an existing
cluster only if it contains at least six, 7 bp kmers with one
of the DR types already binned into that cluster. If there is
not enough matching kmers to any of the DR types in any
existing DR cluster, the sequence is used as the seed for a
new cluster.

Identification of the correct DR sequence
The correct DR sequence for each DR cluster is identified
by alignment of the reads and identification of highly
conserved nucleotide positions. Performing a multiple
sequence alignment of every read in a DR cluster is com-
putationally demanding. Instead, Crass aligns all variants
to the longest DR type in a cluster to determine an align-
ment offset, which is the number of nucleotides difference
between the start of the longest DR type to the start of
each of the other variants. The reads are then aligned
using the position of the first DR in the read and the
alignment offset calculated for that particular DR type.
The boundary of the DR is determined by highly
conserved positions (minimum 85%) in the consensus of
the alignment. A caveat of this approach is that two or
more highly similar, but distinct DR types, can be grouped
together during the clustering step (Supplementary Figure
S3). Crass detects these distinct variants by identifying
nucleotide positions within the DR boundaries that fall
between 30 and 85% conservation amongst the reads.
These positions are examined to determine whether there
is enough read depth to constitute a different DR type, as
single SNPs in low coverage alignments have a greater
effect of the conservation of that position. Crass then
recursively separates the reads associated with each
variant into different DR types.

Graph construction and refinement
Crass constructs a graph of the spacer arrangement, using
the spacers as the nodes. Edges in the graph are created
between two spacers if they lie sequentially in a read. The
direction of the edge is calculated such that the sequence
of the DR that lies between the two spacers is in its lowest
lexicographical form. Short-read data complicates this
process, as there is only a small probability of finding
two full-length spacers within a read (Supplementary
Figure S2). Crass solves this problem by building a
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preliminary graph (p-graph) that guides the construction
of the final spacer graph. Nodes in the p-graph (p-nodes)
are constructed from the first and last k bases of each
spacer in each read. Thus, a read with only one full-length
spacer and one partial spacer will contain enough infor-
mation to be linked into the p-graph. Multiple p-nodes
may originate from the same spacer, one from the first k
bases and the other from the last k bases. P-nodes are
linked together by two types of directed edges, ‘inner
edges’ and ‘jumping edges’, depending on whether they
originate from the same spacer (inner edges), or from
adjacent spacers (jumping edges; Figure 1). A complete
and accurate p-graph contains chains of p-nodes that
are connected such that each p-node is typically joined
in both the forward and reverse directions to at least
one other p-node, and by a combination of both inner
and jumping edges.

Sequencing errors typically result in p-nodes that lack
either jumping or inner edges, and are therefore attached
to the rest of the p-graph by only a single edge. Such nodes
appear to dangle from the main body of the graph giving
the appearance of fur. Alternatively, if these p-nodes lie
adjacent to naturally occurring forks, they can become
connected to the p-nodes lying after the fork, creating a

‘bubble’ in the graph (Figure 1). P-nodes that produce
bubbles are recognized because they are only connected
to the main body of the graph by edges of a single direc-
tion. Removing a bubble-creating p-node can create fur
and vice versa and therefore removal of erroneous p-nodes
uses an iterative algorithm, which alternates between
removal of fur and bubbles until one complete iteration
results in the removal of no p-nodes (Figure 1).
The cleaned p-graph is transformed into the final spacer

by joining p-nodes that share an inner edge. Jumping
edges between p-nodes define connections between their
corresponding spacer nodes such that the directionality
of the original edge is conserved. The resulting spacer
graph typically contains a small number of erroneous
nodes that could not be filtered during p-graph cleaning
but can be removed from the spacer graph. Fur and
bubbles are identified in the spacer graph in same way
as the p-graph. Fur is identified as a node that has only
a single edge to a node that contains at least three edges.
Nodes that cause bubbles are identified, as they will
contain multiple edges but only in a single direction.
The same iterative approach used in the p-graph is used
in the spacer graph to alternate the removal of fur and
bubbles until no spacer nodes are removed.

A

B

C

E F

D

Figure 1. Construction and refinement of the preliminary and final spacer graph. A schematic illustrating graph construction and potential problems
in determining the correct spacer order. (A) An arrangement of four spacers representing CRISPR spacer heterogeneity, where spacer 2 and spacer 4
are both connected to spacer 1 and spacer 3. Sequencing reads that contain these spacers are shown (grey bars), some of which contain spacer 2 and
others that contain spacer 4 (without hatching). Sequencing errors are marked with black circles. Incomplete spacer sequences that are found in some
reads are marked with hash, plus and asterisk symbols. (B) Each read is used to create a small portion of a preliminary spacer graph (p-graph).
Nodes are created from k-mers, which are cut from the ends of each spacer region (delineated by dashed vertical lines). Edges are either ‘inner’ edges,
connecting nodes from the same spacer (solid arrow), or ‘jumping’ edges between different spacers (dashed arrow). (C) The initial version of the
p-graph is produced by combining nodes derived from all reads, including k-mers from incomplete spacer sequences. (D) The p-graph after removal
of fur caused by sequencing errors or incomplete spacers. (E) Pairs of nodes joined by inner edges are concatenated together to form spacer-nodes in
the spacer graph. Jumping edges remain in the spacer graph, as they represent a DR sequence. (F) Each node now represents a correctly ordered
spacer in the final spacer graph.
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Synthetic data set generation and comparison

Eight genomes containing between zero and seven
CRISPR loci were chosen at random from CRISPRdb
(20) (Table 1). Synthetic Illumina data sets (101 bp
reads) representing �20� coverage were generated for
each genome using Grinder 0.4.5 (21); command-line
options: –cf 20 –rd 101 –md poly4. Crass 0.3.1 was run
on each data set using a kmer length of 9 (all other par-
ameters default). The spacers identified by Crass were
mapped onto the reference genome using blastn 2.2.25+
(22) to determine whether they were correctly positioned.
The spacer graphs for each data set were also analysed to
determine whether the ordering of spacers generated by
Crass accurately reflected the CRISPR loci found in the
original genome assembly.

Acid mine drainage comparison

The UBA data set was obtained from the NCBI Trace
Archive (Project 18537) and was analysed with Crass
0.3.1. The complete set of spacers identified by
Andersson and Banfield (13) in the original analysis was
retrieved from the Supplementary information (http://
www.sciencemag.org/content/320/5879/1047/suppl/DC1).
Spacers that matched to the UBA BS data set [also
analysed by Andersson and Banfield (13), but not
publically available] were removed by mapping the
complete spacer set against the reads of the UBA data
set using Usearch 4.2.66 (23) requiring a 100% match
between a read and the spacer. The remaining spacers
were then tested to see whether they were adjacent to
their DR sequence; those that were not were deemed to

be of phage/plasmid origin and removed. The resulting
1527 spacers were then compared with the complete set
of spacers identified by Crass using blastn 2.2.22 (24).

Global ocean survey comparison

The full Global Ocean Survey (GOS) data set was down-
loaded from CAMERA (http://camera.calit2.net/) and
analysed with Crass 0.3.1. The ‘high quality’ CRISPR cas-
settes identified by Sorokin et al. (14) were collapsed into
unique DR types using GNU grep. The unique DR types
and their corresponding spacers were compared against
the DRs and spacers identified by Crass using blast
2.2.22 (24). Spacers that appeared to be missed by Crass
were manually inspected by determining their positions in
the raw metagenomic reads. Spacers that were not
adjacent to a DR were removed as well as any that
overlapped with the DR sequence. A number of unique
spacers were actually found by both analyses; however,
significant differences in the DR boundaries resulted in
sequences that failed to be identified by blast. The two
largest DR types were analysed for mis-assemblies in the
scaffolds to determine whether they accurately reflected
the spacer arrangement. DR containing reads that were
identified from both of these DR types were reassembled
with Geneious 5.6.3 de novo assembler (25), and the
position of the spacers was identified by mapping with
bowtie 2.0.0-beta5 (26).

Discovery of CRISPR loci in the Enhanced biological
phosphorus removal metagenomic samples

The microbial enhanced biological phosphorus removal
(EBPR) data set was assembled using Velvet 1.0.18 (18)

Table 1. Specificity and sensitivity analysis of Crass on synthetic short read data sets

Total spacers Detected spacers Missing edges Erroneous edges Specificity Sensitivity

Bacteroides fragilis YCH46
CRISPR1 9 7 3 0 1 0.63

Acinetobacter sp. ADP1
CRISPR1 6 6 0 0 1 0.83
CRISPR2 21 21 0 0 1 1.00
CRISPR3 90 88 2 0 1 0.98

Sulfolobus solfataricus P2
CRISPR1 102 102 0 5 1 0.95
CRISPR2 94 94 0 0 1 0.96
CRISPR3 31 31 0 0 1 1.00
CRISPR4 95 95 0 3 1 0.97
CRISPR5 6 5 1 0 1 0.80
CRISPR6 22 22 0 0 1 1.00
CRISPR7 65 64 1 0 1 0.98

Natrialba magadii
CRISPR1 27 18 11 0 0.89 0.58

Helicobacter pylori B8 0 0 N/A N/A 1 N/A

Magnetospirillum magneticum AMB-1 0 0 N/A N/A 1 N/A

Tsukamurella paurometabola 0 0 N/A N/A 1 N/A

Oligotropha carboxidovorans OM5 0 0 N/A N/A 1 N/A

Overall 568 553 18 8 0.99 0.89

Crass was used to examine synthetic data sets constructed from four genomes that contained between one and seven CRISPR loci, in addition to
four genomes that did not contain CRISPRs. The specificity of Crass was calculated by determining the number of detected spacers that did not
originate from CRISPRs; the sensitivity was determined by comparing the reconstructed spacer ordering to the ordering found in the genome.
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with a kmer length of 37, insert size of 300 bp, a kmer
cut-off of 2, and the expected kmer coverage of 100. The
phage data set was assembled using Metavelvet 0.3 (27)
and scaffolded with Bambus2 (28). CRISPRs were
identified from the microbial assembly using PILER-CR
1.06 (9). Crass 0.3.1 was used on the same raw data using
the kmer length (-K) set to 9; all other parameters were left
as default. Spacers identified by Crass were compared
with the phage contigs using blastn 2.2.25+ (22) with the
following parameters changed from their defaults:
-word_size 16 -evalue 1 e-6. Only hits that spanned the
length of the spacer and contained a maximum of three
mismatches were considered protospacers. The spacer
graph of the most abundant DR type in the EBPR data
set was manually curated through identification of the
leader sequence and removal of erroneous nodes. To
identify the leader sequence, all of the reads and their
pairs from the DR type were mapped against the contigs
to determine which spacers were adjacent to the flanking
regions of the CRISPR. Four spacers mapped to a contig
in the metagenomic assembly that contained cas
genes, indicating that they were adjacent to the leader
sequence. An extra node representing the leader
sequence was added to the spacer graph (Supplementary
Figure S4B; green circle). All low coverage nodes in the
spacer graph (Supplementary Figure S4; blue circles) were
manually examined at the read level to determine whether
the edges (linkage between nodes) were supported, result-
ing in the removal of three nodes and an edge
(Supplementary Figure S4B and C) from the final spacer
arrangement (Supplementary Figure S4D). The raw
sequence data for the EBPR data set can be found
under NCBI bio-project PRJNA81811.

RESULTS

Overview of the Crass algorithm

Crass has been designed to process shotgun metagenomic
data from Illumina, Ion Torrent PGM, Roche 454, and
Sanger platforms using an iterative search approach that
does not rely on preassembled contigs or prior knowledge
of the CRISPRs in the metagenomic data set. Using the
raw unassembled reads, Crass searches all sequences for
possible DR. CRISPR DRs appear in reads as short sub-
sequences that are perfectly repeated, separated by a
unique subsequence. As the initial search identifies only
repeated subsequences, a number of other repeat types,
not originating from CRISPR, are also identified. These
false positive matches are filtered out based on a number
of criteria identified from analysing previously charac-
terized CRISPR loci (see ‘Materials and Methods’
section). If reads pass these tests, they are considered to
be a candidate CRISPR-containing read and their corres-
ponding repeated region a putative CRISPR DR type.

The short reads produced by Illumina (100–150 bp) and
Ion Torrent PGM (100–200 bp) introduce additional com-
plications when identifying DRs. Given that spacers and
DRs range in length from 23 to 50 bp (Supplementary
Figure S1A), there is at best a 46% chance of two
full-length copies of the DR being present in a read of

100–150 bp (Supplementary Figure S2). However, the
initial DR search strategy will only identify reads with at
least two copies of a DR. Crass re-examines all of the
unused reads in the data set for the DR types found in
the initial search phase to identify reads that contain a
single copy of a DR. In many cases, the DRs identified
in short read data sets are truncated, as they occur at the
start or end of a read, or are artificially extended by in-
corporation of bases from adjacent spacers. The resulting
variants of a DR type, and their reverse complement, are
identified using single-linkage clustering, and an alignment
of all reads for each DR cluster is constructed to identify a
consensus DR sequence.
For each DR type, Crass attempts to reconstruct the

CRISPR loci by ordering spacers based on their
co-occurrence in individual reads. CRISPR loci recon-
structions are represented as graphs, where the nodes
(spacer nodes) represent the spacer sequences, and the
directed edges represent the DR (Figure 2). Pairs of
spacer nodes are joined by directed edges if their corres-
ponding spacers lie sequentially in a read. Shared spacer
arrangements appear as a linear chain of nodes that fork
at nodes in the graph where a common spacer is adjacent
to multiple unique spacers. However, short reads and
sequencing errors can complicate the graph building
process, as they introduce superfluous spacer nodes that
confound the graph (Figure 1). For example, spacers that
lie too close to the end of a read will be truncated,
producing a unique spacer node. Spacer graph construc-
tion involves differentiating ‘real’ forks, resulting from
strain variation, from those that are a byproduct of the
sequencing process (see ‘Materials and Methods’ section).
Crass produces an XML file that contains information

for each DR type, including the DR sequence, and spacer
sequences, coverage and order within the CRISPR loci.
The reconstructed spacer order can be saved as
encapsulated postscript images that can be used to guide
the assembly process or aid in CRISPR diversity analyses.
In addition, user-defined pathways through each CRISPR
loci can also be extracted and assembled using external
assembly programs such as Velvet (18).

LD

A

B

Figure 2. Comparison between different CRISPR loci visualization
techniques. (A) Traditional approach to visualization where the
spacers are shown as differently colored rectangles (the same colour
refers to the same spacer) anchored to the leader sequence (white
triangle). (B) The same CRISPR loci reconstructed by Crass into a
spacer graph.
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Assessing Crass performance

The specificity and sensitivity of Crass was analysed using
synthetic data sets constructed from eight complete
genomes (Table 1). Crass displayed high specificity,
detecting all DR types in each genome. However, Crass
erroneously detected one other repetitive element in the
Natrialba majadii genome, resulting in the identification
of three ‘spacers’ that were not from a bona fide
CRISPR. Crass correctly identified the vast majority of
spacers from each genome (553 of 568 total spacers),
except in the case of N. majadii where there were signifi-
cant variations in DR sequence composition. Individual
DR units in this genome contained up to 4 bp changes
from the DR consensus, and, as a result, Crass failed to
identify nine spacers adjoining these variable DRs.
The sensitivity of the spacer reconstructions was

determined by calculating the fraction of all spacers that
were either erroneously linked or missing a correct edge
in each CRISPR. Crass correctly ordered the majority of
spacers from all CRISPR loci with the majority of errors
being caused by missing spacers (Table 1). The only
CRISPR where Crass incorrectly linked distal spacers
together were found in the Sulfolobus solfataricus
genome. There were five edges in CRISPR1 and three
edges in CRISPR4 that were not supported in the
genome. In both CRISPR, these errors were due to iden-
tical kmers being present at the beginning or end of non-
adjacent spacers such that they became linked during
spacer graph construction (Table 1; Supplementary
Figure S5).
We next determined how Crass performed on real

metagenomes that previously had their spacer comple-
ment analysed. An (AMD) metagenome generated
using Sanger sequencing (114 mbp total size, 135 937
reads) that had been analysed at the individual read
level (13) provided a robust data set for validating the
sensitivity and specificity of Crass. The GOS metagenomic
data sets (10 133 846 Sanger reads; 10.635Gbp and
2 538 672 Roche 454 reads; 963.763 mbp) were also
examined to evaluate whether Crass’ read level detection
provided greater resolution over previous analyses
performed using the assembled scaffolds (14).
Crass processed the AMD data set in 16 s and found all

DR types and the majority of the spacers identified in the
original analysis (Figure 3). Crass also discovered three
novel DR types, likely missed owing to their low
coverage in the metagenome (Supplementary Table S1).
Alignment of reads representing all DR types showed
that Crass was more sensitive at determining the DR
boundaries, which were typically 1–3 nucleotides longer
than those previously reported (Supplementary Figure
S6A). This change in the DR boundaries also affected
the spacer sequences, which incorrectly contained the
start or end of the DR. There were also two DR types
where Crass failed to call the boundary of the DR
correctly. In one instance, Crass failed to split two DR
types that differed by two nucleotides into separate
CRISPR loci (Supplementary Figure S6B), and in the
other instance, Crass extended the DR into the spacer
sequence (Supplementary Figure S6C). The majority

(99.62%) of the spacers were shared by both analyses;
however, there were nine spacers that Crass failed to
identify, which were deleted incorrectly during the graph
cleaning process.

The combined GOS metagenomic data sets were sub-
stantially larger than the AMD metagenome, and the
CRISPR diversity was higher. Crass found 87% of the
DR types, and 95% of the spacers originally identified
in the GOS scaffolds (Figure 3). Crass processed the
entire GOS data set in under 2 h and identified 713 DR
types, 4.7� more than the original analysis. Crass
identified 130 of the 194 ‘high-quality’ CRISPR originally
found in the GOS data set. However, the original analysis
assumed that each scaffold containing a DR corresponded
to a different CRISPR type, even if the DR had been
previously found on another scaffold thereby
over-inflating the number of CRISPR loci in the data.
When collapsed to unique DR types, there were 149 DR
types found in the original study. In most cases, Crass
confirmed that the number of CRISPR loci were
overestimated. For instance, one of the most abundant
DR types identified by Crass was fragmented across 11
scaffolds, which resulted in 11 different CRISPR being
reported. However, Crass identified a single DR type
and arranged these reads into four discrete spacer
graphs (Supplementary Figure S7).

From the 19 DR types that Crass did not find in the
GOS data sets (Supplementary Table S1), nine were found
in reads that contained two or less copies of the DR
sequence, below the threshold for confident identification
by Crass. Another six DR types were identified during the
initial search but then removed during the subsequent fil-
tering steps. Three DR types were removed, as the final

3

25
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19

130583
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16921594
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AMD GOS

Figure 3. Summary of the number of repeats and spacers identified by
Crass in comparison with the original analyses. The number of shared
DRs and spacers for the AMD and GOS data sets are shown in the
central white section of each Venn diagram. Sequences detected only by
Crass are coloured grey, and those only found in the original analyses
are coloured black.
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DR consensus sequence fell outside the acceptable size
ranges. The other three were removed after the
graph-building phase, as they contained less than three
spacers.

Cross-validation of Crass results using coupled microbial-
phage metagenomes

A 2 Gbp Illumina data set generated from an EBPR
reactor community (see Supplementary Methods) was
analysed using Crass. The raw data were assembled
using Velvet, and the majority of contigs were putatively
classified as belonging to Candidatus Accumulibacter
phosphatis (29). Seventeen DR types containing 308
spacers were discovered from the assembly using
PILER-CR; in comparison, Crass identified 72 DR types
(6.7� more than with PILER-CR) containing 2304
spacers (Figure 4). The largest DR type identified in
both analyses contained >400 spacers and showed
evidence of strain heterogeneity near the leader sequence
(Figure 5; green circle). The spacer graph forked
into two main branches that were in equal coverage,
likely representing micro-heterogeneity within the C.
Accumulibacter Phosphatis (CAP) population in the com-
munity. One of the branches contained approximately
twice the number of spacers as the other (Figure 5, label
A), suggesting that some members of the population were
infected by more phage in the past. There is also a third
arrangement that could not be connected to the leader
sequence (Figure 5, label C). The spacer graph ends in a
conserved tail region (Figure 5, label D) that can be linked
into a flanking contig from the assembly (Figure 5; grey
circle). Half of the spacers in the main body of the graph
were identified in 20 contigs from the assembly. These
spacers did not fully correspond to any of the arrange-
ments identified by Crass but contained fragmented ar-
rangements of the CRISPR, including those near the
leader sequence and the conserved tail region
(Supplementary Figure S9).

A phage metagenome prepared at the same time as the
microbial metagenome was sequenced (see Supplementary
Methods) to find EBPR CRISPR spacers derived from
phage in the bioreactor. The only spacers with matches
to the phage metagenome were homologous to the most
abundant phage in the bioreactor. There were eight
spacers that had between zero and three mismatches to
the phage genome and contained a CCN protospacer
associated motif (Supplementary Figure S10). Although
the CRISPR locus containing these spacers was not
identified by PILER-CR in the contigs, Crass identified
131 spacers in the raw reads, making it the third largest
CRISPR in the data set.

DISCUSSION

CRISPRs are an adaptive bacterial and archaeal immune
system that directly target infecting phage types and
as such, store a history of acquired phage resistance
over time. Until recently our understanding of CRISPR
evolution was largely based on isolate genomes (3,4,6, 30);
however, the emergence of metagenomics now enables
CRISPR diversity and dynamics to be explored in
natural communities. Detection of CRISPRs in
metagenomic data sets is confounded by their repetitive
nature and strain heterogeneity, which complicate
assembly. Most previous studies have only used
CRISPR identified from assembled contigs to examine
diversity and evolution (14, 16, 17); however, CRISPR
loci are typically poorly assembled or not assembled at
all (Figure 4; Supplementary Figures S7–S9). Crass imple-
ments an alternative approach that searches through raw
metagenomic data for DR-containing reads and recon-
structs the spacer ordering for each DR type.
The sensitivity and specificity of Crass was evaluated by

comparing the detection of DRs and spacers in synthetic
data sets and previous analysed metagenomes. In the
synthetic data sets, Crass showed high specificity and

0

50

100

150

200

250

300

350

400

450

G
1

G
2

G
4

G
6

G
8

G
16

G
18

G
21

G
23

G
26

G
29

G
31

G
32

G
39

G
40

G
44

G
49

G
54

G
59

G
60

G
61

G
65

G
66

G
77

G
80

G
87

G
97

G
98

G
10

0
G

10
8

G
12

5
G

13
0

G
13

3
G

14
0

G
14

6
G

15
2

G
16

1
G

17
4

G
18

2
G

18
3

G
19

7
G

19
8

G
20

4
G

21
6

G
22

4
G

23
1

G
24

8
G

26
9

G
27

9
G

28
5

G
28

6
G

36
3

G
37

1
G

37
4

G
38

3
G

39
2

G
42

0
G

43
3

G
46

2
G

49
6

G
51

9
G

52
7

G
52

9
G

55
5

G
57

2
G

58
8

G
60

1
G

61
9

G
62

8
G

77
5

G
80

2

G
3

N
um

be
r 

of
 S

pa
ce

rs
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sensitivity when identifying CRISPR DRs and recon-
structing the correct ordering of spacers (Table 1).
However, owing to the strict filtering steps necessary
to correctly group individual reads into DR types,
spacers were missed in CRISPR loci where the DR
sequence was not highly conserved (e.g. N. magadii).
Crass performed comparably on the AMD data set iden-
tifying all of the DR types and the great majority of the
spacers (Figure 3). Crass had higher specificity when
calling the DR boundaries (Supplementary Figure S6)
and identified novel spacers indicating that it had
increased sensitivity when detecting DR containing
reads. A clear advantage of Crass was the processing
speed (�135 000 Sanger reads in 16 s) and detailed infor-
mation about spacer ordering and diversity, which
removes a major bottleneck when analysing CRISPRs in
metagenomic data sets.
Crass-analysis of the GOS data, which had not

previously been analysed at the read level, revealed

substantially more DR types and spacers (Figure 3). The
vast majority of unique Crass DR types were found on
single reads that were not included in the assembly.
However, some of these unique DR types were found in
scaffolds but were missed as a result of the strict criteria
used for DR identification in the original analysis, which
required the DR to be detected by three separate pro-
grammes. The shared fraction of DR types from these
programmes was relatively small resulting in many valid
DR types being missed.

A detailed examination of the Crass spacers in the GOS
data identified inconsistencies in the ordering for the most
abundant DR types. One of the dominant DR types was
reconstructed into four linear arrangements by Crass, but
the same DR type was fragmented across 11 scaffolds,
despite several of these scaffolds sharing identical spacer
arrangements (Supplementary Figure S7). Conversely,
there was evidence of spacers found by Crass that were
missing from the assembled scaffold and likely the result

24

1

Spacer
Coverage

A

B

C

D

Figure 5. Reconstruction of the spacer arrangement of the most abundant CRISPR loci in the EBPR microbial metagenome. Each circle represents
a spacer, and the lines connecting each spacer represent their positioning relative to other spacers. A spacer can be joined onto any number of other
spacers (which indicates strain diversity in the population) and is coloured on a linear scale from blue to red, based on its coverage. The leader
sequence (green circle) and distal end (grey circle) of the CRISPR are shown. There are two main spacer arrangements (A and B) from the leader to
the tail region that merge into a conserved tail (D). A third arrangement contains unconnected spacers that may link into the leader sequence (C).
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of a mis-assembly (Supplementary Figure S8). Overall,
fragmentation and mis-assembly of CRISPR loci created
duplicated DR types and reduced the diversity of spacers,
confounding the original analyses of the GOS data.

A comparison of DRs and spacers identified in the
assembled EBPR metagenome by PILER-CR to the read
level analysis of Crass revealed that a substantial number
of DR types were not detected in the assembled data
(Figure 4). The dominant DR type detected in the
assembled contigs was substantially different to the recon-
structed spacer ordering generated by Crass. This DR type
was found on 20 contigs; however, Crass was able to
create a spacer graph containing two main branches,
likely representing population heterogeneity in this DR
type (Figure 5). The assembly did not reconstruct either
of these two strains, but instead produced contigs contain-
ing fragments from both branches. Using the assembly
alone, it would be impossible to order the fragments
correctly to reflect the strain variation that was identified
with Crass.

Spacers detected in the EBPR metagenome with Crass
were mapped to the phage metagenome sequences from
the same time point. The only spacers with sequence
homology to the phage metagenome corresponded to the
genome of the most abundant phage in the bioreactor.
These spacers belonged to the DR type containing
the third largest number of spacers in the data set
(Figure 4). Given that this DR type was low coverage
and did not assemble, it likely originates from a low abun-
dance member of the community. We posit that at the
time of sampling, this host recently experienced a lytic
event resulting in a high abundance of the attacking
phage type and low relative abundance of the host popu-
lation. Furthermore, mismatches to some of the spacers
suggest that this phage is persistent in the system and rap-
idly evolving in response to the CRISPR conferred resist-
ance of the host (Supplementary Figure S10). We
speculate that the perfectly matched spacers were
recently acquired and confer resistance to only a small
number of individuals within this population.

The Crass algorithm balances trade-offs between pro-
cessing speed and the accuracy of the spacer graph. Crass
ran exceptionally fast on the data sets tested in this study,
compared with other CRISPR finding tools (16 s AMD;
16min EBPR; 90min GOS), but its speed is primarily
determined by the number of DR types found during
the initial search phase and the size of the data set. To
increase the processing speed, Crass avoids making pair-
wise sequence comparisons, instead using a kmer-based
approach to link neighbouring spacers during graph
building (see ‘Materials and Methods’ section). As a con-
sequence, erroneous links can be made where many
spacers begin or end in the same kmer (Supplementary
Figure S7B). The kmer size is a user-defined parameter
that should be maximized (ideally half the length of the
spacer) to reduce the chances of erroneous links between
spacers. Additionally, extra spacers can be created by
sequencing errors that do not get resolved during graph
cleaning (Supplementary Figure S7A). These spacers
appear as bubbles in the final graph that must be
resolved manually.

An important consideration when using Crass is that
reads containing a specific DR type are analysed together;
however, they may originate from multiple CRISPR loci
belonging to different organisms, organisms within the
same population or a duplicated locus within a single
genome (13). Although Crass does not directly determine
the number of discrete CRISPR loci, the spacer graph can
be used to infer the number and diversity of loci. In
the case of CRISPR loci derived from multiple unrelated
organisms, Crass will likely create multiple unconnected
graph arrangements indicating discrete CRISPR
loci. Population heterogeneity within a CRISPR locus
typically results in a graph that shares a common lin-
ear arrangement of spacers that splits into different
pathways representing individuals within the population
(Figure 5).

CONCLUSION

Crass provides a fast, accurate approach for exploring
CRISPR diversity in metagenomic data sets without the
need for assembly or prior knowledge of CRISPR in the
data set. Examining CRISPR diversity in metagenomic
data sets provides information important to understand-
ing phage-host co-evolution. Substantially, more CRISPR
loci and spacers could be identified in metagenomic data
generated on all conventional sequencing platforms using
Crass. The extra sensitivity and specificity of Crass
revealed population heterogeneity and phage-host inter-
actions that would not have been discovered in assembled
data. Additionally, a fast and automated tool such as
Crass is important for metagenomic investigation, as the
size and complexity of these data sets is constantly
increasing. The source code is licenced under the GNU
public licence version 3 (GPLv3) and is freely available
at http://ctskennerton.github.com/crass.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figures 1–10,
Supplementary Methods, Supplementary Results and
Supplementary References [31,32].
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